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1. Introduction

It is well known that a non-relativistic planar system of a spin-1/2 particle of gyromagnetic ratio
g = 2 in the presence of an external perpendicular magnetic field~B ¼ B3ðx1; x2Þx̂3 possesses N = 2 super-
symmetry [1–3]. Its dynamics is described by the Pauli Hamiltonian
1 We
2 Act

neglect
H ¼ 1
2m

X
j¼1;2

P2
j �

e�h
2mc

B3r3; ð1:1Þ
where Pj ¼ �i�h@j � e
c Aj; B3 ¼ @1A2 � @2A1, that can be presented as a perfect square1
H ¼ Q 2
1; Q 1 ¼

X
j¼1;2

Pjrj: ð1:2Þ
The Q1 is therefore an integral of motion. The spin s3 ¼ 1
2 r3 is another conserved quantity. Due to

relations r2
3 ¼ 1 and {r3,Q1} = 0, the C = r3 can be considered as the Z2-grading operator, while Q1 can

be treated as a fermionic supercharge. Another supercharge is then defined as
Q 2 ¼ ir3Q 1 ¼ �ijPirj ¼ P1r2 � P2r1: ð1:3Þ
The Qa, a = 1,2, and H generate the N = 2 superalgebra graded by r3,
fQa;Q bg ¼ 2dabH; ½Q a;H� ¼ 0; fr3;Q ag ¼ ½r3;H� ¼ 0: ð1:4Þ
The described algebraic procedure applies to the case of any external field B3(x1,x2). For the sim-
plest case of a homogeneous magnetic field, the supersymmetry provides with a natural explanation
of the degeneracy of the Landau levels [4], and it is essential in the understanding of the quantum Hall
effect [5].

The procedure outlined in (1.2)–(1.4) is quite formal, however, and can miss some important sub-
tleties related to the domains of the involved supersymmetry generators.

In the present paper we focus on investigation of the supersymmetry and its conformal extension
for a non-relativistic electron in the presence of a magnetic vortex. This corresponds to the Aharonov–
Bohm (AB) effect for the spin-1/2 particle system, in which the indicated subtleties play a crucial role.

The field in the case of interest is produced by an infinitely thin solenoid of infinite length that
punctures the plane at x1 = x2 = 0. The electromagnetic potential in the symmetric gauge reads
~A ¼ U
2p

� x2

x2
1 þ x2

2

;
x1

x2
1 þ x2

2

;0
� �

¼ U
2pr
ð� sin u; cos u;0Þ; ð1:5Þ
where x1 = rcosu, x2 = rsinu,�p < u 6 p, and U is the flux of the singular magnetic field,
B3 = Ud2(x1,x2). Corresponding Hamiltonian is
Ha ¼ �@2
r �

1
r
@r þ

1
r2 ð�i@u þ aÞ2 þ a

1
r

dðrÞr3; a ¼ 1
2pU; ð1:6Þ
where we use the identity d2ðx1; x2Þ ¼ 1
pr dðrÞ for the two dimensional Dirac delta function.

The (spinless) model was introduced by Aharonov and Bohm in a seminal work [6], where they
demonstrated the significance of the electromagnetic potential in quantum mechanics. It is this set-
ting that was used in the dynamical realization of anyons [7,8]. The relativistic modification of the sys-
tem appears in the study of the cosmic strings [9,10], the topological defects which are supposed to
appear in the early universe. Nowadays, the AB effect attracts much attention in the physics of graph-
ene and nanotubes [11].

In two dimensions, the Dirac delta term in (1.6) is not, however, defined uniquely [12]. The system
can be specified unambiguously as soon as the domain of the Hamiltonian (1.6) is fixed [13].2 Different
choices of the domain lead then to different physical systems. Distinct physical properties are usually
set m = 1/2, ⁄ = c = �e = 1 from now on.
ually, taking into account the domain of the self-adjoint extension of the Hamiltonian, the term with the Dirac delta can be
ed in (1.6).
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attributed to the variation of the hidden characteristics of the magnetic flux within the vortex [14]. Here,
we identify and analyze the systems described by (1.6), for which the procedure (1.2)–(1.4) is consistent.

The paper is organized as follows. In the next Section, we find the proper domain of the operators
Q1 and Q2 = ir3Q1 in order to identify which kind of AB Hamiltonians allows a physical supersymmet-
ric structure. We will see that the physically acceptable Hamiltonians with supersymmetry obligato-
rily involve non trivial self-adjoint extensions. So far this crucial point was not discussed appropriately
in the broad literature on the AB problem and supersymmetry [15–17]. In Section 3, we identify addi-
tional nonlocal integrals of motion, and analyze the associated hidden supersymmetry and related
extended supersymmetric structure in the form of tri-supersymmetry [18,19]. The incorporation of
the conformal symmetry into the framework of the tri-supersymmetry is considered in Section 4.
We apply the results to the theory of anyons in Section 5. There, the two-body systems of the
interacting anyons are discussed in the light of the superalgebraic structure revealed in the preceding
sections. In particular, the N = 2 nonlinear supersymmetry of the two-body anyonic model is pre-
sented. The last Section is devoted to the discussion of the results.

