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Abstract We analyze when a multifractal spectrum can be used to recover the
potential. This phenomenon is known as multifractal rigidity. We prove that
for a certain class of potentials the multifractal spectrum of local entropies
uniquely determines their equilibrium states. This leads to a classification
which identifies two systems up to a change of variables.
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1 Introduction

The multifractal analysis has its genesis in the physical ambient [13, 14]. In
the study of chaotic behaviors, invariant sets with a complex mathematical
structure are frequently found. These sets can be decomposed into subsets -
with some scaling property. This kind of partition is called a multifractal de-
composition. To reveal complete information about these level sets a rigorous
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mathematical description is needed. A first attempt in this way was to consider
an attractor A carrying an invariant measure μ which scales with an exponent
α in a scale level r. More specifically in [1, 2] was performed a multifractal
decomposition of the attractor A in sets

Kα = {x : μ (Br (x)) ∼ rα as r → 0} . (1)

where Br (x) denotes the ball of centre r and radius ε.
A complete description of the multifractal analysis of invariant measures

was done by Pesin and Weiss in [24]. In that work all the results known until
that moment about smooth conformal maps were extended. The general idea
of multifractal analysis was introduced in [4] as follows: Given a set X and a
map g : X → [−∞, +∞] the level sets

Kα = Kα (g) = {x : g (x) = α} ,

and the decomposition X =
Ã[

α

Kα

!
∪ Y, where Y is the set in which g is not

defined, are considered. If G is a function defined on sets, and F (α) = G (Kα) ,

then the map F is called the multifractal spectrum specified by the pair (g, G) .

When g (x) is the dimension of the measure Dμ (x) and F (α) the Hausdorff
dimension dimH Kα of the set Kα , then this spectrum is called the dimension
multifractal spectrum. The function F (α) gives a description of the fine-scale
property of the part of X where the measure μ is concentrated. The dimension
multifractal spectrum was previously studied for particular cases in [8, 14] and
further generalized in the above mentioned articles.

Another interesting example is the local entropies spectrum which is ob-
tained with g as the local entropy of a dynamical map f and F (α) as the Bowen
topological entropy (for non-compact sets) of the level sets. The Hausdorff
dimension and the topological entropy are special cases of “characteristic
dimensions” in metric spaces. Thus there is a close relationship between the
fields of multifractal analysis and dimension theory of dynamical systems. The
knowledge of adequate dimensions of the multifractal decomposition sets is
necessary to investigate the complexity of them.

The classification of multifractal spectra is done by using families of mea-
sures {μα}α∈R such that μα (Kα) = 1. Two multifractal spectra (g1, G1) and
(g2, G2) are said to be equivalent with respect to the families of full measures©
μ1

α

ª
α∈R and

©
μ2

α

ª
α∈R if there is a bijection σ : [−∞, +∞] → [−∞, +∞] such

that μ1
α = μ2

σ(α) for every real α. When the spectrum is defined from a potential
ϕ : X → R and dynamics f : X → X, like the entropies spectrum, a one-
parameter family of measures

©
μq

ª
q∈R is introduced as the Gibbs state for each

member of a certain family of potentials
©
ϕq

ª
. Then a parametrization α (q)

with μq
¡
Kα(q)

¢ = 1 and μq (Kα) = 0 if α 6= α (q) is defined. Therefore, there is
a correspondence between the level sets of the decomposition and the family
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of full measures
©
μq

ª
. The parametrization is obtained by setting α (q) :=

−T
0
(q), where T is the “free energy” in Ruelle’s thermodynamic formalism

terminology, whereas q is interpreted as the inverse of the temperature, so α

may be the internal energy per volume. In the most known and used spectra
(for instance the dimension, entropy or the Lyapunov spectra), the free energy
map is, under certain conditions, a convex differentiable map whose Legendre
transform is F (α) , thus multifractal spectra can be classified by the dynamics
and equilibrium states.

One interesting problem is to study when the spectrum determines the
potential, a phenomenon called multifractal rigidity. In other words the issue
is to analyze when the multifractal classification works as a complete invariant
of dynamical systems as well as of equilibrium states. This classification fits
better to a physical interpretation than the topological and measure-theoretic
ones, because multifractal classification identifies two systems up to a bijection
between variables.

A remarkable result in this direction was obtained in [4], where the authors
established multifractal rigidity for the full shift in two symbols and for
special potentials. Specifically they proved that if two Bernoulli schemes, with
probabilities pi, bpi, i = 1, 2, have the same dimension spectrum, then there is
a homeomorphism between the respective phase spaces and the probabilities
are uniquely determined by each multifractal spectrum

A meaningful step was then done by Pollicott and Weiss [25] who demon-
strated that for the special class of generic locally constant potentials the free
energy determines the potential. By locally constant potentials it must be
understood those that depend on a finite number of coordinates, or finite range
observables in the physical language. The genericity is a matrix property, which
must be verified by the matrices associated to the potentials. The matrices with
this property are in the complement of an algebraic variety of dimension one.
In the above mentioned article examples of systems with locally potentials
which have the same free energy but non-equivalent were presented. Also
they established a local multifractal rigidity for symbolic dynamical systems
and H

..
older continuous potentials.

In this article we establish the existence of multifractal rigidity for
larger classes of potentials than in the mentioned articles. If (X, d) is a
compact metric space and f : X → X an homeomorphism the local en-
tropies spectrum is given from the decomposition Kα = ©

x : hμ (x, f ) = α
ª

where hμ (x, f ) is the local entropy: hμ (x, f ) = lim
ε→0

lim sup
n→∞

− 1
n log μ

¡
Bn,ε (x)

¢
,

with Bn,ε (x) the ball of centre x and radius ε in the metric dn (x, y) =
max

©
d
¡

f i (x) , f i (y)
¢ : i = 0, 1, ..., n − 1

ª
. The map E (α) defined on level sets

is E (α) = htop ( f, Kα), with htop ( f, Z ) the Bowen topological entropy for non-
compact nor invariant sets [6], and the free energy for this spectrum with
potential ϕ is the map T(q) = P(qϕ) − qP(ϕ) (P the topological pressure)
whose Legendre transform is precisely E (α). The description of this mul-
tifractal spectrum for a class of potentials broader than Hölder continuous



298 A.M. Mesón, F. Vericat

maps and for expansive homeomorphisms with specification was performed
by Takens and Verbitski [30]. The lattice spin systems used in classical
Statistical Mechanics are mathematically modelled by the Markov systems
6A = ©

x = (xi)i∈Z : xi ∈ Ä, ∀i ∈ Z, Axi,xi+1 = 1
ª
, where A is a k × k matrix

with 0, 1 entries and Ä = {0, 1, 2, ..., k − 1} . The integers i are called the sites
and the corresponding coordinate xi the spin at the site i. The matrix A
indicates which configurations, i.e. which sequences x = (xi)i∈Z , are allowed.

We prove, for Markov systems and an adequate class of potentials depend-
ing on infinite coordinates, the following result: Eϕ1

= Eϕ2
implies μϕ1

= μϕ2
,

where μϕ is the Gibbs state associated to the potential ϕ. We use an approach
based on transfer operators which also works for spin lattice models with
infinite range potentials, i.e in which the potential depends on all the coordi-
nates, The scheme followed is similar than [25], where stochastic matrices are
used. We firstly prove that the multifractal spectrum determines the Fredholm
determinant of the corresponding transfer operator (it plays the role of the ma-
trix in the finite range case), then for the special class of potentials considered
the determinant is related with the zeta function associated to the potential
and finally since the zeta function uniquely determines the equilibrium states
we are done. This last result will be actually proved in a much general context
than symbolic systems.

We also study the variational properties of perturbations on the local
entropies spectrum in order to get a local rigidity result. For this we shall
consider for a fixed dynamical map f : X → X a family of potentials 8 =
{ϕλ}λ∈(−δ,δ) and study the variation of the entropies spectrum, by computing
the first and second derivatives, with respect to the perturbative parameter λ,
of the function τ (λ, q) := P (qϕλ) − qP (ϕλ) which is in turn a perturbation of
the function T (q) = P (qϕ0) − qP (ϕ0) . The estimate of the influence of the
perturbations and how numerical results could be affected by small perturba-
tions is very useful for numerical computations. Results about first variational
formulae for dimension spectra were obtained in [3] and [33] and for the
second variation, also for dimension spectrum, in [15]. In all these cases the
results are valid for hyperbolic diffeomorphisms. In [20] were calculated the
first derivative of τ (λ, q) but under much weaker hypothesis than hyperbolic-
ity and Hölder continuous potentials, we compute here the second derivatives
of τ (λ, q) under these same hypothesis. The local rigidity result that we
present herein is: If λ 7→ Eϕ

λ
is constant for λ ∈ (−δ, δ) then μϕλ

is constant for
λ ∈ (−δ, δ) , whose validity is established for expansive homeomorphism with
specification, conditions much weaker than the existence of Markov partitions,
and for a class which includes on hyperbolic sets.

