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Abstract

We study the problem of decoupling fermion fields in 1q1 and 2q1 dimensions, in interaction with a gauge field, by
Ž .performing local transformations of the fermions in the functional integral. This could always be done if singular large

gauge transformations were allowed, since any gauge field configuration may be represented as a singular pure gauge field.
However, the effect of a singular gauge transformation of the fermions is equivalent to the one of a regular transformation
with a non-trivial action on the spinorial indices. For example, in the two dimensional case, singular gauge transformations
lead naturally to chiral transformations, and hence to the usual decoupling mechanism based on Fujikawa Jacobians. In 2q1
dimensions, using the same procedure, different transformations emerge, which also give rise to Fujikawa Jacobians. We
apply this idea to obtain the v.e.v of the fermionic current in a background field, in terms of the Jacobian for an infinitesimal
decoupling transformation, finding the parity violating result. q 2000 Published by Elsevier Science B.V. All rights
reserved.

1. Introduction

Ž .We shall be concerned with ZZ A , the generating
functional for massless fermions in the presence of

Ž .an external gauge field A , in D Euclidean space-m

time dimensions:

Dw xZZ A s DDc DDc exp y d x c Euq iAu c ,Ž .H H
1Ž .

for the cases Ds2 and Ds3.
We start from the observation that any non-trivial,

regular, external gauge field coupled to fermions can
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always be written in terms of a pure gauge field. The
price to be paid is that the gauge field transformation
associated with this pure gauge field is necessarily a
singular one. It is then possible to perform a singu-
lar gauge transformation rendering the fermion ac-
tion free. The procedure is of course formal, in the
sense that singularities in the fermionic transforma-
tions make complicated to check whether the new
variables are strictly free and, moreover, whether
they induce a non-trivial Jacobian at the quantum
level.

These are indeed the reasons why these transfor-
mations cannot be naively used to decouple fermions
from an external gauge field. We shall see, however,
that there is a way to make sense of them. The clue
for this, lies in the observation that a singular gauge
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transformation for the fermions can be written in
terms of a regular transformation that is not the same
for all the spinor components. Namely, this regular
transformation does not change all components of
the spinor with the same phase factor and can also
mix different components.

To understand the statements above, consider the
case of 2 space-time dimensions. It is well-known in
this case that a local regular chiral transformation
decouples massless fermions from the gauge field 3.
When performed as a path-integral change of vari-
ables, the decoupling chiral transformation leads to a
free fermionic action but has an associated non-triv-

w x w xial Jacobian 1 . Its calculation 2 allows one to have
a complete control of the decoupled theory at the
quantum level. What is less known is that there is an
alternative way of decoupling two-dimensional mass-
less fermions and this through a singular gauge
transformation. As we shall see, one can find a
connection between both transformations, the regular
chiral one and the singular gauge one. Chiral trans-
formations suffer from the well-known anomaly phe-

w xnomenon, an effect of far-reaching consequences 3 .
These effects manifest themselves both in the opera-
torial and path-integral versions of the theory.

Concerning the path-integral framework, since the
transformed action is free, a non-trivial Jacobian
taking into account quantum effects is to be expected
and it should coincide with the chiral Jacobian since
both transformations left us with the same free ac-
tion.

This two-dimensional example shows that either
transformation, one that changes all spinor compo-

Ž .nents with the same singular phase and the other
changing each component with regular phases differ-
ing in signs, can be used to completely decouple
massless fermions from an external gauge field.

Once one is convinced that at least in Ds2
dimensions the two approaches are equivalent, how-
ever different their derivations seem to be, one can
try to make sense of singular transformations for
Ds3 and to determine what kind of equivalent
regular transformation emerges. This is the main
purpose of the present work. We shall see that in

3 By ‘‘local’’ we mean that the transformation relates fermionic
fields at the same spacetime point.

Ds3 dimensions, it is possible to obtain non pertur-
bative information through the connection of in-
finitesimal singular gauge transformations with regu-
lar ones, whose Jacobian can be calculated. In partic-
ular, using the procedure described above, we com-
pute the v.e.v. of the fermion current in an Abelian
gauge field background in Ds3, finding the well-

w xknown parity violating result 4,5 . In the present
case the parity anomaly stems from the non-triviality
of a Fujikawa Jacobian as it happens in even dimen-
sions with the axial anomaly and the chiral Jacobian.