2. N = 2 supersymmetry

In the forthcoming analysis of the system, the magnetic flux will be restricted to the interval
a 2 [0,1). This can be done without loss of generality as the systems with the fluxes a and a + n for
integer n can be related by the unitary transformation,
Haþn ¼ U�1
n HaUn; Un ¼ einu1; ð2:1Þ
where 1 is the unit 2 � 2 matrix.
The formal supercharge operator Q1 of the Aharonov–Bohm system can be obtained directly by the

substitution of (1.5) into (1.2). The explicit form of the Q1 in polar coordinates,
Q 1 ¼ qþrþ þ q�r�; q� ¼ �ie�iu
@r �

1
r
�i@u þ a
� �� �

; r� ¼
1
2
ðr1 � ir2Þ; ð2:2Þ
suggests that it preserves the subspaces Hl,
H l ¼
eilu

eiðlþ1Þu

 !
� L2ðRþ; rdrÞ; Q 1H l � H l; l 2 Z: ð2:3Þ
The eigenvectors of the Q1 are the states of fixed energy, see (1.2). Define the function Uk, l(r,u) =
(eilu /k,1(r),ei(l+1)u/k,2(r))T, where T means a transposition. The eigenvalue equation Q1Uk,l(r,u) =
kUk,l(r,u) can be written equivalently as
@r þ ðlþ aþ 1Þ1
r

� �
/k;2ðrÞ ¼ ik/k;1ðrÞ; @r � ðlþ aÞ1

r

� �
/k;1ðrÞ ¼ ik/k;2ðrÞ: ð2:4Þ
The general solution of (2.4) is given in terms of the Bessel functions of the first and of the second
kinds. Consider the case of nonzero k. The lower component of the eigenfunction Uk,l(r,u) is
/k;2ðrÞ ¼ Cl
1J jlþaþ1jðjkjrÞ þ Cl

2Yjlþaþ1jðjkjrÞ: ð2:5Þ
The associated upper component depends on � = sign (l + a + 1),
/k;1ðrÞ ¼ �i�
k
jkj ðC

l
1J �ðlþaÞðjkjrÞ þ Cl

2Y�ðlþaÞðjkjrÞÞ: ð2:6Þ
The solutions are not square integrable. They are acceptable, however, in the sense of the scattering
states (generalized wave functions) as long as their square integrability at the origin is maintained.

For a = 0, this condition fixes Cl
2 ¼ 0 for all values of l. The wave functions Uk,l are regular at the

origin and the system can be identified with the free spin-1/2 particle in the plane. The domain of
H0 is invariant with respect to r3, and the procedure (1.2)–(1.4) is consistent for the free-particle
system.
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We consider the case a 2 (0,1) from now on if not stated otherwise. The condition of local square
integrability fixes Cl

2 ¼ 0 again as long as l – �1. However, for l = �1, the function Uk,�1 is square inte-
grable for any values of the coefficients Cl

1 and Cl
2 with l = �1. This spoils its physical interpretation as

the function cannot be fixed (up to an overall normalization) uniquely. To avoid this ambiguity, the
behavior of the wave functions for r 	 0 has to be specified. This, in turn, will fix the self-adjoint exten-
sion of the Q1.

The operator Q1 defined on the space of infinitely smooth two-component functions with compact
support is symmetric. Using a standard theory of self-adjoint extensions of symmetric operators [20],
we extend its domain by relaxing the regularity of the functions in the sector of two specific partial
waves. The corresponding boundary conditions
lim
r!0þ

W 	
ð1þ eicÞ2�aCð1� aÞr�1þae�iu

ð1� eicÞ2�1þaCðaÞr�a

 !
; ð2:7Þ
specify the domain of the self-adjoint extensions Qc
1 of the Q1 for a 2 (0,1) that form a one-parameter

family marked by c 2 [0,2p).
Defining the Hamiltonian Hc

a ¼ ðQ
c
1Þ

2, the operator Q c
1 satisfies the relations ½Q c

1;H
c
a� ¼ 0;

fQc
1;Q

c
1g ¼ 2Hc

a, and might be considered as a supercharge of the N = 1 supersymmetry. The action
of the operator r3 is not well defined, however, for generic values of c; it preserves the boundary con-
ditions (2.7) if and only if the parameter c acquires only two discrete values
c ¼ 0; p: ð2:8Þ
For other values of c, the r3 perturbs the relative coefficient between the up and down components of
(2.7) and maps the wave functions out of the physical domain. In the two cases (2.8), the spin operator
s3 ¼ 1

2 r3 is a well defined physical observable that is a symmetry of the Hamiltonians
Hc¼0
a ¼

H0
a 0

0 HAB
a

 !
; Hc¼p

a ¼ HAB
a 0
0 Hp

a

 !
; ð2:9Þ
½s3;Hc
a� ¼ 0. These two Hamiltonians possess therefore the N = 2 supersymmetry since the second

supercharge Q c
2 ¼ ir3Q c

1 is defined consistently on the same domain as Qc
1. In accordance with (1.2),

(1.3), the explicit matrix form of the supercharges is
Q c
1 ¼

0 P1 � iP2

P1 þ iP2 0

� �
; Q c

2 ¼
0 P2 þ iP1

P2 � iP1 0

� �
: ð2:10Þ
Here, as in (2.9), for c = 0 and c = p the corresponding operators act on different domains.
The boundary conditions (2.7) acquire particularly simple form: for c = p the upper component

disappears, while for c = 0 the lower one does. This enables a direct interpretation of the subsystem
represented by HAB

a ; it’s domain is free of the singular wave functions since the corresponding singular
component in the boundary condition (2.7) vanishes for the specific choice of c. In what follows, the
Hamiltonian HAB

a can therefore be identified with that of the spinless system studied originally by
Aharonov and Bohm [6]. We shall stress that this subsystem appears only for (2.8). For other values
of c, the singular behavior is enforced in both, up- and down-, components of the wave functions,
see (2.7).

The generator of rotations in the plane, the orbital angular momentum shifted by the flux,
J ¼ x1P2 � x2P1 ¼ �i@u þ a; ð2:11Þ
represents another symmetry since it commutes with (2.9) and preserves the boundary conditions
(2.7) for c = 0,p. Hence, both systems (2.9) are rotationally invariant. Moreover, each subsystem
HAB

a ;H
0
a and Hp

a is rotationally invariant since s3 is also the integrals of motion. Notice here that for
the values of c different from (2.8), the operator J would change the relative coefficient of the
up- and down- components in (2.7), and would not preserve the domain of Q c

1. This should be inter-
preted as the absence of the rotational invariance for diagonal subsystems of the system
Hc

a ¼ ðQ
c
1Þ

2
; c–0;p, caused by the inner characteristics of the magnetic flux. The total angular
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momentum J + s3 would preserve, however, the boundary conditions (2.7) even for c – 0,p, and would
be an integral of motion of the N = 1 supersymmetric family of the systems in which we are not inter-
ested anymore.