2 Basic Definitions and Previous Results

We begin by recalling the description of the local entropies multifractal
spectrum, some of whose main aspects were sketched in the introduction: Let
(X, d) be a compact metric space, and f : X → X a continuous map. Let
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dn (x, y) = max
©
d
¡

f i (x) , f i (y)
¢ : i = 0, 1, ..., n − 1

ª
. We denote by Bn,ε (x)

the ball of centre x and radius ε in the metric dn. If μ a f−invariant measure,
the upper and lower local entropies are

hμ (x, f ) = lim
ε→0

lim sup
n→∞

− 1
n

log μ
¡
Bn,ε (x)

¢

hμ (x, f ) = lim
ε→0

lim inf
n→∞ − 1

n
log μ

¡
Bn,ε (x)

¢
.

Then (Brin–Katok theorem [7]), the local entropy does exist, i.e. hμ (x, f ) =
hμ (x, f ) := hμ (x, f ), for μ − a.e. x ∈ X. Now the local entropies spectrum of

f is that specified by the pair
¡
hμ ( f, x) , E (α)

¢
with E (α) := htop ( f, Kα) . The

set X is naturally decomposed as

X =
∞[

α=−∞
Kα ∪ (X − Y) ,

where Y is the set in which the local entropy map does not exist and is
usually called the irregular part of the spectrum. By the Brin–Katok theorem
μ (X − Y) = 0, for any f−invariant measure μ.

Next we collect a few definitions from the Ruelle thermodynamic formalism
[26]. The topological pressure associated to f and to a potential ϕ : X → R, is
the number

P (ϕ) = sup
μ

½
hμ ( f ) +

Z
ϕdμ

¾
,

where the supremum is taken over all the f−invariant Borel measures μ on
X, and hμ ( f ) is the usual Kolmogorov measure-theoretic entropy of f.

An equilibrium state for the potential ϕ is a measure μϕ for which:

P (ϕ) = hμϕ
( f ) +

Z
ϕdμϕ. (2)

The set of equilibrium states for the potential ϕ will be denoted by Mϕ (X) .

Under certain conditions imposed on the map f and the potential ϕ an equi-
librium state can be constructed [16–30]. The specif ication property for a map
f : X → X intuitively says that for specified orbit segments a periodic orbit
approximating the trajectory can be found. This condition ensures abundance
of periodic points. It is a concept introduced by R. Bowen [5]. Formally, a
homeomorphism f : X → X has the specif ication property if given a finite
disjoint collection of integer intervals I1, I2..., Ik and ε > 0, there is an integer
M (ε) and a function 8 : I = ∪Ii → X, such that the following conditions are
satisfied:

(i) dist
¡
Ii, I j

¢
> M (ε) (Euclidean distance)

(ii) f n1−n2 (8 (n1)) = 8(n2)

(iii) d ( f n (x) , 8 (n)) < ε, for some x : f m (x) = x, with m ≥ M (ε) +
length (I) and for every n ∈ I.
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A homeomorphism f : X → X is called expansive if there is a constant δ >

0, such that d ( f n (x) , f n (y)) < δ, for any integer n implies x = y.

For a potential ϕ we put

Sn (ϕ) (x) =
n−1X
i=0

ϕ
¡

f i (x)
¢

(3)

which is called the statistical sum.
Following [16] or [30], we say that a potential ϕ belongs to the class ν f (X)

if it satisfies the following condition:
There are constants ε, K > 0 such that

dn (x, y) < ε =⇒ |Sn (ϕ) (x) − Sn (ϕ) (y)| < K. (4)

We also recall how an equilibrium state associated to a potential ϕ ∈ ν f (X)

can be defined. Let Pn ( f ) = {x : f n (x) = x}, then we set

μϕ,n(A) = 1eZ ( f, ϕ, n)

X
x∈Pn( f )

exp (Sn (ϕ) (x)) δx(A), (5)

where eZ ( f, ϕ, n) = P
x∈Pn( f )

exp (Sn (ϕ) (x)) and δx is the Dirac measure at x:

δx(A) =
½

1 if x ∈ A
0 if x /∈ A

.

If X is compact the sequence
©
μϕ,n

ª
has an accumulation point and under

the above conditions it has a weak limit μϕ, i.e.:

lim
n→∞

Z
ψ (x) dμϕ,n =

Z
ψ (x) dμϕ, (6)

for every continuous ψ [16, 26].

Theorem [16, 26] Let f be an expansive homeomorphism with the
specif ication property and ϕ a potential belonging to the class ν f (X) , then μϕ

is the unique equilibrium state associated to ϕ. Besides μϕ is ergodic.

The conditions of expansiveness and specification are much weaker than the
existence of Markov partitions. Under these hypothesis Takens and Verbitski
[30] developed a multifractal formalism for local entropies spectrum, we
review here the main results: let T(q) = P(qϕ) − qP(ϕ), q ∈ R, called the free
energy of ϕ,

(i) the function T(q) is convex and continuously differentiable. This map
has a Legendre transform E (α) = inf

q∈R
{qα − T (q)}. E (α) describes local

entropies spectrum f .
(ii) If Kα = ©

x : hμϕ
(x, f ) = α

ª
, (μϕ 6= μmax, the measure maximal entropy),

then E (α) = htop ( f, Kα). Besides

E (α (q)) = qα (q) + T (q) ; α (q) := −T
0
(q) , q = E 0 (α) . (7)
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Let αi = lim
q→∞ α (q) = inf

q∈R
{α (q)} , αs = lim

q→−∞ α (q) = sup
q∈R

{α (q)} , then Kα =
∅, if α /∈ (αi, αs) , so that the domain of definition of E (α) is the range of T

0
(q) .

Definition A f -invariant measure μ is a Gibbs state if for sufficiently small
ε > 0, there are constants Aε, Bε > 0, such that for any x ∈ X and for any
positive integer n:

Aε (exp (Sn (ϕ)(x))−nP (ϕ)) ≤ μ
¡
Bn,ε (x)

¢≤ Bε (exp (Sn (ϕ)(x))−nP (ϕ)) , (8)

where Sn (ϕ) (x) =
n−1P
i=0

ϕ
¡

f i (x)
¢
.

Theorem [16–26] Let f : X → X be an expansive homeomorphism which have
the specif ication property and ϕ a potential belonging to the class νf (X), then μϕ

is an equilibrium state associated to ϕ, which is a Gibbs state. Besides it is ergodic.

The multifractal spectrum of local entropies is thus described by the family
of measures

©
μq

ª
whose members are the Gibbs states associated to the

potentials qϕ − qP(ϕ). One has μq
¡
Kα(q)

¢ = 1, with α (q) = −T
0
(q) .

One important general result about classification of equilibrium states is the
following:

Theorem [30] Let ϕ, ψ ∈ ν f (X) where X is a compact metric space and f an
expansive homeomorphism with specif ication, then μϕ = μψ if and only if there
is a constant C such that Sn (ϕ) (x) = Sn (ψ + C) (x) , for any n and for every
x ∈ Pn ( f ) = {x : f n (x) = x} .

A proof of the above claim for the particular case of hyperbolic systems in
Riemannian manifolds and Hölder continuous potentials. appears in [16, pp.
636–637].

According to the nomenclature of [25] the unmarked orbit spectrum, the
weak orbit spectrum and the marked periodic spectrum of the potential ϕ are
respectively

Sϕ = {(Sn (ϕ) (x) , n) : x ∈ Pn ( f )} ,

Wϕ = {Sn (ϕ) (x) : x ∈ Pn ( f )} ,

Hϕ = {(Sn (ϕ) (x) , x) : x ∈ Pn ( f )} .

