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a  b  s  t  r a  c t

A  heuristic  diagram of the  evolution  of the  standard genetic code  is presented. It  incorporates, in  a way
that  resembles the  energy levels of an atom,  the  physical  notion  of broken  symmetry  and  it is consistent
with  original  ideas by  Crick on  the  origin  and evolution  of the  code as  well  as  with  the  chronological
order  of  appearance  of the amino  acids along  the  evolution  as  inferred from work that  mixtures  known
experimental  results  with  theoretical  speculations.  Suggested by  the  diagram  we propose  a Hamilton
quaternions  based mathematical  representation of the  code as  it stands now-a-days. The  central  object
in the  description  is  a  codon function  that  assigns  to each amino acid  an integer  quaternion  in such  a
way  that  the  observed  code degeneration  is preserved.  We emphasize the  advantages  of  a quaternionic
representation  of amino acids taking  as an  example  the  folding  of  proteins. With  this aim we  propose
rotein folding an  algorithm  to go from the  quaternions  sequence  to  the  protein three dimensional structure  which  can
be compared  with  the  corresponding  experimental  one  stored at the  Protein  Data  Bank. In  our criterion
the  mathematical  representation  of the  genetic code in terms of quaternions merits  to  be  taken into
account  because  it describes not only most of the  known  properties  of the  genetic  code  but  also  opens
new  perspectives  that are  mainly  derived from  the  close relationship  between quaternions  and  rotations.

© 2015  Elsevier  Ireland Ltd.  All rights  reserved.
. Introduction

The standard genetic code (Crick et al., 1961), say the corre-
pondence between the sequence of nucleotide bases of mRNA
olecules and the sequence of amino acids in  the ribosomal pro-

ein synthesis as occurring at the cells of most of the animals and
lants, is now-a-days fairly well known. The mRNA bases belong to
he set {A, C,  G, U} where A stands for adenine, C for cytosine, G for
uanine and U for uracil. Non-overlapping triplets of consecutive
ases (codons) encode just one of the 20 standard amino acids (see
ppendix A) or a stop signal each one. In principle, there is  no any
ind of separation between adjacent codons in the sequence. Of the

3 = 64 possible different codons, 61 translate into amino acids and
he remaining three determine a  stop signal. We  are then speaking

∗ Corresponding author at: Instituto de Física de Líquidos y Sistemas Biológicos,
9 Nro. 789, 1900 La Plata, Argentina.

E-mail addresses: manuel@iflysib.unlp.edu.ar (C.M. Carlevaro),
irastorza@iflysib.unlp.edu.ar (R.M. Irastorza), vericat@iflysib.unlp.edu.ar
F. Vericat).

ttp://dx.doi.org/10.1016/j.biosystems.2015.12.009
303-2647/© 2015 Elsevier Ireland Ltd. All rights reserved.
about a  code of four letters that can form 64 words three letters
each. The words translate into amino acids or the stop signal.

The mechanism that performs this translation involves a  very
sophisticated molecular machinery which is  no completely known
yet. However, Crick’s adaptor hypothesis (Crick, 1958)  and further
refinements (Ibba and Söll, 1999; Ibba et al., 2000) are, in general,
widely accepted as accurate enough as to  describe, at molecular
level, the complex translation procedure in most of the cases. The
image currently accepted is  that tRNA molecules act as interme-
diaries (adaptors) between the template (mRNA) and the amino
acids that will form the protein. The amino acid to be incorpo-
rated into the protein chain is covalently bonded to the tRNA 30

extreme (forming an aminoacyl–tRNA complex) at the time that, in
another part of the tRNA chain, a  triplet of nucleotide bases (anti-
codon) specifically interacts with the codon of the mRNA template
that codifies the amino acid in  question. The bases of the anti-
codon are just the complementary ones of the corresponding codon
bases (read in the direction 50 → 30)  and the interactions manifest

as hydrogen bonds between complementary bases.

Skipping over for the moment the molecular details of
the translation and restricting ourselves to  the correspondence
codons → amino acids in  itself, we reproduce in Fig. 1a  classical

dx.doi.org/10.1016/j.biosystems.2015.12.009
http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
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ig. 1. Text book picture of the standard genetic code. The three letters convention 

n  bold. The order of the codons is in the direction 50 → 30 . The codon AUG besides t
RNA  sequence for the protein synthesis.

resentation of the standard genetic code. The structure of the code
s evident. Each codon codifies just one amino acid or (in the case of
he codons UAA,  UAG and UGA) the stop signal. The code is  degener-
te in the sense that, except for the amino acids methionine (met)
nd tryptophan (trp) that are codified by  a  single codon each one,
ll the other amino acids are codified by  two or more codons.

One interesting related question that has received some atten-
ion is the origin and evolution of the genetic code. The proposals in
his direction are obviously rather speculative (Jukes, 1973; Wong,
988; Osawa et al., 1992; Hartman, 1995; Jiménez-Sánchez, 1995).
owever, Crick’s scenario (Crick, 1968) according to which origi-
ally only a few amino acids were coded by most of the possible
hree bases codons and that, in subsequent steps, some of those
odons were substituting the amino acid they coded by a new one
ntil eventually the code became frozen in its present form, seems
easonable and very attractive. In particular, the idea of an increas-
ng number of amino acids to be coded, can be correlated with
he studies on the evolution of the amino acids abundance (Miller,
953; Trifonov, 2000).