From now on, we will suppose that c acquires one of the two values specified in (2.8). In this case,
both systems (2.9) are rotationally invariant, the spin is preserved, and they possess the N = 2 super-
symmetry. The subsystem HAB

a coincides with the original Aharonov–Bohm setting.
We can find the common eigenvectors Wc

E;l;s ofHc
a; s3 and J marked by the energy E, the orbital angu-

lar momentum l and the spin sign s = ±,
Hc
aW

c
E;l;s ¼ EWc

E;l;s; JWc
E;l;s ¼ ðlþ aÞWc

E;l;s; s3W
c
E;l;� ¼ �

1
2

Wc
E;l;�: ð2:12Þ
Having in mind the relation ðQ c
1Þ

2 ¼ Hc
a, these functions are obtained as linear combinations of Uk,l

and U�k,l. The wave functions Wc
E;l;s for l – �1 can be written as Wc

E;l;þ ¼ J jaþljð
ffiffiffi
E
p

rÞeilu vþ and
Wc

E;lþ1;� ¼ J jaþlþ1j
ffiffiffi
E
p

r
	 


eiðlþ1Þu v� where s3 v� ¼ � 1
2 v�. The partial waves in the subspace H�1 have

to obey the boundary conditions (2.7), which fix the coefficients in (2.5) and (2.6) in a unique way.
Their explicit form is
Wp
E;�1;þ ¼ J 1�a

ffiffiffi
E
p

r
	 


e�iu;0
	 
T

; Wp
E;0;� ¼ 0;J �a

ffiffiffi
E
p

r
	 
	 
T

; c ¼ p ð2:13Þ
and
W0
E;�1;þ ¼ J�1það

ffiffiffi
E
p

rÞe�iu;0
	 
T

; W0
E;0;� ¼ 0; J a

ffiffiffi
E
p

r
	 
	 
T

; c ¼ 0: ð2:14Þ
To complete the analysis of the spectrum of Hc
a, we present the zero energy wave functions. The

partial waves with l – �1 are Wc
0;l;þ ¼ rjlþajeilu vþ and Wc

0;lþ1;� ¼ rjlþ1þajeiðlþ1Þuv� while the wave func-
tions of zero energy from the subspace H�1 acquire the form
Wc
0;�1;þ ¼

ðr1�ae�iu; 0ÞT ; c ¼ p
ðr�1þae�iu;0ÞT ; c ¼ 0

(
; Wc

0;0;� ¼
ð0; r�aÞT ; c ¼ p
ð0; raÞT ; c ¼ 0

(
; E ¼ 0: ð2:15Þ
Finally, let us note that the wave functions WE,l,± for all integer l and non-negative E form the basis
of the Hilbert space.

Let us discuss now the action of the supercharges on the eigenstates Wc
E;l;�. By the action of the Q c

1,
the spin-up and spin-down eigenstates of positive energy are interchanged and the angular momen-
tum is altered,
Q c
1W

c
E;l;þ 	 Wc

E;lþ1;�; Q c
1W

c
E;lþ1;� 	 Wc

E;l;þ: ð2:16Þ
In this manner, the supercharge Q c
1 reflects the degeneracy within the subspaces Hl. Each of these

subspaces contains two zero modes, W0, l,+ and W0,l + 1,�, of the Hc
a; however, only one of them is anni-

hilated by Qc
1.

In conclusion of this Section, let us summarize the results. For non-integer values of a, there are just
two systems described either by H0

a or Hp
a , which possess the genuine N = 2 supersymmetry. Only in

these two cases, one of the subsystems, represented by HAB
a , coincides with the original spinless

Aharonov–Bohm model and comes accompanied with the super-partner Hamiltonian which allows
the singular behavior of the wave functions. When a acquires integer values, the studied model is uni-
tary equivalent to the free electron in the plane and has the N = 2 supersymmetry as well. To our best
knowledge, the careful treatment of this kind seems to be missing in the literature.

In the next Section we will show that the described N = 2 supersymmetry is just a piece of a
remarkable mosaic of the rich supersymmetric structure that underlines the system.

3. Hidden supersymmetry and tri-supersymmetry

The diagonal components of H0
a and Hp

a , identified with one of HAB
a , H0

a or Hp
a , can be looked at as

those describing the spinless systems in presence of the magnetic vortex. These spinless Hamiltonians
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possess N = 2 hidden (bosonized) supersymmetry in terms of self-adjoint, nonlocal supercharges, see
[21].3 This observation makes it possible to define directly two new operators eQ 1 and eQ 2,
3 For
eQ c
1 ¼

P1 þ ieicRP2 0
0 P1 � ieicRP2

 !
; eQ c

2 ¼ iReQ c
1; ð3:1Þ
that are well defined on the domain of Qc
1 (we remind that c acquires one of the two values (2.8)). They

are nonlocal due to the presence of the operator of rotations
R ¼ eipðJ�aÞ; RuR ¼ uþ p; R2 ¼ 1: ð3:2Þ
The operators (3.1) anti-commute with R while the Hamiltonian commutes with this operator. The
operators eQ 1 and eQ 2 satisfy the relation
eQ c

a;
eQ c

b

n o
¼ 2dabHc

a ð3:3Þ
and form an alternative representation of the N = 2 supersymmetry. As the supercharges (3.1) origi-
nate from the hidden supersymmetry of the spinless AB systems, we call the operators (3.1) the super-
charges of the hidden supersymmetry (3.3).