In [25] is made an interesting parallelism between these spectra and length
spectra of geodesics in compact hyperbolic surfaces. For instance Sϕ is the
analogue of the unmarked length spectrum which consists of the length of all
closed geodesics and Wϕ is the analogue of the set of the lengths of all closed
geodesics marked with the free homotopy class of the geodesic. In this way is
established a comparison between multifractal rigidity and the Kac problem
can you hear the shape of a drum?, a question which summarizes the problem
about when the geodesic spectrum determines the manifold.
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A “Hamiltonian” approach to the presented multifractal rigidity can be
formulated as follows: let f : X → X be an expansive homeomorphism with
the property of specification and a potential ϕ in the class ν f (X), so that it has
a Gibbs state μϕ. In [19] we have introduced a Hamiltonian of the form

Hn,ε(x) = − log μϕ

£
Bn,ε (x)

¤
This Hamiltonian may be considered as a generalization to the Sinai’s one [29].
In that case the measure is the probability associated with cylinders. It should
be noticed that balls like Bn,ε (x), in the particular case of symbolic spaces (with
a certain metric), correspond to cylinders.

Physically the point x in the Hamiltonian can be thought as a microstate
whose energy is given by the interaction of the point x with all the points of
the ball Bn,ε (x), i.e. with all the points that follows the trajectory of x within
ε-distance up to time n. The total interaction being given by the measure of
the ball. The microstates we are interested in are the whole set of periodic
points Pn ( f ). In analogy with statistical mechanics, we introduce the canonical
partition function (q interpreted as the inverse of the temperature):

Z (q; n, ε) =
X

x∈Pm( f )

exp
£−qHn,ε(x)

¤ =
X

x∈Pn( f )

¡
μϕ

£
Bn,ε (x)

¤¢q (9)

and a “free energy”

F(q) = lim
ε→0

lim
n→∞

1
n

log Z (q; n, ε). (10)

We have proved [19] that F(q) = P(qϕ) − qP(ϕ), for every real q. So that
this energy function agrees with that introduced by Takens and Verbitski for
their multifractal formalism which will be used for.

3 Local Multifractal Rigidity

Let us begin considering a homeomorphism f : X → X, with X a compact
metric space, and a Ck− family of potentials 8 = {ϕλ}λ∈(−δ,δ) ⊂ ν f (X) seen as
a perturbation of a fixed potential ϕ0. The requirement for the value of k will
depend of the order of derivative that we wish to compute. Next we introduce
the map τ (λ, q) = P(qϕλ) − qP(ϕλ), where P = P (ϕλ, f ) , λ ∈ (−δ, δ) . For
the non-perturbed case the map τ (0, q) = P(qϕ0) − qP(ϕ0) will be denoted
directly by T(q), the free energy of ϕ0.
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The following results were set in [20]:

(1) ∂τ(λ,q)

∂λ
|λ=0= q

R
2dμq, where 2 := ∂ϕλ

∂λ
|λ=0 − ∂ P(ϕλ)

∂λ
|λ=0= ∂ϕλ

∂λ
|λ=0 −R

∂ϕλ

∂λ
|λ=0 dμq and μq is an equilibrium state for qϕ0.

(2) If μ0 := μϕ0
6= μmax, then μϕλ

6= μmax for sufficiently small |λ| .

The necessity of establishing a result of this nature is to ensure the
differentiability of the map λ → Eλ (α). Indeed if μ = μmax, then [30] E (α) =
htop ( f, Kα) =

½
htop if α = htop

0 if α 6= htop
. Now it must be checked that under small

perturbations one cannot have this degenerate behavior if it does not occur in
the non-perturbed case.

Lemma 1 Let ϕ, ψ ∈ ν f (X), with f a homeomorphism with specif ication, then
d2 P(ϕ+λψ)

dλ2 |λ=0= Cϕ(ψ) := μϕ(ψ2) − (μϕ(ψ))2, seeing the measure as a func-
tional by μϕ(ψ) = R

ψdμϕ , and μϕ the Gibbs state associated to ϕ.

Proof By the multifractal formalism described in the earlier section: dP(ϕ+λψ)

dλ

|λ=0= μϕ (ψ) = R
ψdμϕ. Let us denote μλ = μϕ+λψ and so we have dP(ϕ+λψ)

dλ
=

μλ (ψ) . Let us recall (c.f. (5) and (6)) that the Gibbs state for a potential ϕ in
the class ν f (X) is defined as the weak limit μϕ of the “Gibbs ensembles”

μϕ,n ({y}) = exp (Sn (ϕ) (y))P
x∈Pn( f )

exp (Sn (ϕ) (x))
. (11)

By the compactness of X this sequence has an accumulation point which
can be interpreted as its “thermodynamic limit”. Thus for obtaining the
second derivative we must differentiate μn,λ (ψ). Doing this we have dμn,λ(ψ)

dλ

=
P

x∈Pn( f )
ψ2 exp(Sn(ϕ+λψ)(x))P

x∈Pn( f )
exp(Sn(ϕ+λψ)(x))

−
" P

x∈Pn( f )
ψ(x) exp(Sn(ϕ+λψ)(x))P

x∈Pn( f )
exp(Sn(ϕ+λψ)(x))

#2

and then d2 P(ϕ+λψ)

dλ2 |λ=0=
μϕ(ψ2) − (μϕ(ψ))2. ut

Theorem 1 Let 8 = {ϕλ}λ∈(−δ,δ) ⊂ ν f (X) be a C2-family, with f a homeomor-
phism with the specif ication property, then

∂2τ (λ, q)

∂λ2 |λ=0= q
·
μqϕ0

µ
∂2ϕλ

∂λ2 |λ=0

¶
− μϕ0

µ
∂2ϕλ

∂λ2 |λ=0

¶¸

+ q2
·

Cqϕ0

µ
∂ϕλ

∂λ
|λ=0

¶
− Cϕ0

µ
∂ϕλ

∂λ
|λ=0

¶¸
.
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Proof We start by calculating d2 P(ϕ+λψ)

dλ2 |λ=0, where {ψλ}λ∈(−δ,δ) is a C2−family.
For this we must differentiate μϕ+λψλ,n (ψλ) with respect to λ. Thus

μϕ+λψλ,n (ψλ) =
P

x∈Pn( f )
ψλ exp(Sn(ϕ+λψλ)(x))P

x∈Pn( f )
exp(Sn(ϕ+λψλ)(x))

, and so

dμϕ+λψλ,n
¡
ψλ

¢
dλ

=

P
x∈Pn( f )

·
∂ψλ

∂λ
exp (Sn (ϕ + λψλ) (x)) + ψλ exp (Sn (ϕ + λψλ) (x))

µ
λ

∂ψλ

∂λ
+ ψλ

¶¸
P

x∈Pn( f )
exp (Sn (ϕ + λψλ) (x))

−

Ã P
x∈Pn( f )

ψλ exp (Sn (ϕ + λψλ) (x))

! P
x∈Pn( f )

exp (Sn (ϕ + λψλ) (x))

µ
∂ψλ

∂λ
+ λψλ

¶
" P

x∈Pn( f )
exp (Sn (ϕ + λψλ) (x))

#2

evaluating in λ = 0

P
x∈Pn( f )

·
∂ψλ

∂λ
|λ=0 exp (Sn (ϕ) (x))

¸
P

x∈Pn( f )
exp (Sn (ϕ) (x))

+

P
x∈Pn( f )

£
ψ2

0 exp (Sn (ϕ) (x))
¤

P
x∈Pn( f )

exp (Sn (ϕ) (x))

−

P
x∈Pn( f )

£
ψ0 exp (Sn (ϕ) (x))

¤
P

x∈Pn( f )
exp (Sn (ϕ) (x))

×

P
x∈Pn( f )

£
ψ0 exp (Sn (ϕ) (x))

¤
P

x∈Pn( f )
exp (Sn (ϕ) (x))

= Cϕ (ψ0) + μϕ

µ
∂ψλ

∂λ
|λ=0

¶
.

