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Abstract

An analysis of the thermodynamic behavior of quantum systems can be performed from a geometrical perspective

investigating the structure of the state space. We have developed such an analysis for nonextensive thermostatistical

frameworks, making use of the q-divergence derived from Tsallis’ entropy. Generalized expressions for operator variance

and covariance are considered, in terms of which the fundamental tensor is given.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The geometrization of thermodynamics and statistical mechanics has been the subject of many studies
during the last few decades. Among the collection of works related with this topic, different approaches have
been followed. For instance, Weinhold [1] considered the thermodynamic surface given by the fundamental
relation U ¼ UðfX igÞ in the ðrþ 1Þ-dimensional Gibbs space (with coordinates labelled by U ;X 1; . . . ;X r), and
obtained the components of the metric tensor of that space as the second derivatives of the internal energy U

with respect to each pair of the r extensive parameters X i. Ruppeiner [2] focuses attention on fluctuations of
the thermodynamic magnitudes and obtains the metric tensor via second moments of the fluctuations. The two
ensuing metrics have been proven by Mruga"a to be equivalent [3]. Another statistical path for reaching a
Riemannian metric [4] in the space of thermodynamic parameters is that originated in the works by Rao [5]
and Amari (see, for instance, [6]) in the field of statistical mathematics, and also by Ingarden [7], Janyszek [8],
and other authors in the field of thermodynamics and statistical mechanics. The concomitant information-
theoretic approach is based on the concept of relative entropy and given in terms of the Boltzmann–Gibbs–
Shannon entropy. The ensuing formalism has been applied to a number of model systems, from the ideal and
van der Waals gases to the Ising and other magnetic models. In these applications it has been seen that the
scalar curvature R of the space can represent a measure of the thermodynamic stability of the system, and a
e front matter r 2006 Elsevier B.V. All rights reserved.
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useful quantity to characterize phase transitions (typically, for noninteracting models one obtains R ¼ 0, i.e. a
flat geometry, while R diverges at the critical point for interacting systems). There are some recent efforts in
the field of information geometry related with the generalized, nonextensive formulation of statistical
mechanics [9]. Among these studies one finds the analysis by Abe [10] of the geometry of escort distributions,
and the contributions by Amari, Nagaoka and coworkers ([6], among others) in connection with the
geometrical structure in the manifold of probability distributions. A new geometrical approach to thermo-
statistical mechanics is introduced in Ref. [11], where the relevance of the approach within the contexts of
nonextensive statistical thermodynamics is analyzed, showing that Riemannian geometry concepts yield a
powerful tool. More recently, Naudts [12] studies escort density operators and generalized Fisher information
measures.

Here, our aim is to discuss in some detail the generalization of the geometrical approach to statistical
physics. For that purpose we appeal to a generalized form for the entropy, as given by Tsallis [9]. The q-
entropy is employed in order to define an information measure from which we can derive the metrical
structure of the parameters’ space. The generalization of the definitions of variance and covariance for
quantum operators in the context of the so-called OLM version [13] of nonextensive statistical mechanics is
developed. The metric is finally expressed in terms of generalized fluctuations.

2. OLM density operator

For a given quantum mechanical system, the density operator that maximizes Tsallis’ nonextensive q-

entropy [9] Sq � kBð1� Tr r̂q
Þ=ðq� 1Þ (with q 2 Rþ and kB � 1) is written, within the optimized Lagrange

multipliers’ (OLM) formalism [13], as r̂ ¼ Z̄
�1

q eqð�
Pr

i¼1liðF̂ i �miÞÞ. Here, the generalized expectation

values of r quantum operators fF̂1; . . . ; F̂ rg are considered to be known as prior information; they are given by

mi ¼ hF̂ iiq ¼ Trðr̂qF̂ iÞ=Tr r̂
q, i ¼ 1; . . . ; r. The parameters fl1; . . . ; lrg refer to the set of Lagrange multipliers

that fit those restrictions in the procedure of constrained extremization of Sq when one is working within the