Let us briefly discuss the action of the supercharge eQ c
1 on the eigenstates ofH0

a Hp
a

� �
. It is instructive

to rewrite the diagonal component of (3.1) in the polar coordinates,
P1 þ ieicRP2 ¼ �ie�iu
@r þ

1
r

J
� �

Pc
þ � ieiu

@r �
1
r

J
� �

Pc
�; Pc

� ¼
1
2
ð1� eicRÞ; ð3:4Þ
where the operators Pc
�, are projectors for c = 0,p. A similar form for the component P1 � ieicRP2 is

obtained from (3.4) by the substitution R ? �R. This suggests that both eQ c
1 and eQ c

2 preserve the sub-
spaces eHkl of the form
eH kl ¼ f j f 2 feið2k�eicÞu; ei2kug
feið2lþeicÞu; ei2lug

 !
� L2ðRþ; rdrÞ; k; l 2 Z

( )
: ð3:5Þ
Then the action of the supercharge eQ c
1 on the wave functions WE,l,± can be inferred directly and

reads
 eQ c
1W

c
E;2l;� 	 Wc

E;2l�1;�;
eQ c

1W
c
E;2l�1;� 	 Wc

E;2l;�: ð3:6Þ
Considering the states of zero energy, the situation is qualitatively similar to the case of Qc
1. The

Hamiltonian H0
a Hp

a

� �
has two spin-up and two spin-down zero modes in eHkl and eQ c

1 annihilates only
half of them.

We pose the following question: is it possible to include both the local, Q c
1 and Q c

2, and nonlocal,
(3.1), supercharges in the unifying scheme of an extended superalgebra? To respond it, we note that
all the operators Q c

a and eQ c
a ða ¼ 1;2Þ have vanishing either commutator or anti-commutator with

each of the operators
r3; R; r3R: ð3:7Þ
Each of the operators (3.7) commutes with Hc
a. Hence each is equally good candidate for the grad-

ing operator C of the extended superalgebra, in which it should classify the integrals into bosonic and
fermionic ones.

Let us choose
C ¼ r3 ð3:8Þ
and treat this case in some detail; on other choices of C we will comment below. Besides Hc
a; J and

(3.7), we have other four nontrivial bosonic (commuting with r3) operators
eQ c
1;

eQ c
2;

eQ c
3 ¼ ir3ReQ c

1;
eQ c

4 ¼ r3
eQ c

1: ð3:9Þ
earlier observations of the hidden supersymmetry in different quantum mechanical systems see [22,23].
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The number of fermionic (anti-commuting with r3) operators can be extended similarly,
Q c
1; Qc

2; Q c
3 ¼ iRQc

1; Q c
4 ¼ Rr3Qc

1: ð3:10Þ
The nontrivial anti-commutation relations for (3.10) are
Q c
A;Q

c
A

n o
¼ 2Hc

a; A ¼ 1;2;3;4; Q c
1;Q

c
4

� �
¼ Q c

2;Q
c
3

� �
¼ 2r3RHc

a: ð3:11Þ
For the nontrivial commutation relations between the integrals (3.9) we have
eQ c
2;
eQ c

1

h i
¼ eQ c

3;
eQ c

4

h i
¼ 2iRHc

a;
eQ c

2;
eQ c

4

h i
¼ eQ c

3;
eQ c

1

h i
¼ 2ir3RHc

a: ð3:12Þ
As soon as we require the superalgebra to be closed, we have to calculate also the commutators
between bosonic, (3.9), and fermionic, (3.10), operators. In this way, we get nonzero commutation
relations
eQ c
1;Q

c
3

h i
¼ � eQ c

2;Q
c
1

h i
¼ �2iWc

4;
eQ c

1;Q
c
4

h i
¼ eQ c

2;Q
c
2

h i
¼ 2iWc

2; ð3:13Þ

eQ c
3;Q

c
3

h i
¼ eQ c

4;Q
c
1

h i
¼ �2iWc

3;
eQ c

3;Q
c
4

h i
¼ � eQ c

4;Q
c
2

h i
¼ �2iWc

1; ð3:14Þ
where
Wc
1 ¼

i
2
eQ c

3;Q
c
4

h i
¼ Q c

1
eQ c

1; Wc
2 ¼ iRr3Wc

1; Wc
3 ¼ ir3Wc

1; Wc
4 ¼ RWc

1: ð3:15Þ
Operators (3.15) anti-commute with (3.8), and have to be treated as a new set of independent fer-
mionic operators. The nontrivial anti-commutators between them are
Wc
A;W

c
A

n o
¼ 2 Hc

a

� �2
; A ¼ 1;2;3;4; Wc

1;W
c
4

� �
¼ Wc

2;W
c
3

� �
¼ 2R Hc

a

� �2
: ð3:16Þ
From here it follows, particularly, that the pair of the integrals Wc
1 and Wc

2 [as well as each of the

pairs Wc
3;W

c
4

� �
; Wc

1;W
c
3

� �
and Wc

2;W
c
4

� �
] generates the relations of the N = 2 nonlinear (second order)

supersymmetry [23,24],
Wc
a;W

c
b

� �
¼ 2dabðHc

aÞ
2
; a; b ¼ 1;2; ½Wc

a;Hc
a� ¼ 0: ð3:17Þ
In the (anti)-commutators of (3.15) with either (3.9) or (3.10), we get the products ofHc
a with either

(3.10) or (3.9), e.g.,
Q c
3;W

c
1

� �
¼ � Q c

4;W
c
3

� �
¼ 2eQ c

2H
c
a;

eQ c
1;W

c
4

h i
¼ eQ c

3;W
c
3

h i
¼ 2iQc

3Hc
a: ð3:18Þ
The missing commutation relations of the operators (3.9), (3.10) and (3.15) with the integral J can
easily be calculated by noticing that all these operators commute with
Zc ¼ J þ r3P
c
�; Zc;Q c

A

h i
¼ Zc; eQ c

A

h i
¼ Zc;Wc

A

h i
¼ 0; A ¼ 1;2;3;4: ð3:19Þ
The complete superalgebra is, therefore, nonlinear due to the presence of the Hamiltonian and
operators R and r3R on the right hand side of some (anti)-commutation relations, that is similar to
the nonlinearity of the symmetry algebra appearing in the quantum Kepler problem and associated
there with a hidden symmetry provided by the Laplace–Runge–Lenz vector [25]. The operator Zc plays
here the role of the central charge.