The plan of the paper is as follows: we first
discuss in Section 2 the two-dimensional case in
which the connection between singular gauge and
regular chiral transformations is transparent. Inspired
by this example, we discuss in Section 3 the three
dimensional case, computing the Fujikawa Jacobian
for an infinitesimal regular transformation. We then
apply this result to the evaluation of the v.e.v. of the
fermion current in the presence of an external field.

2. The Abelian case in Ds2

This is of course the simplest case we may con-
sider. Since, for massless fermions, the fermionic
determinant may be exactly calculated, everything
may be checked on the safe ground of the exact
solutions. The first step in the construction of the
large gauge transformations is similar to one used in
the chiral transformation approach, namely, the de-
composition of the external gauge field A into them

sum of a gradient of a scalar w plus the curl of a
pseudoscalar s :

A sE wqe E s . 2Ž .m m mn n

Of course, the only pure gauge part of A is, at thism

point, the gradient term. We can however always
force the curl term to also look as a pure gauge, if
we define another scalar field r, such that

e E ssE r . 3Ž .mn n m

Ž .Taking the curl on both sides of 3 , we see that

e E E rsyE 2ssF , 4Ž .mn m n

Ž . Ž .where F x 'e E A x .mn m n
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Thus, the partial derivatives do not commute when
acting on r, except in the trivial case Fs0. We

Žshall also see that r is a sort of angular variable see
Ž . .17 below . Note that the singularities are in r, not
on E r which is the gauge invariant part of them

gauge field, and for which we shall assume a trivial
topology.

Ž . Ž .By using 2 and 3 , the fermionic action may be
written as

2S s d x c Euq iEu wqr c , 5Ž . Ž .HF

where the fermions are coupled just to a pure gauge.
ŽThis suggests the introduction of the singular be-

.cause of r decoupling transformations

c x sexp yi w x qr x x x ,Ž . Ž . Ž . Ž .Ž .

c x sx x exp i w x qr x , 6Ž . Ž . Ž . Ž . Ž .Ž .

which are the transformations we want to make
sense of. Of course we will ignore the w-dependent
part, since it is regular and produces no anomalous

ŽJacobian in an invariant regularization, which we
.shall assume . To understand the nature of the singu-

Ž .larity, let us consider again Eq. 3 , defining r.
Integrating both sides along a given curve CC, with
origin at a fixed point P of coordinates x , and endP
at the point of coordinates x, we see that

x
r x yr x s dj e E s . 7Ž . Ž . Ž .HP m mn n

xP

Ž .Of course, the value of r x will be, in general,
dependent on both P and CC. We shall put the point
P at infinity.

In order to avoid the existence of zero modes for
the Dirac operator, we shall assume that

dj e E ss0 8Ž .E m mn n
R™`

Žholds. The suffix R™` means that the circulation
.is to be calculated along a circle of infinite radius .

Ž . Ž .Indeed, because of eq, 2 , Eq. 8 is equivalent to

dj A s0 , 9Ž .E m m
R™`

and, by Stoke’s theorem, this is tantamount to requir-
ing the net magnetic flux to vanish,

d2 x e E A s0 . 10Ž .H mn m n

A non-zero total flux would imply the existence of
zero modes, and the vanishing of the determinant of
the Dirac operator in such a background. For a

Ž .non-trivial although topologically trivial A , them

function r will have singularities, since the circula-
tion of A along at least one finite closed curve willm

be non-zero.
Ž .That the transformations 6 are not justified

should be self-evident: the new fermionic fields will
have singularitites introduced by the transformation,
which then takes the original fields out of the initial
space. To make sense of these transformations, we
first consider an infinitesimal version of the singular

Ž .part of 6

dc x syih r x c x ,Ž . Ž . Ž .

dc x s ihc x r x , 11Ž . Ž . Ž . Ž .

where h is an infinitesimal parameter.
It is important to realize at this point that in the