Now

∂2τ (λ, q)

∂λ2 |λ=0= ∂2 P (qϕλ)

∂λ2 |λ=0 −q
∂2 P (ϕλ)

∂λ2 |λ=0

=
∂2 P

µ
qϕ0 + q

∂ϕ
λ

∂λ
|λ=0 λ + q

∂2ϕλ

∂λ2 |λ=0 λ2 + o
¡
λ2

¢¶
∂λ2 |λ=0

− q
∂2 P

µ
ϕ0 + q

∂ϕ
λ

∂λ
|λ=0 λ + q

∂2ϕλ

∂λ2 |λ=0 λ2 + o
¡
λ2

¢¶
∂λ2 |λ=0

= q
·
μqϕ0

µ
∂2ϕλ

∂λ2 |λ=0

¶
− μϕ0

µ
∂2ϕλ

∂λ2 |λ=0

¶¸

+ q2
·

Cqϕ0

µ
∂ϕλ

∂λ
|λ=0

¶
− Cϕ0

µ
∂ϕλ

∂λ
|λ=0

¶¸
.

ut
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If we define a map D (λ) by P (D (λ)ψλ) = 0, then we can calculate from the

above theorem
∂2 D (λ)

∂λ2 |λ=0 . The interest of such a computation resides in the

fact that, for the particular case of hyperbolic systems with basic set 3 we have,
by the Bowen equation, dimH 3 = D(0) (dimH means Hausdorff dimension).
Thus we can find a first and a second variational formula for a “like perturbed
dimension” under the general hypothesis of Theorem 1. A formula of this style
was supplied in [15], but under stronger conditions.

Proposition 1 Under the same conditions for the dynamics and the potential as

in Theorem 1 and for D(λ) def ined as above, it holds: ∂ D(λ)

∂λ
|λ=0= −D(0)μ(

∂ψλ
∂λ

|λ=0)

μ(ψ0)

and ∂2 D(λ)

∂λ2 |λ=0= {−CD(0)ψ0
(ψ0

∂ D(λ)

∂λ
|λ=0 +D(0)

∂ψλ

∂λ
|λ=0) × −2 ∂ D(λ)

∂λ
|λ=0 ×

μ(
∂ψλ

∂λ
|λ=0) −D(0)μ(

∂2ψλ

∂λ2 |λ=0)} × 1
μ(ψ0)

, where μ is the Gibbs state associated to
D(0)ψ0.

Proof We have 0 = ∂ P(D(λ)ψλ)

∂λ
|λ=0= μD(0)ψ0(

∂(D(λ)ψλ)

∂λ
|λ=0) = μD(0)ψ0×

(ψ0
∂ D(λ)

∂λ
|λ=0 +D(0)

∂ψλ

∂λ
|λ=0), and so ∂ D(λ)

∂λ
|λ=0= −D(0)μD(0)ψ0 (

∂ψλ
∂λ

|λ=0)

μD(0)ψ0 (ψ0)
.

For the second derivative formula 0 = ∂2 P(D(λ)ψ
λ
)

∂λ2 |λ=0=
μD(0)ψ0(

∂2(D(λ)ψλ)=
∂λ2 |λ=0) + CD(0)ψ0

(
∂2(D(λ)ψλ)=

∂λ2 |λ=0) = μD(0)ψ0(ψ0
∂2(D(λ)ψλ)

∂λ2 |λ=0 +
2 ∂ D(λ)

∂λ
|λ=0

∂ψλ

∂λ
|λ=0 +D(0)

∂2ψλ

∂λ2 |λ=0) + CD(0)ψ0
ψ0

∂ψλ

∂λ
|λ=0 D(0)

∂ψλ

∂λ
|λ=0. So that

∂2 D(λ)

∂λ2 |λ=0= −CD(0)ψ0
(ψ0

∂ D(λ)

∂λ
|λ=0 +D(0)

∂ψλ

∂λ
|λ=0)−2 ∂ D(λ)

∂λ
|λ=0 ×μ(

∂ψλ

∂λ
|λ=0)−

D(0)μD(0)ψ0
(

∂2ψλ

∂λ2 |λ=0). ut

Finally we state our result of local multifractal rigidity

Theorem 2 Let f : X → X be an expansive homeomorphism in a compact
metric space with the specif ication property. Let 8 = {ϕλ}λ∈(−δ,δ) ⊂ ν f (X) be
a C2-family such that Eϕλ

(α) is constant, then μϕλ
is also constant.

Proof From the equality of the multifractal spectra we deduce that the map
λ → τ (λ, q) is constant, for each q and for |λ| < δ. Therefore

R
2λdmλ,q = 0,

where 2λ := ∂ϕλ

∂λ
− ∂ P(ϕλ)

∂λ
and with mλ,q the Gibbs state associated to ϕ

λ,q =
qϕλ − P(ϕλ), λ ∈ (−δ, δ) .

Let us recall the classical Mazur theorem about existence of tangent func-
tionals in Banach spaces [9, p. 450]: if V is a separable Banach space and
P : V → R is convex continuous then the set at which there is a unique tangent
functional to P contains a countable intersection of dense open sets, and
so, because V is a Banach space, by the Baire category theorem it is dense.
This theorem can be applied with P : C (X) → R the topological pressure
and the tangent functionals at ϕ defined as the set of the signed measures
μ such that P (ϕ + ψ) − P (ϕ) ≥ R

ψdμ, for any ψ ∈ C (X) . If the entropy
map μ → hμ ( f ) is upper semi-continuous then the set of tangent functionals
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at ϕ agrees with the set of equilibrium states of ϕ and if f is an expansive
continuous map in a compact metric space then the entropy map is upper
semi-continuous [32]. Now under the hypothesis considered in this work it
holds that there is a dense subset A of C (X) such that for any ϕ ∈ A the set
Mϕ (X) has just one element. Based upon the above results we have that d

dλ

R
(ϕλ − P(ϕλ))dμ = 0 for any equilibrium measure μ associated to potentials in
an open dense subset of ν f (X) . Thus

R
ϕλ − P(ϕλ)dμ = C, for some constant

C and so Sn (ϕλ − P(ϕλ)) (x) = Sn (Cλ) (x) is a small neighborhood of λ = 0.

Therefore there is a small interval (−δ, δ) such that μϕλ−P(ϕλ) = μϕλ
is constant

for λ ∈ (−δ, δ) . ut

The above proposition generalizes a similar result of [4]. There was proved
a local multifractal rigidity theorem, but for hyperbolic systems and for the
dimension spectrum instead.

4 Multifractal Rigidity for Spin Lattice Systems

The next step is to address to the following multifractal rigidity problem: let
Eϕi

(α) , i = 1, 2 be two multifractal spectra of local entropies defined from
potentials ϕi which an unique associated Gibbs state and dynamics f : X → X.

Under adequate conditions these spectra are determined by the respective free
energies Tϕi

(q) since they are the Legendre transforms of Eϕi
(α). Now the

problem will be to find classes of potentials and dynamics for which the free
energy determines the equilibrium states. In short the issue is to establish when
the following implication is valid

Eϕ1 (α) = Eϕ2 (α) =⇒ μϕ1 = μϕ2 . (12)

We briefly describe the special case treated by Barreira et al. in [4]: they
have considered a one-dimensional map f : I → I (I = [0, 1]) which can be
“partitioned” in two maps fi : Ii → Ii, i = 1, 2, with Ii ⊂ [0, 1] and fi (Ii) =
[0, 1] . If J =

∞T
k=1

f −k (I1 ∪ I2) then {J ∩ I1, J ∩ I2} is a Markov partition for

(J, f ) and this dynamical system is topologically conjugated to the full shift
of two symbols 62 = {x = (xi)i∈N : xi ∈ {0, 1}}, which is a Bernoulli scheme
with probabilities pi, i = 0, 1, assigned to each xi. The potential is ϕ : 62 → R
defined by ϕ (x) = log pi if x ∈ Ii, this map is in fact of the form ϕ (x) = ψ (x0)

with the probabilities pi = exp(ψ(i))
exp(ψ(0))+exp(ψ(1))

, i = 0, 1, while the topological pres-
sure is P (ϕ) = log (exp (ψ (0)) + exp (ψ (1))) . Thus a direct calculation leads to
Tϕ (q) = log

¡P
pq

i

¢
. The Gibbs state associated to ϕ is the product measure in

62 of the measures pi.

Let f, bf be one-dimensional Markov maps with invariant sets J, bJ as above
and let χ,bχ : 62 → R be the coding maps giving the conjugations between
each J, bJ and 62. In [4] it is then proved that there is a homeomorphism φ :
J → bJ such that φ ◦ f = bf ◦ φ, so that the dynamical systems (J, f ) and

¡bJ, bf ¢
are topologically conjugated, and there is an automorphism ρ of 62 such that
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κ ◦ φ = ρ ◦ bχ. This was established by showing that the free energy uniquely
determines the probabilities. Now in this special situation (12) holds.