For other choices of the grading operator, C = R or C = r3R, the sets of the supercharges (3.9), (3.10)
and (3.15) permute in the role of the bosonic operators (one can check that the integrals (3.10) com-
mute with r3R and those from (3.15) commute with R). In the table, we illustrate the separation of the
operators into fermionic and bosonic families.
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A

Qc

A;W
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A
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A
 eQ c
A;Q

c
A

r3R
 Hc
a; Zc; r3; R; r3R;Qc

A
 eQ c
A;W

c
A

The superalgebra remains qualitatively the same for any choice of C. The operators R and r3R that
appear in some (anti-) commutation relations for the case (3.8), are changed for r3 and r3R in the case
C = R, and for r3 and R for C = r3R. Such a superalgebraic structure, characterized by the three possible
choices of the grading operators and three sets of the supercharges, was observed in the finite-gap
periodic quantum systems [18], and was named tri-supersymmetry, see also [26].

The action of the superchargeWc
1 on the eigenvectors WE,l,± can be deduced directly from the rela-

tions (2.16) and (3.6), keeping in mind the definition of Wc
1 and ½Qc

1;
eQ c

1� ¼ 0. We recall that the oper-
ator Qc

1 preserves the subspaces Hk while the supercharge eQ c
1 preserves the subspaces eHkl; the explicit

action depends on the values of the quantum numbers l and s in WE,l,s. Let us write down as an
example
Wc
1W

c
E;2l;þ ¼ Qc

1
eQ c

1W
c
E;2l;þ ¼ eQ c

1Q c
1W

c
E;2l;þ 	 Wc

E;2l;�; ð3:20Þ
which is illustrated schematically in Fig. 1
Notice that for the choice (3.8) of the grading operator, each of the four pairs of the odd super-

charges (3.10)
Q c
1;Q

c
2

� �
; Q c

3;Q
c
4

� �
; Q c

1;Q
c
3

� �
; Q c

2;Q
c
4

� �
ð3:21Þ
generates the N = 2 supersymmetry, see Eq. (3.11). Similarly, the two pairs
Q c
1þ;Q

c
1�

� �
; Q c

2þ;Q
c
2�

� �
ð3:22Þ
generate the deformed N = 2 supersymmetry of the form
Q c
as;Q

c
as0

� �
¼ 2dss0

bPsHc
a; a ¼ 1;2; s; s0 ¼ þ;�: ð3:23Þ
Here Qc
1� ¼ 1

2 Qc
1 � Qc

4

� �
¼ bP�Qc

1;Q
c
2� ¼ 1

2 Q c
2 � Qc

3

� �
¼ bP�Qc

2, and bP� ¼ 1
2 ð1� r3RÞ are the projector

operators. Analogously, as we noted above, the integrals (3.15) generate the nonlinear [deformed for
the pairs Wc

a�; a ¼ 1;2, constructed similarly to Q c
a�] N = 2 supersymmetry. In this case, the projector

operators bP� are changed for the projectors P� ¼ 1
2 ð1� RÞ.

A similar picture is valid for the corresponding fermionic supercharges when we choose C = R or
C = r3R.
equential action of eQ 0
1 (solid

nding values of l and s.
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In summary of this Section, the spin-1/2 Aharonov–Bohm system possesses N = 2 supersymmetry
in two cases only, represented by H0

a and Hp
a . It comes hand-in-hand with the hidden supersymmetry

represented by the supercharges (3.1). Both, the standard and the hidden supersymmetries, are
unified in the framework of the tri-supersymmetry.

This structure will reveal itself later on in the existence of the three different types of the super-
extended anyon systems.

4. Tri-supersymmetry and superconformal symmetry

Besides the usual symmetries, the system possesses dynamical symmetries as well. The
Hamiltonian Hc

a together with the generators of special conformal transformations (expansions),4 K,
and dilatations, D,
4 To
K ¼ X
!

2; D ¼ �1
2

X
!
P
!
þP
!

X
!

� �
; where Xj ¼ xj � 2tPj; j ¼ 1;2; ð4:1Þ
form the so(2,1) Lie algebra
½D;K� ¼ 2iK; Hc
a;K


 �
¼ 4iD; Hc

a;D

 �

¼ 2iHc
a: ð4:2Þ
The operators (4.1) satisfy the relation d
dtO ¼ @tO� i Hc

a;O

 �

¼ 0 (O being either K or D), that justi-
fies to call them dynamical symmetries. Let us note that the Lie algebra so(2,1) of dynamical symme-
tries in the context of (spinless) Aharonov–Bohm system was first observed in [27].

As long as c = 0 or p, neither K nor D alter the asymptotic behavior of the wave functions prescribed
by (2.7). Hence, both operators preserve the domain of Hc

a. In particular, invariance of the domain of
Hc

a under the action of D is associated with the scale invariance of the system. The relations (4.2) estab-
lish then the conformal symmetry of the model.

Now, we discuss how the dynamical symmetries (4.2) can be incorporated into the framework of
the tri-supersymmetry. The operators K and D are even with respect to any of the possible grading
operators (3.7). First, we consider the case C = r3, and discuss the structure of the superalgebra that
includes K and D.