Ž .action 5 it is not r but Eur what appears, and this
particular combination is regular. To see this, we just
need to use the identity

Eu r x q ig s x s0 , 12Ž . Ž . Ž .5

which is a consequence of the two dimensional Dirac
Žalgebra we shall see however that a similar relation

. Ž .exists in Ds3 . We want to remark that 12 relates
Ž . Ž .the regular derivatives of r to the also regular

derivatives of s . Then one realizes that, because of
Ž .12 , the effect of a chiral transformation is equiva-
lent to the effect of a non-chiral large gauge transfor-

Žmation. Note that we are not saying that the singular
field r is somehow transformed into a regular field

.by multiplying it by g .5
Ž .In this way, and just by the use of 12 , one

arrives to an equivalent representation of the action
Ž .5 ,

2S s d x c Euq iEuwqEug s c , 13Ž .HF 5
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which is of course the starting point of the usual
decoupling by a chiral transformation. We may then
forget the singular transformation induced by r in
favour of the regular one generated by yig s ,5
which is a chiral transformation. They may differ at
most in a transformation generated by j , a solution
of the free equation

Eujs0 . 14Ž .
Ž .Eq. 14 implies that each component of j has to be

either analytic or anti-analytic on the plane. Thus
they are constants. We have learnt that the only thing
we could miss by replacing the vector singular trans-
formation by the chiral regular one is the Jacobian
due to a general global chiral transformation: This is

Ž .a u-vacua term, which is zero because of 10 .
ŽThe regular infinitesimal transformations corre-

Ž .sponding to the singular ones, Eq. 11 , are

dc x syhs x g c x ,Ž . Ž . Ž .5

dc x syhc x g s x . 15Ž . Ž . Ž . Ž .5

Once one obtains this formula for the regular trans-
formation, one proceeds in the usual way to derive
the Jacobian, which will of course need regulariza-
tion. Note that the parameter of the transformation is
actually the same one uses when dealing with the
standard procedure involving anomalous chiral Jaco-

w xbians 1 .
We conclude this section by presenting the ex-

plicit form of the fields s and r, since in two
dimensions their expressions are particularly simple
and illuminating 4. For s , we have

1
2 < <w xs x sy d yln m xyy F y , 16Ž . Ž . Ž .H2p

where m is a constant with the dimensions of a mass.
Regarding r, it is also immediate to see that

1
2r x s d yQ xyy F y , 17Ž . Ž . Ž . Ž .H2p

x2Ž . Ž .where Q x sarg . It is obvious that r has
x1

discontinuities, associated with the branching point
of the angle function Q , while s does not suffer

4 Similar relations appear in different contexts, see for example
w x6 .

Ž . Ž .from those singularities. Eqs. 17 and 16 can be
collected into a single matrix equation

ys x q ig r xŽ . Ž .5

1
2s d y ln x yy q ig x yy F y .Ž . Ž .H 1 1 5 2 22p

18Ž .

Ž .Either from these relations, or even from 3 , we
may see that r and s satisfy the Cauchy–Riemann
equations, and are then the real and imaginary parts
of an analytic function:

E
fsrq is , fs0 . 19Ž .

E z
We may rephrase the equivalence between regular

chiral and large non chiral transformations by saying
that the effect of a gauge transformation generated
by r is equivalent to the one of a chiral transforma-
tion generated by the dual of r, which is s . The
term ‘‘dual’’ is understood here in the sense that

Ž .vortex-like configurations remember r is angular ,
Žare transformed into ‘‘Coulomb’’ configurations i.e.,

.the potential of a charge distribution .
Of course, this picture also holds the other way

around: a singular chiral pure gauge field is equiva-
lent to a regular non-chiral pure gauge field, and thus
it can be gauged away! The fermions are free in this
case. The reason for the ‘‘asymmetry’’ between these
case and the original one is that one usually regulates
the Jacobian using the operator Du . A more general
choice would put both cases on a similar footing.

