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Abstract. We study the one-particle von Neumann entropy of a system of N
hard-core anyons on a ring. The entropy is found to have a clear dependence
on the anyonic parameter which characterizes the generalized fractional statistics
described by the anyons. This confirms that the entanglement is a valuable
quantity for investigating topological properties of quantum states. We derive
the generalization to anyonic statistics of the Lenard formula for the one-particle
density matrix of N hard-core bosons in the large N limit and extend our results
by a numerical analysis of the entanglement entropy, providing additional insight
into the problem under consideration.
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In recent years an intensive research activity has been devoted to the study of entanglement
in many-body states. Initially, this effort was mostly motivated by the fact that
quantum correlated many-body states, which appear in various solid-state models, can
be valuable resources for information processing and quantum computation [1, 2]. The
theory of entanglement is now attracting even more attention because of its fundamental
implications for the development of new efficient numerical methods for quantum
systems [3]–[5] and for the characterization of quantum critical phases [6]–[8].

Generally speaking, entanglement measures non-local properties of composite
quantum systems and it can provide information additional to that obtained by
investigating local observables or traditional correlation functions. In this respect
entanglement might be a sensitive probe into the topological properties of quantum states.
A particularly significant quantity is the entanglement entropy SA, which is defined in a
bipartite system A ∪ B and quantified as the von Neumann entropy SA = −Tr ρA ln ρA

associated with the reduced density matrix ρA of a subsystem A. In two-dimensional
systems a firm connection between topological order and entanglement entropy has been
established in [9, 10], where the entanglement entropy was defined by spatial partitioning.
Recent studies on Laughlin states [11, 12] have considered the entanglement entropy
associated with particle partitioning [11, 12]. Also in this case, the entanglement entropy
turns out to reveal important aspects of the topological order in Laughlin states.

The two-dimensional case is of particular interest due to the existence of models whose
elementary excitations exhibit generalized fractional statistics. Anyons, the particles
obeying such statistics, play a fundamental role in the description of the fractional
quantum Hall effect [13]. Although this concept is essentially two-dimensional, anyons
can also occur in one-dimensional (1D) systems [14]–[20], where statistics and interactions
are inextricable, leading to strong short-range correlations. The 1D anyonic models have
proven useful for studying persistent charge and magnetic currents in 1D mesoscopic
rings [15]. This possibility and their own pure theoretical interest led us to investigate
the effects of the anyonic statistics on the entanglement entropy in the present letter.
A discussion about quantum statistics and entanglement in a two-fermion system was
introduced in [21] and extended to the case of two bosons in [22]. A mechanism of
spin-space entanglement transfer based on the indistinguishability of two particles was
proposed in [23] and shown to depend on the statistics (either fermionic or bosonic) of
the particles involved.

In this letter, we consider a system of N hard-core anyons on a ring which is the direct
anyonic generalization of the Tonks–Girardeau gas. It offers a convenient framework for
studying topological effects: the many-body ground state is known and its behaviour
under the exchange of two particles interpolates between bosons and fermions. We
carry out an analytical and numerical analysis of the dependence of the one-particle
von Neumann entropy on the statistical parameter which determines the symmetry of
the many-body state. We derive the large N asymptotic expression of the anyonic one-
particle density matrix. This asymptotic form generalizes the one obtained for hard-
core bosons [24, 25] and provides a one-parameter family of zero-temperature momentum
distributions interpolating between hard-core boson and free fermion distributions. Our
results show that particle entanglement depends in a non-trivial manner on the statistics
and, as such, may prove to be relevant to the study of topological properties of many-body
quantum states.
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Let us consider a 1D system of anyons confined on a ring of length L interacting with
each other via a repulsive δ-function potential. The model is defined by the Hamiltonian

H = −
NX

i

∂2

∂x2
i

+ γ
X

1≤i<j≤N

δ(xi − xj). (1)

The N -anyon wavefunction Ψθ(x1, x2, . . . , xN) exhibits a generalized symmetry under the
exchange of particles:

Ψθ(· · ·xi, xi+1 · · ·) = ei(θ−π)ε(xi+1−xi)Ψθ(· · ·xi+1, xi · · ·), (2)

where ε(x) = −1 (or 1) if x > 0 (x < 0), ε(0) = 0 and θ is the anyonic parameter
(−π < θ ≤ π), defined as in [15]. For θ = 0 this model describes free fermions while, for
θ = π, it reduces to the Lieb–Liniger Bose gas.

As first discussed in [16], the problem of 1D anyons with contact interactions allows for
an exact Bethe ansatz solution which shows that the Hamiltonian (1) has the same energy
spectrum as a 1D interacting Bose gas with anyonic statistics-dependent effective coupling
in the moving frame. Very recently, a detailed analysis of the low-energy properties of
this model has been carried out in [17]–[19]. It was shown that the low-temperature
thermodynamics of 1D anyons with a δ-function potential coincides with that of a gas of
ideal particles obeying Haldane statistics: the interplay between the anyonic parameter θ
and the coupling constant γ determines a continuous range of these generalized statistics.
These studies have shown that, for strong coupling, the dispersion relations of the anyon
gas remain linear in the thermodynamic limit and the finite size corrections of the ground
state energy found a central charge c = 1.