The odd supercharges of tri-supersymmetry are indentified with (3.10) and (3.15), see the table. Let
us focus on (3.10). It is well known [16,17] that the usual N = 2 supersymmetry associated with the
supercharges Q c

1 and Q c
2 can be expanded into the superalgebra osp(2j2). The same, up to the deforma-

tions, algebraic structure can be obtained when we expand by K and D the N = 2 supersymmetry asso-
ciated with any other pair of the supercharges from (3.21), (3.22). The (anti-) commutation relations of
the (deformed) superconformal algebra give rise to the additional dynamical symmetries,
Qc
A;K

h i
¼ �2iSc

A; where Sc
1 ¼ X1r1 þ X2r2; ð4:3Þ
and Sc
2; S

c
3 and Sc

3 are related to Sc
1 similarly to (3.10). The Sc

A satisfy the anti-commutation relations
Sc
A; S

c
A

n o
¼ 2K; A ¼ 1;2;3;4; Sc

1; S
c
4

� �
¼ Sc

2; S
c
3

� �
¼ 2r3RK: ð4:4Þ
For the four odd integrals Q c
A and Sc

A with A = a = 1,2, we have the nontrivial anti-commutation rela-
tions in addition to those presented above,
Sc
a;Q

c
b

� �
¼ �2dabDþ 2�abJ ; ð4:5Þ

Hc
a; S

c
a


 �
¼ �2iQc

a ; K;Q c
a


 �
¼ 2iSc

a; D;Q c
a


 �
¼ �iQc

a; D; Sc
a


 �
¼ iSc

a; ð4:6Þ

J ;Qc
a


 �
¼ �i�abQ c

b; J ; Sc
a


 �
¼ �i�abSc

b; ð4:7Þ
where J ¼ J þ r3, which correspond to the osp(2j2) superalgebra.
simplify notations, we omit indexes a and c in dynamical integrals D and K.
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In the case of the odd generators Qc
A and Sc

A with A = 3,4 we have the same osp(2j2) superalgebra
with the change of the indices 1 ? 4, 2 ? 3 in correspondence with relations Qc

4 ¼ r3RQ c
1;Q

c
3 ¼

r3RQc
2, and the same relations for the integrals Sc.

The other two pairs of Qc
A from (3.21), and the two pairs in (3.22) can be extended in the similar

vain, giving rise to corresponding pairs of Sc
A, and the pairs Sc

aþ; S
c
a�

� �
; a ¼ 1;2, respectively. The result-

ing algebras are of the same form as (4.5)–(4.7), but with some of the (anti)-commutation relations to
be deformed by inclusion of the factor r3R, or the projector as in Eq. (3.23). For instance,

Sc
1;Q

c
3

� �
¼ 2r3RJ , cf. (4.5). Hence, we get six different (deformed) representations of the superalgebra

osp(2j2) that are included in the finite-dimensional extension of the superalgebra osp(2j2) generated
by Hc

a;K;D and the supercharges Q c
A. Note that the operator r3R commutes with all the generators of

the osp(2j2) here.
Similarly to (4.3), the commutators of (3.9) with K generate a new set of dynamical integrals,
eQ c
A;K

h i
¼ �2ieSc

A; ð4:8Þ
which are fermionic operators for C = r3. But when we expand here the set of the even, Hc
a;K;D;J ,

and odd, Q c
A; S

c
A, generators with the bosonic operators eQ c

A or/and fermionic operators Wc
A, an infinite

number of the new operators appears.
The picture is similar for other choices of the grading operator. For instance, for C = R, the (de-

formed) finite-dimensional extension of the osp(2j2) superalgebra is obtained if we supply the gener-
ators of the conformal symmetry with one (not both) of the two sets of the fermionic operators, Q c

A oreQ c
A. The same is valid for the case C = r3R, when the so(2,1) generators are supplied by the fermionic

operators eQ c
A. As soon, however, as we supply the so(2,1) generators (4.1) with the integrals Wc

A, we
get the infinite superalgebra.

Hence, the extension of the tri-supersymmetry by the dynamical integrals D and K gives rise to the
infinite superalgebra for any choice of the grading operator. As we saw, six (deformed) superalgebras
osp(2j2) are included as finite subalgebras. Note that the infinite superalgebra still has the central ele-
ment Zc, see (3.19).

5. Tri-supersymmetry and three types of supersymmetric anyons

We provide now an alternative interpretation of the results presented in the previous Sections,
applying them to the theory of anyons. We elaborate the idea for the system described byH0

a. The case
of Hp

a can be treated similarly.
The dynamical realization of the anyons [28] that was proposed by Wilczek in [7], is based, in fact,

on the Aharonov–Bohm effect. In such a picture, anyon is considered as a ‘‘composite”, statistically
charged particle that is either boson or fermion, to which a magnetic vortex is attached. The presence
of the vortex provides the peculiar statistical properties of the anyons. Consider the system of two
identical non-relativistic anyons in such a picture. It is assumed that each particle feels only the poten-
tial produced by the vortex attached to the other particle. The Hamiltonian of the system we denote as
Hany ¼ 2
X2

I¼1

ð~pI �~aIð~rÞÞ2; ð5:1Þ
see [8]. Index I labels the individual particles (whose masses are m1 = m2 = 4) with the momenta
~pI ¼ �i@=@~xI . The vector~r is a relative coordinate of the particles,~r ¼~x1 �~x2. The potentials ~aI ,
ak
1ð~rÞ ¼ �ak

2ð~rÞ ¼
1
2
a�kl rl

~r2
; ð5:2Þ
encode the ‘‘statistical” interaction of the particles. When we write the Hamiltonian in the center-
of-the-mass coordinates, the relative motion of the particles is governed by the effective Hamiltonian
Hrel ¼ �@2
r �

1
r
@r þ

1
r2 ð�i@u þ aÞ2; ð5:3Þ
where r and u are the polar coordinates of the~r.
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Formally, this operator coincides with the spinless Hamiltonians H0
a and HAB

a of (2.9). But its domain
is quite different. The domain of (5.3) reflects the nature of the anyons and is composed of functions
which are either symmetric or anti-symmetric under the change u ? u + p. The periodicity of wave
functions depends, in turn, on the nature of the interacting particles. The two-body wave function
has to be symmetric in p (invariant with respect to the exchange of the particles) as long as we deal
with anyons based on bosons. When the vortices are attached to fermions, the wave function has to
change its sign after the substitution u ? u + p. Hence, we have
waðr;uÞ ¼
X

l

eilufa;lðrÞ; l 2
2Z for anyons based on bosons;
2Zþ 1 for anyons based on fermions:

�
ð5:4Þ
Notice that the system can be described alternatively by the free Hamiltonian Hrel ¼ �@2
r � 1=r@rþ

ð�i@uÞ2=r2. However, the wave functions have to acquire the gauge factor eiau in this case to keep the
description equivalent to (5.3) and (5.4), i.e. waðr;uÞ ¼ eiuaP

le
ilufa;lðrÞ. In this alternative picture, after

the substitution u ? u + p the wave functions acquire the phase eipa which interpolates between the
values corresponding to Bose and Fermi statistics. We prefer to use the framework (5.4), where the
wave functions are 2p-periodic for any value of a.