3. The Abelian case in ds3

Ž .We consider again the generating functional 1 ,
Ž .but for the Ds3 case. Now the Hermitian g

matrices satisfy the relations

g g sd Iq i e g , 20Ž .m n mn mnl l

where I denotes the identity matrix.
The decomposition of A is now slightly differ-m

ent, since a general A configuration will have three
independent components. We shall use a scalar field
w and a pseudovector s ,m

A sE wqe E s . 21Ž .m m mnl n l
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Ž .The decomposition 21 apparently includes 1q3s
4 components on the right hand side. Note, however,
that A is insensitive to the transformationsm

s ™ s qE a , 22Ž .l l l

which reduce by one the actual number of compo-
nents. We can in fact impose a gauge condition on
s , the natural choice being the Lorentz conditionm

EPss0 , 23Ž .
which we shall adopt. We may again write the curl

Ž .term in 21 as the gradient of a scalar field r,

e E s sE r . 24Ž .mnl n l m

Of course r will have singularities
2 2 ˜e E E rsE EPsyE s syE s sF , 25Ž .lmn m n m m l l

˜whenever F 'e E A /0. Integrating along am mnl n l

curve starting at a point P at infinity, we may write
x

r x yr x s dj e E s . 26Ž . Ž . Ž .HP m mnl n l
xP

The fermionic action would then be

3S s d x c Euq iEu wqr c , 27Ž . Ž .HF

Ž .where the fermions are coupled to a singular pure
gauge field. The singular decoupling transformations
are then formally the same as for the two-dimen-

Ž .sional case 6

c x sexp yir x x x ,Ž . Ž . Ž .
c x sx x exp ir x . 28Ž . Ž . Ž . Ž .
We then introduce regular infinitesimal transforma-
tions in exactly the same way as in the two dimen-

Ž .sional case. The three dimensional analog of 12

Eu r x q isu x s0 . 29Ž . Ž . Ž .
Thus we are led to consider the infinitesimal regular
transformations

dc x sdsu x c x ,Ž . Ž . Ž .
dc x s c x dsu x , 30Ž . Ž . Ž . Ž .
which are the infinitesimal regular version of the

Ž .decoupling singular transformations 28 . In the pre-
sent Ds3 case, we shall only perform infinitesimal
decoupling transformations, which will allow us to

m w xcompute v.e.v. of fermion currents j s idZ A r

d A . We then need to consider a variation on A inm m

w xZZ A

w xZZ Aqd A

Ds DDc DDc exp y d x c Euq i Auqd Au c .Ž Ž .H H
31Ž .

Now, an infinitesimal change of fermion fields like
Ž .30 can be used to eliminate d A from the action.m

That change will, very likely, produce a non trivial
w xJacobian JJ A,d A ,ds

w x w x w xZZ Aqd A sJJ A ,d A ZZ A , 32Ž .ds

with

w x 3 w xJJ A ,d A sexp d x d A GG A . 33Ž .Hds m mž /
To obtain the connection between ds and d A ,m m

Ž .note that from the relation 21 between s and A ,m l

we can write

d AHs e E ds , 34Ž .m mnl n l

where H denotes transverse components. We shall
Ž .connect the Jacobian 33 associated with a general

Žgauge field variation d A i.e. including longitudinalm

. Hcomponents with that associated with d A ,m

w Hx 3 w xJJ Aqd A sexp d x d A AA A . 35Ž .H m mž /
To this end, note that d AH can be thought of as am

d A variation in a gauge where the correspondingm

longitudinal component is fixed to zero. Including
the 3 possible different choices for that component
gives then twice the general variation we were look-
ing for. Thus, a factor 3r2 should be included,

3w x w xGG A s AA A . 36Ž .m m2

Let us now compute the anomalous Jacobian as-
Ž .sociated with transformations 30 . Indeed, under

those transformations, the anomalous Jacobian re-
flecting the change in the fermionic integration mea-
sure is

JJ sJJ JJ ,ds c c

DDc™DDc JJ ,c

DDc™DDc JJ . 37Ž .c
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The Jacobians JJ and JJ may be evaluated, to thec c

first order in ds , as followsm

w xJJ sexp yTrdsu ,c

w xJJ sexp yTrdsu , 38Ž .c

where the trace is both functional and over the Dirac
indices. This trace, as it happens in the Ds2 case,
is ill-defined, and needs regularization. In general,
we shall have

w x 3 regTr dsu s d x ds x AA x , 39Ž . Ž . Ž .reg H m m

where
reg ² < < :AA x s tr x g f Du , L x , 40Ž . Ž .Ž .m m i

Ž .where L is1,2, . . . are the Pauli–Villars regula-i
Žtor masses, f is a regulating function which tends to

1 for large values of L and regulates UV diver-i
.gences , and tr denotes the trace over Dirac indices.