In the case of spatial partitioning, the subsystem A being a block of size l, conformal
field theory results [26, 27] predict the entanglement entropy (block entropy) SA(l) to
scale as SA(l) ∼ 1

3
ln l. A similar behaviour is predicted also in some class of strongly

random spin chains [28]–[30]. The dependence on the coupling constant and on the
anyonic parameter is expected to show up in the sub-leading terms which, to the best
of our knowledge, remain unknown. Below we will demonstrate that the one-particle
entanglement entropy Sθ

1(N) of N anyons depends on the anyonic parameter for finite N .
Furthermore, we will show that, in the asymptotic limit N À 1, the dependence of the
entanglement entropy on the anyonic statistics appears in the sub-leading term.

Let us consider the limit of hard-core anyons, i.e. γ → ∞. As recently shown
in [20], the Fermi–Bose mapping method for one-dimensional hard-core bosons [31] can be
generalized to an anyon–fermion mapping (AF). Imposing the exclusion principle, i.e. the
vanishing of the many-body wavefunction when two particles occupy the same position,
the AF mapping reads [20]

Ψθ
0(x1, . . . , xN) =

"
Y

1≤i<j≤N

A(xi − xj)

#
ΨF

0 (x1, . . . , xN), (3)

where ΨF
0 (x1, . . . , xN) is the N free fermion ground state function and A(xi−xj) = eiθ for

xi < xj and A(xi − xj) = 1 for xi > xj . In the following, we restrict ourselves to the case
where N is odd, which corresponds to a non-degenerate ground state. The topological
properties of the N -anyon wavefunction are encoded in the factor

Q
1≤i<j≤N A(xi, xj)

which gives the statistical phase eiθP resulting from the P exchanges needed for the
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particle positions to be brought to the ordering 0 ≤ x1 ≤ x2 ≤ · · · ≤ xN ≤ L. The
boundary periodic conditions of the wavefunction allow in general an overall phase, coming
for example via a non-zero magnetic flux penetrating the ring [15]. However, in order
to simplify some analytical manipulations and make the comparison between different
statistics more direct, we require the wavefunction to be single-valued Ψθ(x1, . . . , xi +
L, . . . , xN) = Ψθ(x1, . . . , xi, . . . , xN ). This condition restricts the anyonic parameter to
being an integer multiple of 2π/(N −1), θ = (2π/(N − 1))n. Since the values of θ become
dense in the limit N → ∞ in which we are interested, this choice will not affect the
generality of our results.

The definition of criteria of entanglement between systems of identical particles is
in general a subtle issue (see for example [21, 32]) since the symmetry properties of the
many-body wavefunction forbid the occurrence of factorized states. For a pure state of
two particles, the Von Neumann entropy of the reduced density matrix of one particle has
been shown to remain a good entanglement measure [22]. The same measure has been
used to compare the entanglement between two bosons and two fermions trapped in a
1D harmonic potential [33] and to study the entanglement properties of some fractional
quantum Hall liquids [11, 12, 34].

Inspired by these results, we are interested here in computing the entropy Sθ
1(N) =

−Tr(ρθ
N ln ρθ

N ), where ρθ
N (x − x0) is the one-particle reduced density matrix:

ρθ
N (x − x0) =

Z L

0

. . .

Z L

0

NY

i=2

dxi

£
Ψ̄θ(x, x2, . . . , xN )Ψθ(x0, x2, . . . , xN)

¤
, (4)

normalized such that ρN (0) = 1. The von Neumann entropy measures the uncertainty in
attributing a state to the subsystem under consideration. In our case, its value is directly
related to the momentum state occupation distribution. Indeed, using the fact that the
one-particle density matrix is diagonal in the momentum space, the entanglement entropy
reads

Sθ
1(N) = −

∞X

n=−∞
cθ
N (n) ln cθ

N(n), (5)

where cθ
N(n) = 1/L

R L

0
ρθ

N (x) cos(2π/Lnx) is the momentum occupation in the ground

state. We can read cθ
N(n) as the probability of the one-particle subsystem being in the

state with momentum kn = 2π/Ln. For free bosons, for example, one has cfrbos
N (n) = δn,0

and the one-particle entanglement entropy is identically zero. For free fermions (θ = 0),
instead, the one-particle subsystem occupies with the same probability c0

N (n) = 1/N the
states with momentum kn, where −(N − 1)/2 ≤ n ≤ (N − 1)/2. This leads to the well
known result for free fermions S0

1 = ln N .
In the limit of infinite interaction, the statistical effects are greatly suppressed, as

can be seen from the anyonic wavefunction (3) which reflects the fundamental similarities
between strongly interacting anyons and non-interacting fermions in one dimension. The
mapping (3) between Fermi and anyon eigenfunctions preserves all scalar products and
thus the energy spectrum and all the probability distributions involving the norm of the
wavefunction are identical. Nevertheless, cθ