Let us return to our current system. Instead to treat its Hamiltonian as that of Pauli, we consider it
as a direct sum of four operators, just as the 4 � 4 matrix operator
Hc¼0
a ¼ diag H0

a;þ;H
0
a;�;H

AB
a;þ;H

AB
a;�

	 

; H0

a;� ¼ H0
aP�; HAB

a;� ¼ HAB
a P�; ð5:5Þ
where we used the projectors P� ¼ 1
2 ð1� RÞwhich separate symmetric and anti-symmetric under dis-

placement of u in p wave functions. We remind that the nonzero elements of this diagonal Hamilto-
nian operator coincide as differential operators but can differ in their domains. The singular wave
functions are contained in the domain of H0

a;� only. The operator HAB
a;� acts on regular functions which

are anti-periodic in p. The operators H0
a;þ and HAB

a;þ coincide actually in their domains and describe the
same physical setting.

Now, each of the operators HAB
a;� and H0

a;� can be interpreted as the Hamiltonian of the relative mo-
tion of the two identical anyons. Indeed, they coincide formally with (5.3) and their domains are com-
posed of either odd or even partial waves (5.4). The regularity of the wave functions of HAB

a;� and H0
a;þ

can be understood as a manifestation of the hard-core interaction of the anyons. The singular behavior
at r 	 0 in the domain of H0

a;� can be reinterpreted as the nontrivial contact interaction of the particles
[29]. Notice that this interaction appears for one partial wave only, all other partial waves are regular
at the origin.

We conclude, therefore, that HAB
a;þ and H0

a;þ describe two anyons based on bosons. Similarly, HAB
a;� and

H0
a;� describe the systems of two anyons based on fermions.

We identify now the sense of the cornerstones of the tri-supersymmetry, the integrals of motion
Q 0

1;
eQ 0

1 and W0
1, in this framework. Keeping in mind (2.2) and (3.1) and the splitting of DðH0

aÞ which
was made implicitly in (5.5), we can write
Q 0
1 ¼

0 0 0 qþ
0 0 qþ 0
0 q� 0 0

q� 0 0 0

0BBB@
1CCCA; eQ 0

1 ¼

0 q� 0 0
qþ 0 0 0
0 0 0 qþ
0 0 q� 0

0BBB@
1CCCA; W0

1 ¼

0 0 qþq� 0
0 0 0 q2

þ

q�qþ 0 0 0
0 q2

� 0 0

0BBB@
1CCCA;
ð5:6Þ
where q± are defined in (2.2). The nontrivial matrix elements of the commutation relation Q 0
1;H0

a

h i
¼ 0

give
H0
�qþ ¼ qþHAB

� ; HAB
� q� ¼ q�H0

�; ð5:7Þ
where H0
� ¼ H0

a;�, HAB
� ¼ HAB

a;�. The commutator ½eQ 0
1;H0

a� ¼ 0 gives rise to the operator equations
H0
�q� ¼ q�H0

�; HAB
� q� ¼ q�HAB

� ; ð5:8Þ
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and the commutator ½W0
1;H0

a� ¼ 0 can be rewritten as
HAB
� q2

� ¼ q2
�H0
�; H0

�q2
þ ¼ q2

þHAB
� ; HAB

þ q�qþ ¼ q�qþH0
þ; H0

þqþq� ¼ qþq�HAB
þ : ð5:9Þ
Due to the identity H0
a;þ ¼ HAB

a;þ, the last two relations tell that q+q- = q-q+ is a symmetry of HAB
a;þ (as

well as of H0
a;þ). However, it is trivial since q+q- coincides with the Hamiltonian. Not all the relations in

(5.7)–(5.9) are independent. We reduce their number using the identity H0
a;þ ¼ HAB

a;þ. The independent
relations are
H0
þq� ¼ q�H0

�; qþH0
þ ¼ H0

�qþ; ð5:10Þ
H0
þqþ ¼ qþHAB

� ; q�H0
þ ¼ HAB

� q�; ð5:11Þ
HAB
� q2

� ¼ q2
�H0
�; q2

þHAB
� ¼ H0

�q2
�: ð5:12Þ
Each of the relations (5.10), (5.11) can be understood as intertwining relation of the N = 2 standard
supersymmetry [3]. The relations (5.12) give rise to the nonlinear (the second order) supersymmetry
[24]. We have, therefore, three supersymmetric systems, for which the super-partner Hamiltonians
are two-particle anyon systems.