OLM formalism, i.e. the restrictions are rewritten as Tr r̂q
ðF̂ i �miÞ ¼ 0. It has been established [14] that flig

correspond to the physical intensive parameters. In this OLM framework, the pseudo-partition function

Z̄q � Tr eqð�
P

liðF̂ i �miÞÞ is such that the density operator is normalized, i.e. Tr r̂ ¼ 1. Notice that the

Lagrange multiplier associated with the normalization condition is not written explicitly in the equilibrium

density matrix, instead we chose to introduce the q-partition function Z̄q in the expression for r̂. In all these

expressions, eqðxÞ stands for the q-exponential function: eqðxÞ � ½1þ ð1� qÞx�
1=ð1�qÞ
þ , with ½X �þ ¼ maxf0;X g.

The extensive limit corresponds to the situation q! 1, and then q� 1 is a measure of the degree of entropy
nonextensivity.

3. Generalized variances

We begin by providing a natural q-generalization of the variance of an operator and of the covariance
between two operators. For this purpose we address the relation between fluctuation and response in
nonextensive settings [15]. We need then to compute the derivative of each mean value with respect to every
Lagrange multiplier, which poses a rather intricate problem. A linear system of r coupled equations is to be
faced for each l. This system can be solved and, after some manipulations, the following result is reached:

qmi

qlj

¼ � q Z̄
q�1
q 1� qZ̄

q�1
q

Xr

l¼1

llhr̂
q�1dqF̂ liq

 !�1
hr̂q�1 dqF̂ i dqF̂ jiq � qZ̄

q�1
q

"

� hr̂q�1 dqF̂ i dqF̂ jiq

Xr

l¼1

llhr̂
q�1dqF̂ liq � hr̂

q�1dqF̂ iiq

Xr

l¼1

llhr̂
q�1 dqF̂ j dqF̂ liq

 !#

where dqF̂ i � F̂ i �mi are the generalized deviation operators, and r̂ is the OLM density matrix. For the sake
of simplicity, we have considered here a set of r commuting operators. Let us stress that the derivative with



ARTICLE IN PRESS
M. Portesi et al. / Physica A 365 (2006) 173–176 175
respect to a given lj is done keeping all other lj0 ðj
0ajÞ fixed. After writing down the above equation it seems

advantageous for us to advance the following definitions for q-generalized deviations, covariances, and
squared variances or dispersions, respectively:

ðdqF iÞ � hr̂
q�1dqF̂ iiq, ð1Þ

CqðF̂ i; F̂ jÞ ¼ hr̂
q�1dqF̂ idqF̂ jiq and ðDqF iÞ

2
� CqðF̂ i; F̂ iÞ. ð2Þ

These can be interpreted as modified first and second moments of the corresponding operators. For the sake of

completeness, we also define the generalized correlation coefficient to be CqðF̂ i; F̂ jÞ � CqðF̂ i; F̂ jÞ=ðDqF iDqF jÞ,

that equals 1 whenever i ¼ j for arbitrary values of q. Regarding the first definition, Eq. (1), the generalized
expectation value in the r.h.s. will not be equal to zero in general—notice that, as it is given here, it is not the q-
mean value of the q-deviation operator�; however limq!1ðdqF iÞ ¼ 0. The expressions in Eq. (2) for the second

moments differ from those given in Ref. [16] in a factor r̂q�1 inside the q-expectation values, that can be recast

as Z̄
1�q

q ½1� ð1� qÞ
P

lldqF̂ l �
�1
þ (a similar factor has also been found in the computation of the generalized

specific heat for an ideal Fermi gas [17]). Typical of the nonextensive statistical formalism is the emergence of
correlations among different observables—induced by the nature of the q-statistics—with one quantity
depending on all other ones (this has also been discussed for the occupation numbers in fermionic systems
[17]).Nevertheless, one always finds the correct uncorrelated limit for q! 1. Due to the presence of the
density-dependent factor in Eq. (2), the evaluation of the q-variances and q-covariances involves not only

quadratic terms with F̂ iF̂ j (as required in the extensive limit) but the computation of ðrþ 1Þðrþ 2Þ=2 traces,

apart from Tr r̂q, for a complete description of the correlations for a given problem. Indeed we can write