A  step further in relation with the genetic code includes several
fforts done in order to give mathematical models for describ-
ng the present structure of the code and how it has evolved in
rder to reach this state (Gonzalez, 2004; Hornos and Hornos, 1993;
ciarrino, 2003). The main mathematical tools are tensor algebras
nd group theory. In  particular, in Hornos and Hornos (1993) the
uthors use the physical concept of broken symmetry to  find a
athematical group with a 16-dimensional representation (the

ighly degenerate primitive code) which can be  written as the
roduct of simpler groups that describe the pattern of redundan-
ies observed in Fig. 1. The approach gives a  very elegant physical
xplanation of the code degeneration. However, perhaps because it
oncerns the application of a  relatively complicated mathematical

ool to a  subject dominated by researchers with main formation in
isciplines other than Mathematics and Physics, the work has been
aken just as a valuable exercise in classification (Maddox, 1994;
tewart, 1994).
 amino acids is  used (see Appendix A) and the  third base in the codons is  remarked
ify the amino acid methionine (met) also determines the starting point within the

In this work we propose a mathematical description of the
genetic code too,  but it is based on a  tool that, in our judge-
ment, is very friendly and, at the same time, very  powerful as to
open new perspectives beyond of simply giving a representation
of the code structure. We  are  talking about the Hamilton quater-
nions (Hamilton, 1843, 1866). These mathematical objects are  a
sort of generalization of the complex numbers and obey an alge-
bra in  many aspects similar to theirs but with the very important
(for our purposes) property that the product is, in general, non-
commutative (see Appendix B). In addition, the quaternions are
ideal for representing rotations with important advantages over
the classical matrix representation. This fact has of course already
been recognized by bioinformaticians in writing routines involving
the tertiary structure of proteins. We  must mention that Petoukhov
has also applied quaternions to describe the genetic code but  from
a very different point of view (Petoukhov, 2006).

Our journey starts by presenting in  the next section a  diagram
for the evolution of the genetic code that incorporates the con-
cept of broken symmetry in a  way that resembles the energy levels
of  an atom. Actually, our interest is  in  the present form of the
code, however the evolution diagram gives a  picture of the cor-
respondence bases triplets → amino acids that will help us with the
mathematical representation of this correspondence by means of
quaternions. Moreover, despite the high degree of  speculation that
exists in any model for the origin and evolution of  the genetic code,
we can give to our diagram an interpretation which is consistent
with the above mentioned ideas by Crick on the subject (Crick,
1968). Thus, inspired by this diagram, in  Section 3 we proceed to
represent the relationship between the codons and amino acids
by using quaternions. First we assign an integer quaternion (Lip-
schitz integer) to each one of the four nucleotide bases and then,
suggested by the diagram structure, we consider a  codons func-

tion that gives as result the assignation of  a  quaternion to each
one of the amino acids. The explicit form of this function involves
simple quaternionic operations (products and sums) that automat-
ically accounts for the degeneration of amino acids encoded by



1 ioSyst

f
n
r
b
n
t
c
i
b
a
t
T
f
(
a
r
m
g
q
s
w
p
t
m
f
c
t
t
b
t
p
a
p
h
a
s
a
c
t
d
g
o
i
b
(
t
I
q
g
i
i
i

t
w
c

2

t
i
s
a

c

2 C.M. Carlevaro et al. /  B

our, three or two codons and includes, in  addition to the quater-
ions assigned to the four bases, an extra number of quaternions,
elated with the splitting of the “atomic levels” due to the symmetry
reaking during the evolution, which, in  principle, are indetermi-
ate. These extra quaternions are determined by demanding that
he degeneration for amino acids encoded by more than four (con-
retely six) codons be also verified. In order that this scheme works
n practice we need to  explicitly give the four quaternions for the
ases. Of  the infinitely many options the one we  choose clearly has

 Pythagorean flavor: we  consider a  subset of four quaternions from
he complete set of eight prime integer quaternions with norm 7.
he subset we take does not contain pairs of conjugate quaternions,
our being the maximum cardinality for a  subset with this property
Davidoff et al., 2003). Once a quaternion of this subset has been
ssigned to each of the four nucleotide bases, the quaternion cor-
esponding to each amino acid is directly determined by  the above
entioned function. This way the quaternionic description of the

enetic code is completed. In order to remark the potentiality of the
uaternionic representation of amino acids for opening new per-
pectives beyond the description of the genetic code degeneration,
e appeal to another fundamental question: the protein folding
roblem, say the establishment of the native tertiary structure of
he protein from the knowledge of its amino acids sequence (pri-

ary structure) (Creighton, 1992; Ben Naim, 2013). The protein
olding problem is per se a  phenomenal task that in some sense
an be considered as experimentally solved through X-ray diffrac-
ion, Nuclear Magnetic Resonance and other techniques. However,
heoretically the problem remains unsolved and a  lot of work has
een done by  many researchers since the middle of the past cen-
ury in order to develop a  computational procedure that allows
redicting the tertiary structure of a  given protein from its amino
cids sequence. Here we  avoid to mention the lot of methods pro-
osed to attack the question and simply give our own, maybe rather
euristic, approach as to show the advantages of associating amino
cids with quaternions. This will be  done in Section 4 were we
how the procedure that we have designed in  order to go from the
mino acids quaternions to  the coordinates of the backbone alpha-
arbon atoms of a  protein whose spatial structure we assume is
he native one for the given amino acids sequence. These coor-
inates can be compared with those experimentally obtained as
iven in the Protein Data Bank (PDB). The procedure involves a  set
f real quaternions associated with the order of the amino-acids
n the chain so that each amino-acid in  a  protein is  represented
y an integer quaternion (type quaternion) and a  real quaternion
order quaternion). If this quaternions are the same ones for all
he proteins, then the protein folding problem would be solved.
n this work we limit ourselves to show how the type and order
uaternions can be used to transform the primary structure of a
iven protein into its spatial configuration. The problem of obtain-
ng the set of order quaternions which is adequate to all proteins (if
t  exists), say the possibility of solving the protein folding problem,
s left for future work.

Two Appendices,  one with the one and three letters conven-
ion for identifying the 20 standard amino acids and another one
ith the main properties of the quaternions are finally given for

ompleteness.

. A diagram for the evolution of the genetic code

In Fig. 2 we show the diagram that we  propose to take account of
he evolution of the genetic code. It is  mainly inspired in  pioneering
deas by Crick (1968) and also in the physical concept of broken

ymmetry, first applied in  relation with the genetic code by  Hornos
nd Hornos (1993).