We shall choose a Pauli–Villars regulator of the
form

L L 1 11 2f Du , L s y , 41Ž .Ž .i ž /L yL Du qL Du qL2 1 1 2

Ž .where two regulators L is1,2 with same sign arei
enough to ensure that infinities are eliminated in the
limit L™`. Only one term in the trace survives ini
this limit,

i 1
reg 2AA x s" E e E s qOO , 42Ž . Ž .m mnl n l ž /24p L

Ž .where the " results from the common sign choice
for the L ’s. This yields, for the Jacobian JJ ,i c

i
3 2JJ sexp " d xds E A . 43Ž .Hc m mž /24p

The result for JJ is identical so that the totalc

Jacobian reads

i
3 2JJ sexp " d xds E A . 44Ž .Hds m mž /12p

We then see that there is a non-trivial Jacobian
Ž .associated with transformations 30 , the regular and

infinitesimal version of the singular gauge transfor-
Ž . Ž . Žmations 28 . In this sense transformations 28 or

Ž .their regular counterparts 30 are anomalous. Using

Ž . Ž . Ž .Eq. 33 – 36 we get from 44 the Jacobian associ-
ated with a d A variationm

i
3JJ sexp " d xe d A E A . 45Ž .Hd A mnl m n lž /8p

From this we compute the v.e.v. of the fermionic
current in the presence of an external gauge field,
obtaining

1
j s. e E A . 46Ž .m mnl n l8p

This result coincides with the one originally obtained
w xby Redlich 4,5 for the parity violating part of the

fermion current in a constant field strength back-
ground, using the Schwinger method for evaluating
the Euler–Heisenberg effective action. In our calcu-
lation, valid for arbitrary field strength, j arisesm

from a Fujikawa Jacobian. It should be noted that
Ž Ž ..our regularization prescription Eq. 41 neglects the

Ž w xparity conserving part which is absent in 5 because
.a constant field strength is considered .

It is worth remarking that the decoupling proce-
dure followed here differs from the one applied in
w x7 , since in that reference the decoupling transforma-
tions are non-local. Moreover, those non-local trans-

Žformations induce non-anomalous but nevertheless
.non-trivial Jacobians.

Also note that, both in 1q1 and 2q1 dimen-
sions, a mass term for the fermions is not invariant
under a regular transformation, what makes it diffi-
cult to relate the effects of singular and regular
transformations.

We conclude by stressing that both in 1q1 and
2q1 dimensions the method presented in this work
follows exactly the same steps: one first writes a
singular gauge transformation - a finite decoupling
one in 1q1 dimensions, an infinitesimal one in
2q1 dimensions. Then, one finds a regular equiva-
lent transformation on fermions which can be prop-
erly handled. Associated with these transformations
there are, at the quantum level, anomalous Jacobians
which, for the regular transformations, can be easily
computed. The Jacobians, associated with the chiral
anomaly in 1q1 dimensions and the parity anomaly
in 2q1 dimensions, correctly describe quantum as-
pects in both cases. This provides an alternative way
of understanding exactly soluble two dimensional
fermion models but also of computing relevant
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v.e.v.’s in higher dimensions. In fact, the same pro-
cedure described here could be applied to the calcu-
lation of the v.e.v. of the axial current in 3q1

Ždimensions through a decoupling transformation
analysis, which shall involve the chiral anomaly in

.3q1 dimensions , the v.e.v. of the fermion current
Žin 4q1 dimensions related to the 4q1 dimen-
.sional parity anomaly , etc., with the advantage that

the procedure is systematic and relies on the calcula-
tion of anomalous Jacobians whose regularization is
well-understood.
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