As we mentioned in the introduction the problem on whether the free en-
ergy determines the potential was solved by Pollicott and Weiss for potentials
depending on a finite number of coordinates (finite range potentials). Our aim
herein is to establish the validity of (12) for a class which include infinite range
potentials, i.e. depending on the entire configuration. One interesting example
in this situation is the Kac model: let Ä = {±1} with the transition matrix with

all entries equal to 1 and the potential ϕ (x) = Jx0

∞P
n=1

xnλ
n, with λ ∈ (0, 1) ,

J ∈ R is a coupling parameter.
In the case of finite range potentials can be defined a primitive matrix

(H is primitive if exists a positive integer p such that H p has all its entries
positive). Indeed if ϕ : 6A → R depends on two coordinates let Lϕ = Li, j =½

0 if Ai, j = 0
exp ϕ (x) if Ai, j = 1 , with x0 = i, x1 = j, for instance in the Ising model

ϕ (x) = Jx0x1 and Li, j = exp
¡
Jxix j

¢
. If we consider a “partition function”

Zn (ϕ) = P
x∈Pn(σ )

exp (Sn (ϕ) (x)) then

Zn (ϕ) = Tr
¡
Ln¢ . (13)

On the other hand the “thermodynamic limit” lim
n→∞

1
n log Zn (ϕ) does exist and

equals logE1 (L) , where E1 is the leading positive eigenvalue of L [26]. The
existence of such a leading eigenvalue is ensured by the Perron–Frobenius
theorem, since the matrix is primitive. For Hölder continuous potentials is
valid P (ϕ) = lim

n→∞
1
n log Zn (ϕ) [16].

If we are in the more general situation of not having always potentials
depending on a finite number of coordinates we must work with other class
of objects than matrices. They will be transfer operators, in the style of those
introduced by Ruelle in his thermodynamic formalism, and the aim will be to
obtain an analogous relationship to (13) with the trace of the operator instead
of the matrix.

Next we shall write down such an operator: for

6+
A = ©

x = (xi)i∈N : xi ∈ Ä, ∀i ∈ N, Axi,xi+1 = 1
ª

and ϕ ∈ C
¡
6+

A

¢
, let

Lϕ (κ) (x) =
X
i∈Ä

Ai,κ0 exp (ϕ (i, x)) χ ((i, x)) , (14)

where (i, x) is the configuration
¡
i, x0, x1,...

¢
. The space of finite range poten-

tials, i.e. depending on a finite number of coordinates, is left invariant by L and
so the operator can be reduced in this subspace to a matrix like L for which the
relationship (13) is satisfied.
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Let us return to the Kac model, in this case the transfer operator reads:

Lϕ (κ) (x) =
X
i=±1

exp

Ã
Jx0

∞X
n=1

xnλ
n

!
χ ((i, x)) . (15)

Next we consider the space of functions A∞(6+
A) := {ϕ ∈ C(6+

A) : there exists
a χ ∈ A∞(DR) with ϕ(x) = χ(π(x))}, where DR = {z : |z| = R} and π is a

projection π : 6+
A → DR defined by the assignation x 7−→

∞P
n=1

xn−1λ
n. The

space A∞ (U) is the space of complex functions holomorphic in U and contin-
uous in U (the closure of U), endowed with the norm kχk = sup

z∈DR

|χ (z)|. On

A∞
¡
6+

A

¢
the operator Lϕ induces another one acting on A∞ (DR), also denoted

by Lϕ, in the following way:
Let ψ j : DR → DR, ψ j (z) = λ ( j + z) , j = ±1, and thus

Lϕ (κ) (z) =
X
j=±1

exp (Jxz) χ
¡
ψ j (z)

¢
, (16)

for χ ∈ A∞ (DR) .

By using the trace formula deduced from [17] we have

Zn (ϕ) = ¡
1 − λn¢ Tr

¡
Ln

ϕ

¢ = Tr
¡
Ln

ϕ

¢ − Tr
¡eLn

ϕ

¢
, with eL = λL, (17)

what we were looking for, i.e. a relationship in the style of (13) with the
operator playing the role of the matrix.

Now the task will be to develop a more general approach to obtain a similar
result. For this we shall work in spin lattice systems modeled by finite subshift
type

¡
6+

A, σ
¢

with potentials ϕ : 6+
A → R for which the following conditions be

satisfied:

(C1) There is a projection π : 6+
A → Rd, for some d ≥ 1, and open sets

{Wi} ⊂ Rd such that π
¡
6+

A

¢ ⊂ S
i

Wi and maps ψi : S
j∈Äi

W j → Wi (Ä j :=©
i ∈ Ä : Ai, j = 1

ª
. Besides π (i, x) = ψi (π (x)) ∈ 6+

A, recall that (i, x) is
the configuration

¡
i, x0, x1,...

¢
.

(C2) There are neighborhoods Ui ⊂ Cd of Wi such that each ψi extends
holomorphically to

S
j∈Äi

U j and applies
S
j∈Äi

U j strictly inside itself. By

“strictly inside itself” we understand: let D be a bounded connected
subspace of a Banach space B and ψ a holomorphic map defined on D.

We say that ψ applies D strictly inside itself if inf
z∈D, z0 ∈B− D

°°ψ (z) − z
0°° ≥

δ > 0.

(C3) There exists holomorphic functions ϕi defined on Ui such that ϕ (i, x) =
ϕi (ψi (π (x))) , for any x ∈ 6+

A.



On Multifractal Rigidity 309

These conditions allow to define a transfer operator by:

Lϕ :
M
i∈Ä

A∞ (Ui) →
M
i∈Ä

A∞ (Ui) (18)

¡
Lϕ (χ)

¢
i (z) =

X
j∈Ä

Ai, j exp
¡
ϕ j

¡
ψ j (z)

¢¢
χ
¡
ψ j (z)

¢

A trace formula for such an operator, in the style of the Atiyah–Bott
formula on Lefschetz fixed point, is displayed in [17] as:

Tr
¡
Lϕ

¢ =
X
i∈Ä

Ai,i exp (ϕi (zi))
1

det (1 − Dψi (zκ))
, (19)

where zi is the fixed point of ψi and Dψ is the differential map of ψ, seen as
a linear operator. It must be pointed out that, by the Earle–Hamilton theorem
[10] a map ψ applying strictly a domain D inside itself has exactly a fixed point
z ∈ D with kDψ (z)k < 1.

A relevant fact about these transfer operators is that they are nuclear. Let
us recall that an operator L acting on a Banach space B is nuclear if there exist
sequences (xn) ⊂ B, ( fn) ⊂ B∗ (the dual space of B) with kxnk = 1, k fnk =
1 and numbers (ρn) with

∞P
n=0

|ρn| < ∞ such that L (x) =
∞P

n=0
ρn fn (x) xn for

every x ∈ B. The nuclearity of operators similar to (18) and also for those
corresponding to a continuous case was established in [21, 22]. These proofs
can be easily adapted to operators (18) and so we will omit it.

Let us consider now the family of operators Lq, which are the transfer
operators associated to the family of potentials {qϕ}. In this case the condition
(C3) is formulated as follows: there exist holomorphic functions ϕi,q defined on
Ui such that qϕ (i, x) = ϕi,q (ψi (π (x))) , for any x ∈ 6+

A. These operators will
be denoted by Lq.

By the Grothendieck theory for nuclear operators [11, 12] the Fredholm
determinant det(1 − zLq) is an entire map in both variables z, q and it has

the expansion det(1 − zLq) = exp(−
∞P

n=1

zn

n Tr(Ln
q)). If the charts ψi, defined in

(C1)–(C3) are constant then by the Mayer trace formula it holds Zn(q) :=
Zn(qϕ) = Tr(Ln

q), this is the case, for instance, for the Ising model and many
other statistical systems. If the ψi are linear, like in the Kac-model, there is also
a relationship between the partition function Zn(q) and the trace of Ln

q in the
style of (17). The general relationship between partition function and trace is

Zn (q) =
dX

p=0

Tr
h³

L(p)
q

´ni
, (20)
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where L(p)
q are operators defined on

L
κ∈Ä

V
p
B (Uκ) , where

V
p
B (Ui) is the space

of the differential p-forms holomorphic on Ui, as

L(p)
q :

M
i∈Ä

^
p

B (Ui) →
M
i∈Ä

^
p

B (Ui) , Ui ⊂ Cd

³
L(p)

q

¡
wp

¢´
i
(z) =

X
j∈Ä

Ai, j exp
¡
ϕ j,q (z)

¢^
p

Dψ j (z)
¡
wp

¢ ¡
ψ j (z)

¢
,

here wp ∈ V
p
B (Ui) and

V
p

Dψ is the p-fold exterior product of the differential

map Dψ (considered as a linear operator). We have L(0)
q = Lq and any L(p)

q is
nuclear, as a natural extension of the fact that L(0)

q does. Thus the Fredholm
determinant Dp(z, q) := det(1 − zL(p)

q ) is entire in z and q, for any p.