According to  Crick if the genetic code is  at present time a  triplet
ode, in the sense that the reading mechanism moves along three
ems 141  (2016) 10–19

bases at each step, then it must always have been a triplet code since
otherwise a loss of Darwinian fitness can occur. Thus we assume
that the codons were always formed by three bases of the set {A, C,
G, U}. We must mention that Crick also have analyzed the plausibil-
ity of primitive nucleic acids constituted by just two  bases. However
even if this were the case, since the passage to a  four bases system
had to occur in  some moment of the evolution without to  substan-
tially alter the message carried by the old two  bases chain (Principle
of continuity), we can take the four bases alphabet as being always
available since a  given moment at the origins of the code. Therefore
we accept that since the beginning codons are triplets of bases cho-
sen from the set {A,  C, G, U}. Moreover, we consider that, in the first
evolution steps, only the second base of the codon was effective in
codifying amino acids. Accordingly only four amino acids could be
codified, each one by one of the four bases C, G, U and A indepen-
dently of which the first and third bases are. In the diagram this
fact is denoted with a  rectangle containing the four letters. This
is consistent with Crick’s suggestion that only a few amino acids
were coded at the beginning. According with the diagram, C would
codify alanine (A); G, glycine (G); U, valine (V) and A aspartic acid
(D) whatever the first and third bases are. It is  worth noting here
that the four amino acids that we assume were the first ones to be
codified are the first four in the Trifonov (2000) consensus tempo-
ral order scale for the appearance of the amino acids (column of
natural numbers in  Fig. 2). The four amino acids A, G,  V and D  were
also the first four that appeared under simulation of  the primitive
earth conditions in  Miller experiments (Miller, 1953).

As the left part of diagram shows, our version of the primitive
code is  highly degenerate: in principle each of the four amino acids,
A,G,V and D, could be  encoded by 42 =  16 codons. Physically the idea
of degeneration is closely related with the concept of  symmetry and
a very illustrative form to think about these concepts is  by  doing
an analogy with the energy levels of an atom. In our case we would
have four levels indexed each one with the letter corresponding
to the second codon base, say C,  G, U and A (main quantum num-
ber). We thus assume that, as the code evolves, the symmetry that
causes that the amino acid codification be independent of the first
base of the codon, disappears for some reason. The reason could
be that with time the recognition mechanism becomes more pre-
cise as to differentiate between two  codons with distinct first base.
Because of this symmetry breaking, a  part of the degeneration also
disappears. In the diagram each of the four initial levels splits into
four new levels, one for each of the possible bases (C, G, U and A) at
the first place of the codon (secondary quantum number). Now we
have a  total of 16 levels indexed each one by two  letters (the first
and second bases of the codon). Each level is fourfold degenerate in
the codons third base. One of the new levels follows codifying the
same amino acid as before that the level splits whereas the other
three codify a  new amino acid each. We indicate with an arrow
the four groups of codons that conserve the amino acid and with
a simple line those that substitute the amino acid by a  new one.
Note that the codons that follow codifying the same amino acid
are those whose first base is  guanine (G). This is  consistent with
the above mentioned temporal order of appearance and with the
present time correct assignation of amino acids in the case of four-
fold degeneration as is shown in  Fig. 1.  This way 9  new amino acids
(that with the old four sum 13) and the stop signal are coded. Note
also that we assume that the amino acids serine (S) and leucine (L)
at that moment were codified by two groups of codons: S by UC
(third base arbitrary) and AG (third base arbitrary), whereas L  by CU
(third base arbitrary) and UU (third base arbitrary).

As the code follows evolving it suffers new breaking of  symme-

try so that the third base of some codons bring into use or, in the
atomic analogy, some of the fourfold degenerate levels split into
two levels each one twofold degenerate. Those levels pointed out
with an arrow follow codifying the same amino acid whereas the
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ther levels substitute it for a  new one. Eventually, in subsequent
teps, a few of the twofold degenerate levels split once more given
wo non-degenerate levels each. This is the case of codons that cod-
fy methionine (M), tryptophan (W)  and (again) the stop signal. The
ase of isoleucine (I) is a  particular one since the split level coin-
ides with the twofold one which represents the two  codons that
ollow codifying the same amino acid. This way, isoleucine is the
nly amino acid which is coded by  three codons. The stop signal is
lso threefold degenerate since it is coded by  two groups of codons
ne twofold degenerate and the other one non-degenerate. At  this
tep of the evolution the code frozen to give its present form. It
s worth mentioning that the code evolution gives as a  particular
esult that the amino acids serine (S), arginine (R) and leucine (L)
re at present coded by  two groups of codons each one. In the three
ases one of the groups is fourfold degenerate and the other one
s twofold degenerate, so that these amino acids are the only three

hich are sixfold degenerates. We  point out this property in the
iagram with a  broken line linking the two groups of codons. The
wo groups of codons that codify the stop signal are also linked by

 broken line.

. Mathematical representation of the genetic code

We proceed now to  describe the genetic code by using quater-
ions. Define the sets:

 = {C, G,  U, A}, (1)

 = {P, A,  S, T, R, G, C, W, L, V,  F, I,  M, H,  Q,  D,  E,  Y,  N, K, Stop}
(2)

nd

7, red.(Z)  = {(2,  1, 1, 1),  (2,  −1, 1, 1),  (2,  1, −1, 1),  (2,  1, 1, −1)}.
(3)

e  propose a  quaternionic representation of the genetic code
ccording to the following scheme:

B3 −→ A
↓ ↓

H3
7, red.(Z)  −→ H(Z)

(4)

here H(Z)  denotes the set of integer quaternions (see Appendix
). B3 is the set of the 64 codons and we  assume that the cor-
espondence B3 → A  is  the present day standard genetic code as
escribed by Fig. 1, whereas the function B3 → H3

7,  red.(Z)  assigns
o each codon a  triplet of quaternions of the set H7, red.(Z)  (the
ubindex red. is for reduced). This set is  a  maximum cardinality
ubset of

