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Abstract
We argue that the dynamic extended molecular orbital (DEMO) method may be less accurate
than expected because the motion of the centre of mass was not properly removed prior to the
SCF calculation. Under such conditions the virial theorem is a misleading indication of the
accuracy of the wavefunction.

1. Introduction

The first step in any quantum-mechanical treatment of atomic
and molecular systems is the separation of the motion of the
centre of mass. The nonrelativistic Hamiltonian operator with
only Coulomb interactions between the constituent particles
for such systems is of the form Ĥ T = T̂ + V , where T̂

is the total kinetic-energy operator and V is the sum of all
the Coulomb interactions between the charged particles. By
means of a straightforward linear combination of variables
one rewrites the kinetic-energy operator as T̂ = T̂CM + T̂rel,
where T̂CM and T̂rel are the operators for the kinetic energies of
the centre of mass and relative motion, respectively. Then one
solves the Schrödinger equation for the internal Hamiltonian
Ĥ = T̂rel + V [1–3].

It is well known that the eigenfunctions of Ĥ T are not
square integrable because of the free motion of the centre of
mass. For this reason, it is at first sight striking that Tachikawa
et al [4, 5] carried out their dynamic extended molecular
orbital (DEMO) method on the total Hamiltonian operator
Ĥ T . A question therefore arises: how much did this omission
affect the results of their nonadiabatic calculation of molecular
properties? In this paper we will try to answer it.

In section 2 we analyse the results of Tachikawa et al
[4, 5] and compare them with other nonadiabatic calculations
[2, 3]. In section 3 we carry out simple illustrative calculations
on a toy model. Finally, in section 4 we summarize our results
and draw conclusions.

2. Analysis of the DEMO results

Suppose that we try to approximate the energy of the system
by minimization of the variational energy W = hĤ T i =

hϕ|Ĥ T |ϕi/hϕ|ϕi as in the DEMO method of Tachikawa et al
[4, 5]. If the trial function ϕ depends only on translation-
invariant coordinates, then W = Wrel = hĤ i because hT̂CMi =
0. However, if ϕ depends on the coordinates of the particles in
the laboratory-fixed set of axes, as in the case of the SCF
wavefunction used by Tachikawa et al (see, for example,
equations (10) and (7) in [4] and [5], respectively), then
W = hT̂CMi + hĤ i > Wrel. From the variational principle we
know that Wrel > E0, where E0 is the exact ground-state energy
of the atomic or molecular system. Therefore, the use of
Ĥ T (instead of Ĥ ) and a laboratory-fixed set of axes for the
electronic and nuclear coordinates in ϕ will result in an even
larger estimation of the molecular energy.

It is well known that the SCF wavefunction satisfies the
virial theorem [5, 6] 2hT̂ i = −hV i, but in the DEMO approach
we have a wrong relation because hT̂ i = hT̂CMi + hT̂reli >

hT̂reli. Therefore, under such conditions the virial theorem may
be a misleading indication of the quality of the wavefunction.

Table 1 shows the ground-state energies of some diatomic
molecules calculated with the internal Hamiltonian operator
[2, 3] and also the corresponding DEMO results of Tachikawa
and Osamura [5] who did not remove the motion of the centre
of mass. As expected the uncorrelated SCF energies are greater
than those in which particle correlation is explicitly taken into
account [2, 3]. In addition to it, we also expect the energy
difference 1W = WTO − WKA (where TO and KA stand for
Tachikawa and Osamura [5] and Kinghorn and Adamowicz
[3], respectively) to depend on the expectation value hT̂CMi that
should decrease as the molecular mass increases. In fact, the
third column of table 1 shows this trend as expected from the
fact that hT̂CMi is inversely proportional to the total molecular
mass. If this argument were correct, then 1W would exhibit
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Figure 1. 1W versus A−1 for the H2 isotopic series shown in
table 1.

Table 1. Nonadiabatic energies of some diatomic molecules.

Ref. W 1W

H2

KA00 −1.164 025 0232 0.111 654
TO00 −1.052 371

HD
KW66 −1.165 4555
KA00 −1.165 471 8927 0.102 116
TO00 −1.063 356

HT
KA00 −1.166 002 0061 0.098 7868
TO00 −1.068 382

D2

KA00 −1.167 168 8033 0.091 8650
TO00 −1.074 137

DT
KA00 −1.167 819 6334 0.088 5406
TO00 −1.079 279

T2

KA00 −1.168 535 6688 0.084 4127
TO00 −1.084 123

an almost linear relation with the inverse of the mass number
A. Figure 1 shows that this is in fact the case for the values of
the energy difference shown in table 1.

In the following section we test the arguments above on
an anharmonic oscillator that leads to a nontrivial Schrödinger
equation that we can solve accurately.