Now for p = 0, d = 1 and constant charts there is an obvious and direct
relationship between the Fredholm determinant and the Ruelle zeta function
[26] which is defined as

ζ (z, q) = ζϕ (z, q) = exp

Ã ∞X
n=1

zn

n
Zn (q)

!
.

We have then ζ(z, q) = 1
D0(z,q)

. If the charts are linear we obtain an expression
of the partition function as the difference of Tr(Ln

q) and a constant by Tr(Ln
q),

like in (17) for the Kac-model. So that in this case are also related the
determinant and zeta. For d ≥ 2 the connection comes from (20).

Another result about the transfer operators Lq is the relationship between
the spectral radius ρ(Lq) and the topological pressure, which is ρ(Lq) =
exp(P(qϕ)). This was proved by Ruelle for the operators (14) and for operator
similar to (17) in the above quoted references. To obtain an expression
in terms of the free energy T(q) we just consider renormalized operators
exp(−qP(ϕ))Lq and so the leading eigenvalue results exp(T(q)). For simplicity,
we also denote the renormalized operators by Lq. In [21, 22] it was established
the analyticity of the map q 7−→ ρ(Lq), provided conditions in the style of
(C1)–(C3) were fulfilled, and consequently the absence of phase transitions.

The following proposition will be useful to obtain a description of the
transfer operators spectrum.

Proposition 2 The spectrum of the operators L = φCψ , where Cψ is the compo-
sition operator Cψ (χ) (z) = (χ ◦ ψ) (z), acting on the space of functions A∞ (U)

is discrete. It consists in eigenvalues En = ©
φ (z) (Dψ (z))nª where z is a f ixed

point of ψ together with 0 as unique accumulation point.

Proof The fact that the operators L = φCψ have discrete spectrum is actually
due to [17]. Let ψ ∈ A∞ (D) , we have the eigenvalue equation Lχ (z) =
φ (z) χ (ψ (z)) = Eχ (z) . Clearly if χ (z) 6= 0 then an eigenvalue of L is E =
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φ (z) , where z is a fixed point of ψ. If χ (z) = 0 then differentiating, with
respect to z, the above eigenvalue equation is obtained.

Dφ (z) × χ (z) + φ (z) × Dχ (z) Dψ (z) = EDψ (z) .

Thus if Dφ (z) 6= 0 then E = φ (z) Dψ (z) . Now the set of eigenvalues of L
(recall that the spectrum is discrete) is

En = ©
φ (z) (Dψ (z))nª .

Recall that by the Earle-Hamilton theorem kDψ (z)k < 1, therefore 0 is the
only point of accumulation .

Notice that Tr (L) =
∞P

n=1
En =

∞P
n=1

φ (z) (Dψ (z))n = φ(z)

det(1−Dψ(z))
, the Mayer

trace formula. ut

Remark The above result describes indeed the spectrum of the transfer
operators since they are finite sums of composite ones.

Now we shall show that the Ruelle zeta function determines the equilibrium
state for a broader class of potentials than in [25].

Proposition 3 Let f : X → X be an expansive homeomorphism in a compact
metric space with the specif ication property and let ϕ1, ϕ2 ∈ ν f (X). Under these
conditions holds ζϕ1 (z, q) = ζϕ2 (z, q) =⇒ Sϕ1 = Sϕ2 (Sϕ1 ,Sϕ2 are the unmarked
orbit spectra of the potentials ϕ1, ϕ2 as def ined at the end of Section 2).

Proof We have ζϕ (z,q) = exp(
∞P

n=1

zn

n Zn(q)), with Zn(q) = P
x∈Pn( f)

exp(Sn(qϕ)(x)).

The power expansion determines an analytical function in the disc |z| <

exp (T (q)) exp (−qP (ϕ)) . If we have an expression of the form B (q) =
NP

i=1
λ

q
i ,

λi > 0, then from Newton identities we deduce that B (q) uniquely determines
the λi, it just needs to know B (1) , B (2) ,..., B (N) . This can be applied
to the finite sum

P
x∈Pn( f )

£
exp (Sn (ϕ (x)))

¤q and so Zn (q) uniquely determines

the terms Sn (ϕ (x)) , in turn the coefficients Zn (q) are recovered from the
expansion by differentiation with respect to q. In this way the spectrum Sϕ is
uniquely determined from the zeta function. ut

Definition A matrix H = ¡
ai, j

¢
is typical when the numbers log ai, j are

rationally independent, or equivalently if no non trivial product of powers of
the aij0s (with integer exponents) is equal to 1.
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Now we state the main result of this section:

Theorem 3 For spin lattice systems and potentials for which conditions

(C1)–(C3) are fulf illed, let H = (ai, j) be a N × N matrix with
NQ

i=1
Ei =P

σ∈Pn

a1,σ (1)...aN,σ (N), where Ei = Ei (q) are the eigenvalues of the transfer op-

erator Lq = Lqϕ (see (18) for the def inition). If H is a typical matrix, then the
phenomenon of multifractal rigidity is verif ied, i.e., the multifractal spectrum
Eϕ (α) (c.f. (7)) determines the spectrum Sϕ.

Proof The scheme of proof is as follows. Firstly it is naturally established
that the multifractal spectrum of local entropies determines the free energy
Tϕ (q), since it is the Legendre transform of the spectrum map Eϕ (α) . Then
we consider the Fredholm determinant D (z, q) and the map β (q) = 1

ρ(Lq)
=

exp (−T (q)) , so that D (β (q) , q) = 0. Let P (z) be an analytic map such that
P (β (q)) = 0 and with β (q) determining P. We show that P (z) is a factor
of D (z, q), but we also will prove that it is not possible to write D (z, q) =
P (z, q) Q (z, q), where P, Q are non-constant maps. So that the Fredholm
determinant is in some sense “minimal”, and then β (q) determines the Fred-
holm determinant. By the relationship of D (z, q) with the zeta function and
by Proposition 3, the claim of the theorem will be proved.

For the above procedure we use an approach based on Tuncel developments

which combines algebraic and dynamic technics [31]. Let R = {
kP

i=0
nia

q
i : ni ∈

Z, ai > 0}, if we set exp = ©
aq : a ∈ R+ª then Z

£
exp

¤ = R, i.e. R is the ring of
integral combinations of elements in exp, or we can write

R = {β : R → R :β (q) =
kP

i=0
nia

q
i }. If the potential ϕ depends on a finite

number of coordinates, for instance ϕ = ϕ
¡
xi, x j

¢
, then it can be defined

a family of matrices H (q) with coefficients in R = Z
£
exp

¤
by H (q) =½

0 if Ai, j = 0
expq ϕ (x) if Ai, j = 1 , with x0 = i, x1 = j. If β (q) = βA (q) = ρ (A (q)),

it is proved in [31] that β (q)is analytic and βA (1) = log E1, where E1 is the
leading eigenvalue of A = A (1) , existing by the Perron–Frobenius theorem.

In our case with a potential which in general depends on the whole
configuration we shall take β (q) = 1

ρ(Lq)
= exp (−T (q)) , which as we point

out was proved to be analytic and verifies D (β (q) , q) = 0. Recall that by
Proposition 2 the transfer operators have discrete spectrum and so we can

put D (z, q) = det
¡
1 − zLq

¢ =
∞Q

n=1
(1 − zEn (q)) , where E1 (q) = exp (T (q)) ,

so that the z−zeros of the Fredholm determinant are the inverses of the
eigenvalues of Lq.

As we anticipate at the beginning of the proof we consider a map P (z, q)

with P (β (q) , q) = 0, analytic in z and whose expansion has coefficients
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in R. Let F be the field of fractions of R and let G be the set of ex-
pansions of analytic maps with coefficients in F . We consider an ideal
I in G given by F ∈ I if and only if F can be expressed as F = Q/R
where Q = Q (z, q)is an analytic map in z with expansion with coefficients
in R and Q (β (q) , q) = 0 for some analytic function β (q) and R ∈ R.