7(Z) =  {(a0, a1, a2, a3) : a0, a1, a2, a3 ∈ Z;  a2
0 +  a2

1 + a2
2 + a2

3 =  7,

a0 > 0 and even}
ith the property that it does not  contain pairs of conjugate quater-
ions. The set H7(Z)  has 7 +  1 =8 elements (Davidoff et al., 2003) and
o H7, red.(Z) has 4 quaternions as it should be. It is  worth-noting
hat all the integer quaternions in H7(Z) are prime quaternions in
he sense that they can not be expressed as the product of two  inte-
er quaternions if neither of them can be the unit quaternion (1, 0,
, 0). This is  consistent with the fact that an integer quaternion is
rime if and only if its norm is a  prime number (Davidoff et al.,
003). Note that taking the nucleotide bases as prime quaternions

ives them a certain character of elemental molecules. Apart from
his, the election of H7,  red.(Z)  may  seem rather arbitrary. However
e are just looking for a  quaternionic representation of the genetic

ode so that, whatever the set of quaternions that we assign to  the
ems 141 (2016) 10–19 13

codons is, the important issue is that the function H3
7,  red.(Z)  → H(Z)

preserves the essential properties of the correspondence B3 → A.
In what follows, in order to simplify the notation, we  assign

natural numbers to identify the bases and the amino acids:
C  → 1,  G → 2,  U → 3,  A → 4 and P  → 1,  A  → 2, S  → 3, T  → 4,  R → 5,
G → 6,  C → 7, W → 8,  L  → 9, V → 10, F → 11, I → 12, M → 13, H → 14,
Q → 15, D  → 16, E  → 17, Y  → 18, N → 19, K  → 20, Stop → 21.

Inspired by the diagram of Fig. 2 we define the quaternionic
function

F : H3
7, red.(Z)  → H(Z)

(qˇ, q , qı)  → ˛i = F[(qˇ, q , qı)]
(5)

by (see Appendix B for the operations between quaternions):

P → ˛1 = q1q1 (  ̌ = 1,  =  1, ı = 1, 2, 3, 4)

A → ˛2 =  q2q1 (  ̌ =  2,  = 1, ı = 1, 2, 3, 4)

S → ˛3 =  q3q1 = q4q2 + 2;13 (  ̌ = 3,  = 1, ı  =  1, 2, 3, 4 or

ˇ = 4,  = 2, ı  =  1, 3)

T → ˛4 = q4q1 (  ̌ = 4,  = 1, ı =  1, 2, 3, 4)

R → ˛5 = q1q2 =  q4q2 + 2;24 (  ̌ = 1,   = 2, ı = 1, 2, 3, 4 or

 ̌ = 4,  = 2, ı  =  2, 4)

G → ˛6 = q2q2 (  ̌ = 2,  = 2, ı  = 1, 2, 3, 4)

C → ˛7 = q3q2 + 2;13 (  ̌ = 3,  =  2, ı  = 1, 3)

W → ˛8 =  q3q2 +  2;24 + ı2;2 (  ̌ =  3,  = 2, ı = 2)

L → ˛9 =  q1q3 = q3q3 + 3;24 (  ̌ = 1,  = 3, ı  =  1, 2, 3, 4  or

ˇ = 3,  = 3, ı  =  2, 4)

V → ˛10 = q2q3 (  ̌ = 2,  = 3, ı =  1, 2, 3, 4)

F → ˛11 =  q3q3 +  3;13 (  ̌ =  3,  =  3, ı = 1, 3)

I  → ˛12 = q4q3 +  3;13 = q4q3 + 3;24 + ı3;4

(  ̌ = 4,  = 3, ı  =  1, 3, 4)

M → ˛13 =  q4q3 + 3;24 + ı3;2 (  ̌ = 4,   = 3, ı = 2))

H → ˛14 = q1q4 + 4;13 (  ̌ = 1,  = 4, ı  = 1, 3)

Q → ˛15 = q1q4 + 4;24 (  ̌ = 1,  = 4, ı  = 2, 4)

D → ˛16 = q2q4 + 4;13 (  ̌ = 2,  = 4, ı  = 1, 3)

E → ˛17 = q2q4 +  4;24 (  ̌ = 2,  = 4, ı =  2, 4)

Y  → ˛18 = q3q4 + 4;13 (  ̌ = 3,  = 4, ı  = 1, 3)

N → ˛19 =  q4q4 + 4;13 (  ̌ =  4,  =  4, ı = 1, 3))

K → ˛20 =  q4q4 + 4;24 (  ̌ = 4,  =  4, ı  = 2, 4))

Stop → ˛21 = q3q2 + 2;24 + ı2;4 =  q3q4 + 4;24

(  ̌ = 3,  = 2, ı  =  4 or  = 4, ı = 2, 4)

(6)

From these expressions we can appreciate the importance of
working with objects that obey a  non-commutative algebra. In fact,
if the quaternions product where commutative then amino acids A
and R  would have associated the same quaternion and the same
would occur with S  and L.

In Eq.  (6),  the quaternions  i;jk accounts for the level splitting
when the second base of codon is  i and the third base is jk  =  13 (CU)

or 24 (GA).  Analogously, the quaternion ıi:j accounts for the level
splitting when the second base of the codon is i and the third base is
j =  2 (G) or 4 (A). Thus, in  principle we have as unknown quaternions
2;13, 2;24, 3;13,  3;24,  4;13,  4;24 and ı2;2,  ı2;4,  ı3;2 and ı3;4.
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Of the 10 unknown quaternions we can find 5,  say  2;13,  2;24,
3;13, 3;24, 4;24,  by  requiring that those amino acids which are
oded by two different groups of codons (case of codons sixfold
egenerates or codons that codify the stop signal) have associ-
ted an unique quaternion and also that the two  ways to reach
soleucine (I) give the same quaternion (see Fig. 2), so we must
olve the system

q3q1 = q4q2 + 2;13 (˛3)

q1q2 = q4q2 + 2;24 (˛5)

q1q3 = q3q3 + 3;24 (˛9)

q4q3 +  3;13 = q4q3 + 3;24 + ı3;4 (˛12)

q3q2 +  2;24 + ı2;4 = q3q4 + 4;24 (˛21).

(7)

he solution is:

2;13 = q3q1 − q4q2

2;24 = q1q2 − q4q2

3;13 = q1q3 − q3q3 + ı3;4

3;24 = q1q3 − q3q3

4;24 = q3q2 + q1q2 − q4q2 − q3q4 + ı2;4.