The relations (5.10) and (5.11) give rise to the linear N = 2 supersymmetry
qðjÞa ;h
ðjÞ

h i
¼ 0; qðjÞa ;q

ðjÞ
b

n o
¼ 2da;bhðjÞ; j; a; b ¼ 1;2; ð5:13Þ
represented, in case of (5.10), by the matrix Hamiltonians and corresponding supercharge operators
hð1Þ ¼
H0
þ 0

0 H0
�

 !
; qð1Þ1 ¼

0 q�
qþ 0

� �
; qð1Þ2 ¼ i

0 �q�
qþ 0

� �
; ð5:14Þ
while in the case of (5.11) by the operators
hð2Þ ¼
H0
þ 0

0 HAB
�

 !
; qð2Þ1 ¼

0 qþ
q� 0

� �
; qð2Þ2 ¼ i

0 �qþ
q� 0

� �
: ð5:15Þ
The supercharges change the nature of the anyons in the two-body systems; they transform the
boson-based anyons of H0

þ into the fermion-based anyons of either H0
� or HAB

� . In addition, they change
the contact interaction in h(1) from the hard-core interaction of H0

þ to the nontrivial contact interaction
of H0

� (and vice versa).
The situation differs in the system associated with (5.12). The N = 2 supersymmetry generated by

the operators
hð3Þ ¼
H0
� 0

0 HAB
�

 !
; qð3Þ2 ¼

0 q2
þ

q2
� 0

 !
; qð3Þ2 ¼ i

0 �q2
þ

q2
� 0

 !
; ð5:16Þ
is nonlinear,
qð3Þa ;hð3Þ
h i

¼ 0; qð3Þa ;qð3Þb

n o
¼ 2dabðhð3ÞÞ2; a; b ¼ 1;2: ð5:17Þ
The supercharges preserve the nature of the anyons and just alter the contact interaction of the
two-body systems described by H0

� and HAB
� .

The role of the grading operator in all the three cases (5.14)–(5.16) is played by r3.
Concluding, coherently with the tri-supersymmetric structure of the system H0

a described in the
previous Sections, the integrals Q0

1;
eQ 0

1 andW0
1 give rise to the three different supersymmetric models

(5.14)–(5.16) of the two-body systems of interacting anyons. The first two models [each is composed
from the boson- and fermion-based anyons] are described by a linear N = 2 supersymmetric structure.
The third one, (5.16), composed from the two fermion-based anyon subsystems, is described by the
nonlinear, second order N = 2 supersymmetry. Due to the results of Section 4, the systems (5.14)
and (5.15) have the superconformal symmetry generated, besides the supercharges and the
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Hamiltonian, by the diagonal (even) operators K and D, and by the odd dynamical symmetries

sðjÞ1 ¼ i qðjÞ1 ;K
h i

; sðjÞ2 ¼ ir3sðjÞ1 . In contrary, although the supersymmetric Hamiltonian h(3) has the confor-

mal symmetry, its supercharges cannot be included in the closed, finite Lie superalgebra together with
the dynamical symmetries K and D. As we saw in the Section 4, the superalgebra would be infinitely
generated in this case.

The similar treatment applies to the system described by Hp
a . In that case, the subsystems HAB

� and
Hp
� would coincide.
6. Discussion and outlook

The system of the spin-1/2 particle in the field of the magnetic vortex, that is described by the
Hamiltonians H0

a or Hp
a , has a rich algebraic supersymmetry structure. We found that the existence

of the standard N = 2 supersymmetry is accompanied by the nonlocal supercharges (3.1) of the hidden
supersymmetry. They form a different realization of the N = 2 supersymmetry of the model. Both the
local and nonlocal supercharges can be unified in the framework of the tri-supersymmetry. There are
three possible candidates for the grading operator, see (3.7), and three sets (3.9), (3.10) and (3.15) of
the operators which permute in the role of the fermionic supercharges, dependently on the choice of
the grading operator.

The tri-supersymmetry can be extended by the conformal symmetry (4.2) of the model. The exten-
sion gives rise to the infinitely generated superalgebra. It contains, however, the (deformed) finite
dimensional extension of the superconformal symmetry osp(2j2).

We have applied the obtained results to the theory of anyons, by reinterpreting the system and its
algebraic structure in terms of the supersymmetric two-body model of the interacting anyons (5.14)–
(5.16). Coherently with the described tri-supersymmetric structure, the three different associated any-
on systems are characterized by either linear, or nonlinear N = 2 supersymmetry graded by r3.

The setting with integer magnetic flux, which is unitary equivalent to a free-particle case with
a = 0, is worth a separate note and a related comment on translational invariance. As we observed,
for a = 0 the system is specified uniquely, and its wave functions (2.5) and (2.6) are regular at the ori-
gin. It has the standard N = 2 supersymmetry given by the supercharges Q1 and Q2. The supercharges of
the hidden supersymmetry can be defined as well. The simplicity of the a = 0 case, however, admits a
greater freedom in their definition; all the operators of the two-parameter family
eQ 1;�1 ;�2 ¼ diagðP1 þ �1iRP2;P1 þ �2iRP2Þ; eQ 2;�1 ;�2 ¼ iReQ 1;�1 ;�2 ; a ¼ 0; ð6:1Þ
are well defined for �1,�2 = ±1. The set of integrals (6.1) is equivalent to the set
diagðPj;0Þ; diagðiRPj;0Þ; diagð0;PjÞ; diagð0; iRPjÞ; j ¼ 1;2; ð6:2Þ
that just manifests the translational invariance and the reflection (rotation in p) symmetry of the spin-
up and spin-down components of the free-particle Hamiltonian. When the magnetic flux is switched
on, the translational invariance of the system breaks down. Indeed, the generators P1 and P2 are not
physical as they alter the boundary condition (2.7), and consequently their commutator withHc

a is not
well defined. The breakdown of translational invariance reduces the set of symmetries (6.1) in half,
leaving just the operators which coincide with (3.1). In this sense, the supercharges of the hidden
supersymmetry eQ c

1 and eQ c
2 can be understood as the successors of the translational symmetry. A dee-

per investigation of this point in the context of the associated Galilei symmetry goes, however, beyond
the scope of the present paper and will be presented elsewhere.

In conclusion, it would be interesting to apply the approach presented here to investigation of
supersymmetry in the system of the spin-1/2 particle in the field of the magnetic monopole, where
the issue of the domain of definition is also essential [30], as well as in the setting with several mag-
netic fluxes embedded into the homogeneous magnetic field [31], and to test them on the presence of
the hidden supersymmetry.
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