By the analyticity of β (q) the choice does not depend on R. So I =©
F : F can be expanded with coefficients in F , and F (β (q) , q) = 0

ª
. Let I =

PG for some P with coefficients in F , we shall show that the expansion has
actually coefficients in R. We have that the Fredholm determinant belongs to
I and so it can be written: D (z, q) = P (z, q) Q (z, q) , where P and Q have
coefficients in F and D has expansion in R. We then have

D =
∞X

n=0

anzn, with an =
X
in∈In

Min Aq
in ∈ R, In finite,

P =
∞X

n=0

b nzn, with b n =

X
jn∈Jn

N jn Bq
in

X
jn∈Jn

N0
jn B

0q
in

∈ F, Jn finite,

Q =
∞X

n=0

cnzn, with cn =

X
`n∈Ln

U`n Cq
`nX

`n∈Ln

U 0
in C

0q
in

∈ F, Ln finite.

For any positive integer n let Sn be the subgroup of R+ generated by
Ain , B jn B

0
jn , C`n , C

0
in and Z

£
Sn

¤
is a unique factorization domain. We have

a0 + a1z + ... + anzn = (b 0 + b 1z + ... + arzr)
¡
c0 + c1z + ... + cn−rzn−r

¢
, then

each bi can be expressed as bi = ebi/b with ebi ∈ Z
£
Sn

¤
as well as any

ci = eci/c with eci ∈ Z
£
Sn

¤
and for some b , c such that

¡
b ,eb 1, ...,ebr

¢ =
1, (c,ec1, ...,ecn−r) = 1. Hence the following expression is an equation in
Z
£
Sn

¤
bc (a0 + a1z + ... + anzn) = ¡ec0 +ec1z + ... +ecn−rzn−r

¢ ¡eb 0 + eb 1z + ... +ebrzr
¢
, since Z

£
Sn

¤
is a unique factorization domain each factor of bc must

divide all the ebi or all theeci, and besides is invertible. Thus c is a “monomial”
and so P has actually coefficients in R. Therefore if P (z, q) has coefficients
in R and β (q) is a z−zero of P then this map is a factor of the Fredholm
determinant D (z, q) .

Next we prove the “minimality” of the Fredholm determinant, we

consider a “truncation” DN (z, q) :=
NQ

n=1
(1 − zEn (q)) ∈ R [z]. In this

way DN (z, q) = 1 + (
P

i
Ei)z + (

P
i, j

Ei E j)z2 + ... + [(−1)n Q
i

Ei]zN . Another

expression for the Fredholm determinant is D (z, q) = 1 +
∞X

n=1

Dn (q) zn,
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where Dn (q) = P
(i1,...,im)

i1+...+im=n

(−1)m

m!
mQ

j=1

1
i j

Tr(Li j
q ), so that DN(z, q) = 1 + Tr(Lq)z +

Tr(L2
q)z + ... +

h P
(i1,...,im)

i1+...+im=n

(−1)m

m!
mQ

j=1

1
i j

Tr(Li j
q )
i
zN .

Let us assume that D (z, q) = P (z, q) Q (z, q) , as we have seen
P, Q have expansions with coefficients in R if D (z, q) does. We
compare the coefficients in each N−truncation of D and P.Q. Thus
DN (z, q) = 1 + (

P
i

Ei)z + (
P
i, j

Ei E j)z2 + ... + [(−1)n Q
i

Ei]zN = [ P
j0∈J0

N j0 Bq
i0 +

(
P

j1∈J1

N j1 Bq
i1)z + ... + (

P
jr∈Jr

N jr Bq
ir )z

r] × [ P
`0∈L0

U`0 Cq
`0

+ (
P

`1∈L1

U`1 Cq
`n1

)z + ... +
(

P
`N−r∈LN−r

U`N−r C
q
`N−r

)zN−r].
Notice that the product of the eigenvalues Ei, i = 1, ..., N can be con-

sidered as the determinant of certain N × N−matrix H = (ai, j), so
NQ

i=1
Ei =P

σ∈Pn

a1,σ (1)...aN,σ (N), where Ei = Ei(q), ai, j = ai, j(q) and Pn is the group of per-

mutations of n−elements. Besides
NP

i=1
Ei = Tr(H) = P

i
ai,i. Since H is typical:

an1
i1, j1 an2

i2, j2 , ..., ank
ik, jk 6= 1 for any (i1, i2, ..., ik) ( j1, j2, ..., jk)

and (n1, n2, ..., nk) ∈ Zk. (21)

The coefficient of zr in the expansion of D (z, q) is of the form
a1,σ (1)...aN,σ (N)

ai1,i1 ...air,ir
, (22)

where σ ∈ Pn fixes (i1, ..., ir), and the coefficient of zN−r is of the form
a1,σ (1)...aN,σ (N)

ai1,i1 ...aiN−r,iN−r

(23)

with σ ∈ Pn fixing (i1, ..., iN−r) .

Then, we have
P

σ∈Pn

a1,σ (1)...aN,σ (N) = P
jr,`N−r

N jr U`N−r Bq
jr C

q
`N−r

, so that there

is a correspondence between a1,σ (1)...aN,σ (N) and the coefficients Bq
ir C

q
`N−r

.

Thus comparing the coefficients of zr we have Bq
jr C

q
`0

= a1,σ (1)...aN,σ (N)

ai1 ,i1 ...air ,ir
and

also a similar expression for zN−r. If σ ∈ Pn does not have fixed points
then a1,σ (1)...aN,σ (N) appears in the constant term of the development of the
D (z, q) , but it is not possible to write it as a product of the coefficients
Bq

jr C
q
`N−r

. To illustrate this, consider the cyclic permutation σ = (1, 2, 3) and
the sum

P
σ∈P3

a1,σ (1)a2,σ (2)a3,σ (3), which of course includes σ . The coefficient of

z2 is a sum of terms ai. ja j,i and ai.ia j, j. Now a1,2a2,3a3,4 must be of the form
ai. ja j,iam,n, which could not be possible by (21). ut
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As we have pointed out Pollicott and Weiss provided examples of locally
constant potentials in which the rigidity phenomenon is not verified. More
specifically they found finite range potentials ϕ1 ,ϕ2 with the same free energy
but non-equivalent in the sense that ϕ1 is not cohomologous to ϕ2 ◦ τ , where
τ is a homeomorphism which commutes with the Bernoulli shift. To ensure
the rigidity is imposed the condition of genericity (see [25] for the definition)
on the matrix Lϕ (defined at the beginning of this section) associated to the
potential ϕ.

When the transfer operator Lq is restricted to the set of locally constant
potentials it is reduced to a matrix Lϕ . Now if the genericity condition is
imposed on the matrix H, originated by the truncation of the Fredholm deter-
minant, then DN (z, q) determines the matrix and the potential. The genericity
condition allows to recover the coefficients of Dn (q) in the expansion of
DN (z, q).

Conclusion The local multifractal rigidity was proved on weaker conditions
than those of [25], say expansiveness and specification for the dynamics
and potentials belonging the bounded distortion class, instead of the Hölder
continuous maps which are included in our wider class. On the other hand
was proved a rigidity phenomenon for long range potentials, so extending the
results of [25], valid for generic finite range potentials.

5 A Case with Infinite Alphabet

We consider now a lattice system with countable spins, i.e. a system modelled
by a Markov subshift 6+

A = ©
x = (xi)i∈N : xi ∈ I, ∀i ∈ N, Axi,xi+1 = 1

ª
, I infinite

countable. Let f : [0, 1] → [0, 1] be the Gauss map, i.e f (t) = 1
t mod 1. If

any t ∈ [0, 1] is represented by its continued fraction t = 1
i1+ 1

i2+ 1
i3+ ...

, then the

assignation t ­ ι = (in)n∈N gives a symbolic representation of the dynamical
system (I, f ). More generally if f is an analytic expanding map a symbolic
representation is obtained via Markov partitions. We consider the potential
ϕ (t) = log

¯̄
f 0 (t)

¯̄
and the spin system induced the Gauss map in the way

described above.
For every positive integer n holds: f n (t) = t if and only if in = in+k, for every

k, where ι = (in) is the infinite sequence associated to t. Hence the following
notation can be introduced: for any number t with period n, with respect to f,
the associated sequence will be denoted by [i1...in] .