(8)

o obtain the quaternions ı2;2, ı2;4,  ı3;2 and ı3;4 we assign to those
evels that can not split more (non degenerate levels) the product of
he quaternions associated with each of the corresponding bases:
8 = q3q2q2; ˛13 = q4q3q2; ˛21 = q3q2q4; ˛12 =  q4q3q4. This way  we
ave

ı2;2 = q3q2q2 − q3q2 − 2;24

ı3;2 = q4q3q2 − q4q3 − 3;24

ı2;4 = q3q2q4 − q3q2 − 2;24

ı3;4 = q4q3q4 − q4q3 − 3;24.

(9)

inally for the remaining unknown quaternion 4;13 we propose:

4;13 = −4;24. (10)

Eqs. (6), (8), (9) and (10) solve completely the problem of assign-
ng quaternions to the amino acids in such a  way that the pattern of
edundancy of the genetic code is  verified. Taking: q1 =  (2, 1, 1, 1),
2 = (2, −  1,  1,  1), q3 = (2, 1, − 1, 1) and q4 =  (2, 1,  1,  −  1), we explicitly
btain

˛1 = (1, 4, 4, 4) ˛8 = (6,  −15, −1, 9) ˛15 =  (16,  −3, 7, 1)

˛2 = (3, 0, 6, 2) ˛9 = (3,  6, 0, 2) ˛16 =  (−8, 3, 3, −3)

˛3 = (3, 2, 0, 6) ˛10 = (5,  2, 2, 4) ˛17 =  (18,  −7, 5, −1)

˛4 = (3, 6, 2, 0) ˛11 = (2,  17, 1, 3) ˛18 =  (−8, 9, 1, 1)

˛5 = (3, 0, 2, 6) ˛12 = (6,  17, 3, −3) ˛19 =  (−12,  9, 3, −5)

˛6 = (1, −4, 4, 4) ˛13 = (18,  3, −1, 3) ˛20 =  (14, −1, 5, −3)

˛7 = (3, −2, −6, 8) ˛14 = (−10, 7, 5, −1) ˛21 =  (18,  −1, 3, 3).
(11)

e  will denote H˛(Z) the set of quaternions assigned to  the amino
cids as given by Eq. (11).

At first sight this set of quaternions could seem to say noth-
ng special by  itself, however when we  watch it more carefully we
tart to discover some patterns of regularity or symmetries. The

rst thing that we observe is  that the norm of all these quaternions

s odd: N(˛i) = a2
0 + a2

1 +  a2
2 + a2

3 ≡ 1 mod(2) (i =  1, 2, . . .,  21) and
an roughly be taken as a  measure of the information needed to
odify the corresponding amino acid in  the sense that the larger
ems 141  (2016) 10–19

the norm the larger the necessary information. In fact, taking into
account the multiplicative property of the quaternions norm we
can easily see from Eq. (6) that those quaternions associated with
amino acids which need just the first and second codon bases to
be recognized, say ˛1,  ˛2,  ˛3,  ˛4,  ˛5,  ˛6,  ˛9 and ˛10,  have as norm
N(˛i) =  N(qˇq )  =  N(qˇ)N(q )  =  49 whereas those which need of the
three bases to that effect, say the quaternions ˛8 and ˛13 cor-
responding to  the amino acids methionine (M), tryptophan (W)
and also ˛12 associated with the amino acid isoleucine (I) and ˛21
with the stop signal, both coming (in one of two  possible ways)
from a non-degenerate level (see Fig. 2 and also Eq. (6)), have
N(˛i) =  N(qˇq qı) = N(qˇ)N(q )N(qı) = 343. Here we have used the
fact that the norms of the quaternions that represent the nucleotide
bases are N(qˇ) =  7 (  ̌ =  1,  2, 3, 4). If the information about what
amino acids will be added during the protein synthesis is  encoded
in the quaternions triplets (qˇ, q ,  qı)  then for amino acids which
are determined by quaternions of the type ˛i =  qˇq the lack of
information is  compensated with the degeneration in the third
base whereas for amino acids specified by quaternions of  the form
˛i =  qˇq qı there is no lack of information and redundancy would
be, in principle, not necessary. The amino acids which are twofold
degenerate have norms which lie, with just one exception (˛17), in
between these extreme values.

We can also use the norm to divide the set H˛(Z)  into classes:
the norm of the quaternions corresponding to four or sixfold degen-
erate levels verifies N(˛i) ≡  1 mod(4) whereas all the remaining
quaternions, say ˛8, ˛11,  ˛12,  ˛13,  ˛14, ˛15,  ˛16,  ˛17, ˛18, ˛19,  ˛20
and ˛21 that come from levels with lower degeneration, have norm
that fulfills N(˛i) ≡ 3 mod(4). The exception is  the quaternion corre-
sponding to the amino-acid cysteine which is coded by two codons
but verifies N(˛7) = 113 ≡  1 mod(4). At the respect we can say that
in the euplotid nuclear variant of the genetic code the codon UGA
codifies the amino acid C instead of the stop signal. If we consider
this variant then ˛7 would play in some sense the role  of ˛21 and
vice versa and the exception would be the stop signal which could
be eliminated of the discussion that  mainly concerns with amino
acids. However since we  are actually interested into the standard
code we simply take the quaternion ˛7 as the exception to  the
rule and momentarily ignore it in our discussion here. The class
of quaternions that verifies N(˛i)  ≡ 3 mod(4) can still be split into a
couple of groups: one (˛15,  ˛16, ˛18,  ˛19) with N(˛i)  ≡ 3 mod(8) and
the other one (˛8, ˛11, ˛12, ˛13, ˛14, ˛17,  ˛20,  ˛21)  with N(˛i)  ≡ 7
mod(8). Although we have not clear the actual meaning of this sep-
aration we suspect that it has to do with symmetries involved in
the translation process at molecular level. Any way we  think that
these simple observations are enough as to give a  preliminary idea
about the potential usefulness of quaternions to discover hidden
patterns of symmetry inside the genetic code.