ðDqF iÞ
2
¼ hr̂q�1F̂

2

i iq � 2mihr̂
q�1F̂ iiq þm2

i hr̂
q�1
iq, ð3Þ

CqðF̂ i; F̂ jÞ ¼ hr̂
q�1F̂ iF̂ jiq �mihr̂

q�1F̂ jiq �mjhr̂
q�1F̂ iiq þmimjhr̂

q�1
iq. ð4Þ

A bit of additional algebra finally yields one of our important results, namely,

qmi

qlj

����
flj0ajg

¼ �qZ̄
q�1
q CqðF̂ i; F̂ jÞ þ

qZ̄
q�1
q ðdqF iÞ

P
llCqðF̂ j ; F̂ lÞ

1� qZ̄
q�1
q

P
ll ðdqF lÞ

 !
. (5)
4. The fundamental tensor

The fundamental tensor of the space of parameters, a key ingredient in the geometric approach to
thermostatistics, can be interpreted in terms of thermodynamic fluctuations. Indeed, in the case of classical
systems or commuting operators, the metric tensor derived within a standard treatment is equal to the
covariance or second moment: g

ð1Þ
ij ¼ hðF̂ i � hF̂ iiÞðF̂ j � hF̂ jiÞ i ¼ C1ðF̂ i; F̂ jÞ. For noncommuting operators, an

integral expression for the covariances has been introduced [18], based on the connection with the metric
tensor. We present in this section the formalism leading to analogous results within generalized statistical
contexts.

A quantum state described by the density operator r̂ðl1; . . . ; lrÞ can be represented in the r-dimensional
space of parameters. The information distance between two normalized states can be given in terms of the
symmetrized form of the relative entropy, which in a nonextensive context has been defined as [19]
Kqðr̂kŝÞ ¼ Tr r̂q

ðlnq r̂� lnq ŝÞ, where lnq ðxÞ stands for the inverse function of eqðxÞ. We compute then the
symmetric information measure for a pair of density matrices, r̂ðflgÞ and r̂ðflþ qlgÞ, and make an expansion
around flg. The first nonvanishing contribution is the second order one,

P
qliqlj qTrðr̂q

Þhr̂�q�1qjr̂ qir̂iq
(where qiX � qX=qli), which finally gives us the q-metric tensor as

g
ðqÞ
ij ¼ q Z̄

q�1
q ½CqðF̂ i; F̂ jÞ � qi ln Z̄q ðdqF jÞ � qj ln Z̄q ðdqF iÞ

þ qi ln Z̄q qj ln Z̄qðhr̂
q�1
iq � Z̄

1�q

q Þ�. ð6Þ
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Given in this shape, the evaluation of the generalized metric tensor for a given system requires knowledge of
the pseudo-partition function and its logarithmic derivatives with respect to the Lagrange parameters, and
also the generalized fluctuations.

Summing up, we have discussed appropriate definitions of q-variance and q-covariance for quantum
operators in a generalized thermostatistical framework characterized by the nonextensivity index q, along the
paths of Ref. [15]. Previous related literature is based on the generalized definitions given in Ref. [16]. Then, we
have found the fundamental tensor of the space of thermodynamic parameters within a nonextensive
statistical framework, in terms of quantum fluctuations. Application of these ideas to certain physical systems
may contribute to characterize its thermodynamic behavior. In this sense we expect that the geometric analysis
of the model, when performed in a generalized context with a value of q different from 1, may exhibit in a
more clear way the critical regions.
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