3. Toy model

In order to illustrate (and in some way corroborate) the
arguments above we consider the simple but nontrivial
anharmonic oscillator:

Ĥ T = − h̄2

2m1

∂2

∂x2
1

− h̄2

2m2

∂2

∂x2
2

+ k(x1 − x2)
4. (1)

In terms of the relative x = x1 − x2 and centre of mass
X = (m1x1 + m2x2)/M coordinates, where M = m1 + m2, we
have

Ĥ T = − h̄2

2M

∂2

∂X2
− h̄2

2m

∂2

∂x2
+ kx4 (2)

where m = m1m2/M is the reduced mass. The first and
second terms on the right-hand side of this equation are
simple examples of the operators T̂CM and T̂rel, respectively,
mentioned above in section 2. This toy model may seem
to be rather too unrealistic at first sight but it exhibits some
of the features of more complex problems that we need for
present discussion. First, it is separable into centre of mass
and relative degrees of freedom. Second, we can device a
simple variational function of coordinates x1 and x2 defined
in the laboratory-fixed set of axes as well as a function of the
more convenient relative variable x. Third, we can calculate
the eigenvalues of the relative Hamiltonian operator quite
accurately, which are useful for comparison.

To simplify the calculation we resort to the dimensionless
coordinates qi = xi/L, where L = [h̄2/(m1k)]1/6, and the
total dimensionless Hamiltonian operator

Ĥ T d = m1L
2

h̄2 Ĥ T = −1

2

∂2

∂q2
1

− β

2

∂2

∂q2
2

+ (q1 − q2)
4 (3)

where β = m1/m2. Analogously, the dimensionless relative
Hamiltonian operator is given by

Ĥ d = −β + 1

2

∂2

∂q2
+ q4 (4)

where q = q1 − q2 is the translation-invariant coordinate.
We first consider the trial function

ϕr(a, q) = exp(−aq2) (5)

where a is a variational parameter, and apply the variational
method to the total dimensionless Hamiltonian operator (3).
Note that the trial function (5) depends only on the relative
coordinate q so that hT̂CMi = 0 and hĤ T di = hĤ di. The
calculation is straightforward and we obtain

Wr = 3 · 61/3(β + 1)2/3

8
. (6)

Obviously, the optimized trial function (5) satisfies the virial
theorem

hT̂ i = hT̂reli = 2hV̂ i = 61/3(β + 1)2/3

4
. (7)

In order to simulate an SCF function of the laboratory-
fixed coordinates we consider

ϕnr(a, b, q1, q2) = exp
¡−aq2

1 − bq2
2

¢
. (8)

The calculation is also straightforward and we obtain

Wnr = 3 · 61/3(
√

β + 1)2

[8(
√

β + 1)2/3]
> Wr.

The optimized trial function (8) also satisfies the virial theorem
hT̂ i = 2hV̂ i, but in this case hT̂ i > hT̂reli as discussed above
in section 2.

Figure 2 shows Wr , Wnr and an accurate numerical
calculation of the ground-state energy of the dimensionless
relative Hamiltonian operator (4) for 0 < β < 1. We clearly
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Figure 2. Ground-state energy of the anharmonic oscillator
calculated with the variational function of the relative (solid line)
and laboratory-fixed (dashed line) coordinates and the accurate
numerical results (circles).

appreciate the advantage of using a trial wavefunction of
internal coordinates. The trial function (8) yields considerably
poorer results in spite of having one more adjustable variational
parameter. We do not claim that the error in the DEMO
calculation of molecular energies [4, 5] is as large as the one
exhibited by the present anharmonic oscillator, but this simple
model shows (at least) two aspects of the problem. First, that
the energy calculated by trial functions of the laboratory-fixed
coordinates may be considerably greater than those coming
from the use of relative coordinates if we do not remove the
motion of the centre of mass properly. And, second, that
the virial theorem is not a reliable indication of the quality
of the wavefunction if it is not based on the relative kinetic
energy.

We can carry out another numerical experiment with the
toy model. The total mass in units of m1 is M/m1 = (1+β)/β.
Figure 3 shows that 1W = Wnr −Wr depends almost linearly
on β/(1 + β) (at least for some values of β) as suggested in
section 2 for the actual molecular energies and illustrated in
figure 2. We appreciate that the toy model gives us another
hint on the difference between the actual molecular energies
calculated by Kinghorn and Adamowicz [3] and Tachikawa
and Osamura [5].
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Figure 3. 1W versus β/(1 + β) for the ground state of the
anharmonic oscillator.

4. Conclusions

If we do not properly separate the motion of the centre
of mass in a calculation of atomic or molecular energies,
we expect inaccurate results unless the approximate trial
function depends only on internal, translation-free coordinates.
Otherwise, the effect of the kinetic energy of the centre of
mass will be a too large estimate of the energy. Under
such conditions the virial theorem will result in a misleading
indication of a supposedly accurate wavefunction. These
arguments apply to the case in which all the particles are
allowed to move [5] and may not be valid when some heavy
particles [4] (or all the nuclei [5]) are considered as mere point
charges (a sort of clamped nucleus approximation).
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