4. Amino acids as quaternions and the folding of proteins

As  we have seen in the previous section, our  quaternionic repre-
sentation of the genetic code reproduces its structure, particularly
the code redundancy and allows to  make evident some regularity
patterns. However the point that we wish to  remark here is the
special richness that gives to  the description the close relationship
between quaternions and rotations (see Appendix B). Because of
the advantages of using quaternions to describe spatial rotations,
the association of amino acids with quaternions opens new hori-
zons beyond the genetic code representation. In this context, we
consider the suitability of this association to  take account of  the
folding of the proteins that the amino acids form.
The primary structure of a  protein of N amino acids is  a  sequence
A1,  A2,  . . .,  AN with Ai ∈ A. The protein folding problem consists in
obtaining from this sequence the spatial coordinates of  each one
of the atoms of all the amino acids that constitute the protein
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Fig. 2. Authors proposal for the genetic code evolution. The one letter convention for amino acids is  used (see Appendix A). The  direction of the temporal evolution is from left
to  right. Rectangles with two or more bases implies degeneration with respect to  those ones. The broken lines link different sets of codons that encode the same amino acid in
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he  case of sixfold degeneration. Arrows and common lines indicate what codons fo
fter  the symmetry is  broken (see text). The natural numbers at the right side of t
Trifonov, 2000).

hen this one is in the native -or functional- state (tertiary struc-
ure). As such we consider the one corresponding to  the protein
n physiological solution whose coordinates can be obtained, after
rystallization, by  application of, for example, X-ray diffraction
ethods. That is  the case of most of the proteins whose coordinates

re stored at the PDB. In principle we  restrict ourselves to deter-
ine the coordinates for just the alpha-carbon atoms of the chain

hich is  not a severe restriction since it is known that there exist

ery efficient algorithms for going from this trace representation
o the full atoms one (Rotkiewicz and Skolnick, 2008). We also
ake into account that, in  our quaternionic representation, the
odifying the same amino acid and what will start to codify a new one, respectively,
gram give the temporal order of the amino acids in the Trifonov consensus scale

amino acids sequence is expressed as a sequence of quaternions
p1,  p2,  . . .,  pN with pi ∈ H˛(Z).  Under these conditions we  proceed
now to present an algorithm to determine the spatial coordinates
of the alpha-carbon atoms of the protein.

First we  observe that although adjacent alpha-carbon atoms are
not covalently bonded their distance is notably stable and take very
similar values for all the pairs within a given protein and also for

those belonging to  different proteins, as the histogram of Fig. 3
shows. So in our calculations we assume that all these distances
are equal to a  unique value dC˛−C˛ =  3.80 Å. Thus we determine on
the unit sphere with center at the origin a  point for each of the
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Fig. 3. Histogram for the distance dC˛−C˛ between adjacent alpha-carbon atoms. The
distances were calculated from the alpha-carbon atoms coordinates correspond-
ing  to a sample of 110 proteins of different length stored at the PDB (31,332 pairs
of adjacent alpha-carbon atoms). The  mean value and the standard deviation are

hdC˛−C˛ i = 3.801 Å and �C˛−C˛ = [hd2
C˛−C˛

i − hdC˛−C˛ i2]
1/2 = 0.061 Å, respectively.

Fig. 4. Development of the alpha-carbon atoms backbone of a hypothetical protein
of  length N  from its position on the sphere surface into its  spatial configuration
(schematic). The last two alpha-carbon atoms, as well as some of the first ones, are
labeled by their order number inside the sequence.
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tion inside the protein chain.
In Figs. 5–8 we  show the result of the application of our proce-

dure to five small peptides and proteins: in  Fig. 5 the synthetic
peptide amyloid fibril (PDB ID: 2BFI – length: 12 amino acids)
mino acids (alpha-carbon atoms) in the protein sequence. To the
ast one we assign directly the origin, the preceding one is located
t the intersection between the axis z and the sphere surface (ver-
or bez). To each of the remaining alpha-carbon atoms we assign a
oint on the sphere surface that results of rotating the versor bez

y a quaternion (see Appendix B). For the jth alpha-carbon atom in
he sequence, the quaternion responsible of the rotation is denoted

j (j = 1, 2, . . .,  N − 2). We then expand the chain of alpha-carbon
toms from their location on the sphere into the back-bone protein
hree dimensional configuration (see Fig. 4) by means of the fol-
owing iterative procedure, where initially the Erj ’s are  on the sphere
urface:
ems 141  (2016) 10–19

do  i  = 1, N  − 2
ıEr = Eri+1

do  j  =  1, i
Erj = Erj + ıEr

end do
end do

According to the algorithm, the distance between adjacent
alpha-carbon atoms is  the unit so, to establish the correct distance,
we must multiply the final calculated coordinates by dC˛−C˛ .

It remains to determine how to calculate the quaternionsb̌
j (j =  1, 2, . . .,  N − 2). We do this in  a  somewhat heuristic way. We

take into account that the jth amino acid interacts in some way with
the j −  1 previous amino acids in the sequence and also with the
N − j subsequent ones. Of course that in  these interactions the effect
of the medium should be incorporated in some form, for example
in the form of effective interactions between amino acids. Actu-
ally we  are trying for a  sort of decodification and so we are  not
directly interested into the detailed form of the interactions, but
we recognize that in  any codification of information that involves
those interactions, some trace of their general form should be. In
general it is reasonable to think that the global interaction includes
two body, three body, . . .,  until N body (effective) interactions so by
analogy we choose with generality for b̌

j the normalized version
of the quaternion

ˇj = (S<
j,1 + S<

j,2 + ·  ·  ·  +  S<
j,j−1)pj + pj(S

>
j,1 +  S>

j,2 + ·  · · + S>
j,N−j) (12)

with

S<
j,1 =

X
1≤r≤j−1

crpr, S<
j,2 =

X
1≤r<s≤j−1

crprcsps, . . ., S<
j,j−1

= c1p1c2p2·  ·  ·cj−1pj−1 (13)

and

S>
j,1 =

X
j+1≤r≤N

crpr, S>
j,2 =

X
j+1≤r<s≤N

crprcsps, . . ., S>
j,N−j

= cj+1pj+1cj+2pj+2· · ·cNpN, (14)

where cr ∈ H(R) (r =  1, 2,  . . .,  N) are in  principle unknown real
quaternions to  be determined. It is worth mentioning that in  our
election of the form of Eq. (12) we have taken into account the
non-commutativity of quaternions too.