The partition function for the system (I, f ) reads:

Zn (q) =
X

x∈Pn( f )

n−1Y
j=0

¯̄̄
¯³ f

0´ j
(t)

¯̄̄
¯
q

, (24)
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setting φq := exp (qϕ) and replacing t by its symbolic representation from the
continued fraction, the partition function for the associated spin system can be
expressed as:

Zn (q) =
X

(i1,...,in)

n−1Y
j=0

φq
¡£

i1+k...in, i1, .., ik
¤¢

. (25)

the convergence, i.e. the existence of the “thermodynamic limit”, is ensured
if
¯̄
φq (t)

¯̄ ∼ |t|γ , as t → 0, for some γ = γ (q) > 1. This condition is satisfied
with γ = 2q.

To define the transfer operators let us consider the Markov partition P =
{In = [ 1

n+1 , 1
n )}n∈N, we have f |In (t) = 1

t − n, so f |In is analytic if t 6= 0. and
|( f 2)0| ≥ 4. For the special case where we have a Markov partition P = {In} for
expanding analytic maps the charts ψn can be defined as the branches of f |In,

in our case it is ψn (t) = 1
t+n , being φq ◦ ψn analytic in a complex neighborhood

of each In. Now the transfer operator becomes:

Lq (κ) (z) =
∞X

n=1

µ
1

z + n

¶2q

χ

µ
1

z + n

¶
, (26)

where q must be > 1
2 by convergence reasons already mentioned. These

operators are proved to be nuclear in some adequate functional space, indeed
for this can be taken A∞ (U) such that ψn(U) ⊂ U and φq ◦ ψn ∈ A∞ (U). The
open complex set U can be choose as the disc |z − 1| < 3

2 .

Therefore in this particular case and for the temperature parameter q > 1
2

the results about multifractal rigidity valid for the finite alphabet case can be
extended to infinite spin systems following the scheme of the earlier section.

More general cases are found by considering the so called boundary hy-
perbolic maps, which are functions originated by the action of Kleinian finitely
generated groups 0 on the hyperbolic disc H2 such that to any point in the limit
set 3 of this action can be assigned a sequence in the generators of the group.
These maps f : 3 → 3 were introduced, to codify hyperbolic geodesics, by
Series [27, 28] who proved that the system (3, f ) has a Markov partition
which leads to symbolic representation by a subshift with an alphabet which
in general does not agree with the generator set of the group. The alphabet
is infinite if and only if 0 contains parabolic elements. The Gauss map is a
special case of such a map, corresponding to the action of 0 = SL2 (Z) . For
the connection of the boundary hyperbolic maps with multifractal analysis one
can see [18, 23].
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Appendix

Topological Entropy for Non-Compact Nor Invariant Sets

Let f : X → X be a continuous map and (X, d) a compact metrisable
space. Let U = {U1, ..., UN} be a finite covering of X . A string is defined
as a sequence L = (`0, `1, ..., `n−1) such that

©
U`0, U`1, ..., U`n−1

ª ⊂ U, `i ∈
{1, 2, ..., N}. The length of the string L = (`0, `1, ..., `n−1) is denoted by n (L) =
n. Let call Wn (U) the set of the strings L with length n for the covering U .

Let

X (L) = U`0 ∩ f −1 ¡U`1

¢ ∩ ... ∩ f −n+1 ¡U`n−1

¢
,

if Z ⊂ X we say that 5 = {L = (`0, `1, ..., `n−1)} covers Z if

Z ⊂
[
L∈5

X (L) .

For any real number s:

M (Z ,U, s, n) = inf
0

X
L∈5

exp (−sn (L)) ,

where the infimum is taken over all collections of strings 5 ⊂ Wn (U) which
cover Z .

Let

M (U, Z , s) = lim
n→∞ M (U, Z , s, n) .

There is a unique number s such that M (U, Z , .) jumps from +∞ to 0, now let

htop ( f, Z ,U) = s = sup {s : M (U, Z , s) = +∞} = inf {s : M (U, Z , s) = 0} .

(27)
Finally the number

htop ( f, Z ) = lim
1(U)→0

htop ( f, Z ,U) , 1 (U) = diameter of U (28)

is the topological entropy of f restricted to Z .

Gibbs Measures in Lattice Spin Systems

We present here a formulation of the notion of Gibbs states in lat-
tice spin models: Let X be “the configuration space” which, as we
already pointed out, is mathematically described as the set 6A =©

x = (xi)i∈Z : xi ∈ Ä, ∀i ∈ Z, Axi,xi+1 = 1
ª
, where A is a k × k matrix with 0, 1

entries and Ä = {0, 1, 2, ..., k − 1} . The integers i are called the sites and the
corresponding coordinate xi the spin at the site i. The matrix A indicates
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which configurations are allowed. From A is defined a probability vector
p = (p0, p1, ..., pk−1) and a stochastic matrix E = ¡

Ei, j
¢

i, j=0,...,k−1 (
P

j
Ei, j = 1)

such that
P

i
pi Ei, j = pj. (see e.g. [32]). This space is equipped with the σ -

álgebra B generated by the semi-algebra of elementary cylinders: C−m,...,m
α−m,...,αm

=
{x ∈ 6A : xi = αi, i = −m, ..., m}. The Gibbs states will be probability mea-
sures defined on (6A,B). In this space are considered as dynamics the shift
σ : 6A → 6A, σ x = x

0
, where x

0
i = xi+1. A Gibbs state in the space of symbolic

dynamics is the product measure defined on cylinders by

μ
¡
C−m,...,m

α−m,...,αm

¢ = pα−m Eα−m,α−m+1 ...Eαm−1,αm . (29)

For a potential ϕ ∈ C (6A) , which physically can be interpreted as a de-
scription of the interaction energy between one spin and the remaining, the

statistical sum Sn (ϕ) (x) =
n−1P
i=0

ϕ
¡
σ i (x)

¢
can be decomposed as Sn (ϕ) (x) =

H (x0, x1, ..., xn−1) + W (x0, x1, ..., xn−1 | xn, xn+1, ...) [26], where H describes
the energy of the spins x0, x1, ..., xn−1 and W the interaction of x0, x1, ..., xn−1
and the spins xn, xn+1, .... For a configuration x, let us denote by x(n) any
member of 6A with x(n)

i = xi, this is the election of a boundary condi-
tion for the system. The partition function is defined now as: Zn (ϕ) =P
i0,...,in−1∈Ä

exp
¡
Sn (ϕ)

¡
x(n)

¢¢
. Finally Gibbs states are defined as measures which

satisfy the equation:

dμ
¡
x0,...,xn−1

¢ = Zn (ϕ)−1 exp
¡
Sn (ϕ)

¡
x(n)

¢¢
, (30)

for any configuration x and every n ∈ N.

The parallelism between shift dynamical systems and statistical mechanics
of spin systems by interpreting the symbolic sequences as spin configurations
over the lattice Z was done by Sinai [29]. The above analysis is rooted in his
ideas.

The definition of Gibbs states used in a “probabilistic context” is usually
given as follows: let 3 be a finite subset of Z and let us denote x3 = (xi)i∈3 ,

the projection of the sequence x on 3. For prescribed conditional probabilities
P (x3 | x3C) let H3 (x) be the Hamiltonian describing the energy excess of x
over the energy of x3C , which will be done by

P (x3 | x3C) = 1
Z3

exp (−H3 (x)) , (31)

where Z3 is the partition function. Here the inverse of the temperature β

is summed into H3, or alternatively can be taken units in such a way that
β = 1. Thus a probability measure μ is a Gibbs state for a family of conditional
probabilities P (x3 | x3C)3 finite ⊂Z if μ

¡
x3 occurs in 3 | x3C occurs in 3C

¢ =
P (x3 | x3C), for every x μ-a.e.

To compare this definition with the earlier one notice these analogies: the
Hamiltionian H3 has its correlate in the statistical sum for the potential ϕ,
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the finite set 3 indicates the sites for a finite set of spins and 3C the remain-
ing. The partition function Z3 in (31) is obtained by summing over all the
configurations x

0
which agree with x in 3C, while in the definition as function

of the potential ϕ the summation is over the sites whose spins agree with a
configuration x. This establishes a correlation between both expressions, the
summation indexes in Z3 correspond to the boundary conditions in Zn (ϕ) .
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