Even for proteins of length N relatively small, the memory and
computation time required for evaluating the unknown quater-
nions c1,  c2, . . .,  cN using the complete expression given by Eq.  (12)
for the ˇj’s  are too large, at least for our computational facilities.
Thus in the calculations here we  use the simplest version:

ˇj = S<
j,1pj + pjS

>
j,1, (15)

that, in  our  analogy, corresponds to consider just pair interactions
in the protein total potential energy.

Here we  adjust the unknown quaternions by  means of  an
optimization technique. As  such we use the particle swarm opti-
mization (PSO) procedure of Kennedy and Eberhart (1995) taking
as function of fitness the difference between the coordinates of
the alpha-carbon atoms calculated following the previous proce-
dure and the corresponding experimental ones as read from the
PDB. We take the rmsd (root-mean-square deviation) as a  measure
of this difference, using to  that effect Bosco K. Ho’s implemen-
tation of Kabsch algorithm (Kabsch, 1976). This way we  assign
to  each amino-acid in  the primary structure of the protein, two
quaternions: an integer quaternion belonging to  the set H˛(Z)  (type
quaternion) and a  real one (order quaternion) according to its posi-
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Fig. 5. Trace representation of the alpha-carbon atoms backbone for the small pro-
teins  2BFI and 1GCN. Red (dark grey) tube: from the coordinates obtained using our
procedure. Cyan (light grey) ribbon: from the coordinates stored at PDB. (For inter-
pretation of the references to  color in this figure legend, the reader is  referred to  the
web  version of this article.)

Fig. 6. Trace representation of the alpha-carbon atoms backbone for the protein
2CK5. Red (dark grey) tube: from the coordinates obtained using our procedure.
Cyan (light grey) ribbon: from the coordinates stored at  PDB. (For interpretation of
the  references to  color in this figure legend, the reader is  referred to the web  version
of  this article.)

Fig. 7. Trace representation of the alpha-carbon atoms backbone for the protein
1HG7. Red (dark grey) tube: from the coordinates obtained using our procedure.
Cyan (light grey) ribbon: from the coordinates stored at  PDB. (For interpretation of
the  references to  color in this figure legend, the reader is  referred to the web  version
of  this article.)

Fig. 8. Trace representation of the alpha-carbon atoms backbone for the protein
1MBN.  Red (dark grey) tube: from the coordinates obtained using our procedure.
Cyan  (light grey) ribbon: from the coordinates stored at PDB. (For interpretation of
the references to color in this figure legend, the reader is  referred to  the web version
of  this article.)

Fig. 9. Full atom line representation of the peptide 2BFI. Red (dark grey): recon-
struction from the alpha-carbon atoms backbone coordinates (obtained with our
procedure) using the method of Rotkiewicz and Skolnick (2008).  Cyan (light grey):
from the coordinates stored at PDB. In the rebuilt protein the hydrogen atoms do
not appear. (For  interpretation of the references to  color in this figure legend, the
reader is  referred to the web version of this article.)

Fig. 10. Full atom line representation of the protein 1GCN. Red (dark grey): recon-
struction from the alpha-carbon atoms backbone coordinates (obtained with our
procedure) using the method of Rotkiewicz and Skolnick (2008).  Cyan (light grey):
from the coordinates stored at PDB. In the rebuilt protein the hydrogen atoms do
not appear. (For  interpretation of the references to  color in this figure legend, the
reader is  referred to the web version of this article.)
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Fig. 11. Full atom line representation of the protein 1HG7. Red (dark grey): recon-
struction from the alpha-carbon atoms backbone coordinates (obtained with our
procedure) using the method of Rotkiewicz and Skolnick (2008). Cyan (light grey):
from the coordinates stored at  PDB. In the rebuilt protein the hydrogen atoms do
not appear. (For interpretation of the references to color in this figure legend, the
reader  is  referred to  the web version of this article.)
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ogether with the hormone glucagon (PDB ID: 1GCN – length: 29
mino acids); in Fig. 6 the ion channel inhibitor osk1 toxin (PDB ID:
CK5 – length: 31 amino acids); in  Fig. 7 a type III antifreeze protein
PDB ID:1HG7 – length: 66 amino acids); in  Fig. 8 the “hydrogen
tom” of proteins, say myoglobin (PDB ID: 1MBN – length: 153
mino acids). The two proteins of Fig. 5 were adjusted simulta-
eously so that the order quaternions for 2BFI are the same ones
s the first 12 of 1GCN. The 29 order quaternions we have obtained
or 1GCN differ of the first 29 ones of the remainder proteins
nstead. With respect to this last fact we must mention that, at
east within the error (rmsd) considered here, the set of quater-
ions we found for a given protein by fitting the alpha-carbon
toms coordinates is  not unique. This is  an important point since
therwise the possibility of finding a  common set of order quater-
ions valid for all the proteins would be  definitively closed. In the
gures we compare the chains of alpha-carbon atoms calculated
ith our algorithm with the corresponding ones obtained from

he coordinates stored at PDB. The resultant rmsd’s are: 0.06 Å for
BFI; 0.26 Å for 1GCN, 0.14 Å for 2CK5, 0.29 Å for 1HG7 and 0.79 Å
or 1MBN.

For 2BFI, 1GCN and 1HG7 we  have reconstructed the full-atom
rotein models from their alpha-carbon atoms representations
sing Rotkiewicz and Skolnick algorithm (PULCHRA) (Rotkiewicz
nd Skolnick, 2008). The results are  shown in  Figs. 9–11 were we
lso display the corresponding proteins as obtained from the PDB
oordinates.

It must be remarked again that in  this work we simply have
hown a  way to  pass from the primary to  the tertiary structure of
he proteins assuming as known the corresponding order quater-
ions. These quaternions were obtained by  fitting the coordinates
f the alpha-carbon atoms obtained following our algorithm with
he corresponding ones stored at PDB. The problem of using the
rocedure here described in order to predict the tertiary structure
f proteins just from their amino acids sequences, which implies
o know a priori a  unique set of order quaternions that be adequate
or all proteins, is left for future studies. Despite this impor-
ant question, we  believe that the results we have obtained until
ow already give a  good idea about the usefulness of associating

mino acids with quaternions, this being the main objective of this
ection.
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5. Conclusions

In  this work we have presented a mathematical representation
of the standard genetic code. Starting from a set of four prime inte-
ger quaternions (one for each of the nucleotide bases that form
the mRNA molecules) and guided by a  heuristic diagram that we
propose for the evolution of the code, we introduce a  function
that assigns an integer quaternion (type quaternion) to each codon
(represented by a triplet of the prime integer quaternions) and pre-
serves the main properties of the genetic code. The diagram we
introduce for describing the evolution of the genetic code is based
in  pioneering ideas by Crick and incorporates, in  a way that resem-
bles the energy levels of an atom, the physical notion of broken
symmetry. The objects that we use for performing the mathemat-
ical representation of the code, the Hamilton quaternions, have as
remarkable properties the fact that they verify a non commuta-
tive algebra and their capability for describing spatial rotations. In
particular, this last property gives a  special character to the rep-
resentation in the sense that it allows to develop a  procedure for
going from the primary to  the tertiary structure of proteins. To this
effect we introduce a set of real quaternions (order quaternions)
that, together with the integer type quaternions, univocally identify
each amino acid of the proteins. Given an amino acids sequence we
present an algorithm that determines the coordinates of the alpha-
carbon atoms of the corresponding protein using the type and order
quaternions. However here we simply adjust the order quaternions
in  order to reproduce the experimental coordinates stored at PDB.
As already was  commented above, we postpone for future studies
the question of searching for a  set of order quaternions which be
common to  all the proteins, say the possibility of  approaching the
protein folding problem by using our procedure. In our criterion
this possibility distinguishes the above quaternionic representa-
tion of the genetic code among the diverse reported mathematical
representations.
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Appendix A. One and three letters convention for the 20
standard amino acids

Amino acid Three letter One letter

Alanine ala A
Arginine arg R
Asparagine asn N
Aspartic acid asp D
Cysteine cys C
Glutamic acid glu E
Glutamine gln Q
Glycine gly G
Histidine his H
Isoleucine ile I
Leucine leu L
Lysine lys K
Methionine met M
Phenylalanine phe F
Proline pro P
Serine ser S
Tyrosine tyr Y
Valine val V
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ppendix B. Hamilton quaternions

Quaternions were invented by mathematician William Rowlan
amilton (Hamilton, 1843, 1866) in 1843 as a generalization of the
omplex numbers with the aim of describing rotations in the space
n the same sense as complex numbers describe rotations in the
lane. Here we give for completeness some of the main properties
f quaternions. We concentrate ourselves into their definition, the
lgebra they fulfill and their relation with rotations in the space
Kuipers, 1999).

.1. Definition

A quaternion q is an ordered list  of four numbers: q =  (a0, a1,
2, a3) with a0, a1, a2, a3 ∈ R.  In the particular case in that the
our numbers are integers we  talk of integer quaternions (Lips-
hitz integers). Alternatively we  can introduce the placeholders i,  j,

 and represent the same quaternion as q =  a0 + a1i  + a2j  + a3k. The
laceholders i, j,  k verify the product rules

ii= −1  jj = −1  kk =  −1

ij=  k  jk =  i ki = j

ji= − k kj = − i  ik =  −j

ote that the placeholders play for quaternions a  role in some
ense similar to that of the imaginary unit i = √−1 for the com-
lex numbers. In this context the triplet (a1, a2,  a3) would be the
imaginary” part of the quaternion. Defining the (real and imag-
nary) quaternions qR =  (a0,  0, 0,  0) and qI = (0, a1,  a2,  a3), we can

rite: q =  qR +  qI.

.2. Algebra

Let s be a real number and q =  (a0,  a1, a2,  a3), p =  (b0,  b1,  b2,  b3)
nd r =  (c0,  c1,  c2, c3) quaternions, we  give here the definition of a
ew operations:

 Conjugation: eq = (a0, −a1, −a2, −a3).
 Scalar multiplication: sq  =  (sa0,  sa1,  sa2,  sa3).
 Addition of quaternions: q +  p =  (a0 + b0,  a1 +  b1, a2 + b2,  a3 +  b3).
 Multiplication of quaternions: qp =  r  where

c0 =  a0b0 − a1b1 − a2b2 − a3b3

c1 =  a0b1 + a1b0 + a2b3 − a3b2

c2 =  a0b2 − a1b3 + a2b0 + a3b1

c3 =  a0b3 + a1b2 − a2b1 + a3b0

Note that this product is  not commutative say, in  general,
qp /= pq.

 Norm: N(q) = qeq = eqq = a2
0 + a2

1 +  a2
2 + a2

3.
A quaternion q with N(q) =  1 is called a  unit quaternion.
An important property of the norm is that it is  multiplicative:
N(pq) =  N(p)N(q).

 Inverse: q−1 = eq/N(q)(q /= (0,  0, 0, 0)).

.3. Quaternions and 3D rotations

If N(q) = 1 then the matrix⎛
⎜

a2
0 + a2

1 + a2
2 + a2

3 0  0 0

2 2 2 2

⎞
⎟

q =⎜⎝ 0  a0 + a1 − a2 −  a3 2a1a2 − 2a0a3 2a1a3 +  2a0a2

0  2a1a2 + 2a0a3 a2
0 − a2

1 + a2
2 − a2

3 2a2a3 −  2a0a1

0  2a1a3 − 2a0a2 2a2a3 + 2a0a1 a2
0 − a2

1 − a2
2 + a2

3

⎟⎠
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is  a rotation matrix. The oriented axis of rotation Ee is given by

Ee  = Eq
|Eq| ,

with Eq = a1bex + a2bey +  a3bey where bex, bey and bez are versors along
the three Cartesian axis. The angle � that determines the rotation
around the axis Ee satisfies the following equation:

tan(�/2) =
p

a2
1 + a2

2 + a2
3

a0
.

Moreover, if we denote with R3 the 3 × 3 matrix that results when
in matrix Rq the first row and the first column are deleted, then we
can see that the quaternion q transforms by  rotation a vector Er0 =
x0bex + y0bey +  z0bez into the vector Er1 =  x1bex +  y1bey + z1bez according
with⎡
⎢⎣

x1

y1

z1

⎤
⎥⎦ = R3

⎡
⎢⎣

x0

y0

z0

⎤
⎥⎦ .
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