N(n) strongly depends on θ, as they do not need
to be in different momentum states. This is apparent in the drastic difference between
the momentum distributions of the free fermions and the hard-core bosons.
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Analytical expressions of cπ(n) for small (|n| ¿ 1) and large (|n| À 1) momenta have
been found in the thermodynamic limit [35]–[39]. These results show a |n|−1/2 singularity
at n = 0, reflecting the tendency towards Bose–Einstein condensation. The corresponding
result for finite N is more cumbersome. Using the N À 1 asymptotic result for ρπ(x) [24],

ρπ(x) ∼ ρ∞N−1/2| sin πx/L|−1/2, (6)

with ρ∞ = G(3/2)4/
√

2 and G(z) the Barnes G-function6, cn(N) for N À n was shown
to behave like [25]

cπ
n(N) ∼ ρ∞√

π

Γ(n + 1/4)

Γ(n + 3/4)
N−1/2, (7)

where Γ(z) is the standard Gamma function. We generalized the above results to anyonic
statistics. Representing the density matrix (4) in terms of a Toeplitz N − 1 × N − 1
determinant,

Nρθ
N (x) = detN−1 [φk,l] (x) (8)

where

φk,l =

Z 2π

0

ds
2ei(k−l)s

π
A

µ
s − 2πx

L

¶
sin

³s

2
− πx

L

´
sin

³s

2

´
, (9)

we were able to compute the asymptotic form of ρθ
N using the Fisher–Hartwig

conjecture [40, 41]. Note that the above representation is consistent with the requirement
ρθ

N (x + L) = ρθ(x). For N À 1 the one-particle anyon density matrix reads

ρθ
N (x) ∼ (2N)−1/2−2β(θ)2G

µ
1 +

θ

2π

¶2

G

µ
2 − θ

2π

¶2

× e−i2β(θ)(Nπx/L−1/2)
¯̄
¯sin

³πx

L

´¯̄
¯
−1/2−2β(θ)2

(10)

where β(θ) = θ/(2π) − 1/2 for 0 ≤ θ ≤ π and β(θ) = −β(−θ) for −π ≤ θ ≤ 0. We see
that equation (6) is recovered for θ = π. Details of the derivation and a more complete
discussion of this result will be presented elsewhere [42]7. In the case of the generating
function (9) the analysis of the behaviour of the Toeplitz determinant is subtle and the
Fisher–Hartwig formula remains a conjecture. The validity of equation (10) has thus to
be compared to the numerical evaluation of the determinant (8) for finite N . For small θ,
the convergence to the asymptotic result is quite slow and the formula provides a rough
estimate for finite N , as can be seen for N = 121 and θ = π/60 (figure 1(a)). The
similarity increases greatly with θ and the agreement is already perfect with θ = π/2
for N = 61 (figure 1(b)) and for θ = 9π/10, close to hard-core bosons, for N = 21
(figure 1(c)). From equation (10), one can see that, compared to the bosonic case, the main
effect of the anyonic statistics is to introduce an oscillating term (figures 1(b), (c)). It is
interesting to note that the same term characterizes in general the one-dimensional anyonic
systems, as has been shown for free anyons by means of field theory methods [44, 45]. The

6 G(z + 1) = (2π)z/2 exp(−(z + (γE + 1)z2)/2)
Q∞

k=1(1 + z/k)k exp(−z + z2/(2k)) where γE is the Euler constant.
7 We have detected an error in the derivation the sine exponent thanks to comparison with the findings of [43].
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(a)

(b)

(c)

Figure 1. Comparison between the numerical computation (red/dark grey curve)
and asymptotic equation (black curves) for the one-particle anyon density for
(a) N = 121, θ = π/60, (b) N = 61, θ = π/2 and (c) N = 21, θ = 9π/10.

oscillations produced by the anyonic statistics can produce measurable effects in current
noise experiments in fractional quantum Hall fluids and can be used to probe the fractional
statistics in topological liquids [46]. Further, the equation (10) provides also the explicit
dependence on the anyonic parameter of the factor in front of the x-dependent terms. In
general this factor cannot be determined by field theory approaches.

The Fourier coefficients of (10) can be computed analytically [47]. The asymptotic
behaviour of cθ

n(N) for N À n reads

cθ
n(N) ∼ 1

π
N−1/2−2β(θ)2G

µ
1 +

θ

2π

¶2

G

µ
2 − θ

2π

¶2

× Γ
¡
1/2 − 2β(θ)2

¢
sin

¡
π(1/2 + 2β(θ)2

¢

× Γ(n0 + 1/4 + β(θ)/4 + β(θ)2)

Γ(n0 + 3/4 + β(θ)/4 + β(θ)2)
(11)

where n0 = n+bβ(θ)(N+1/2)c with bxc being the integer part of x. The exact momentum
distribution has been obtained numerically by performing the Fourier transform over
the Toeplitz determinant. Note that the moment distributions gives a total currentP

n ncθ
n(N) = 0, as expected in the case θ = (2π)/(N − 1)n under consideration [15].

A comparison between the formula (11) and the numerical results is shown in figure 2.
From equation (10), the number of particles occupying the low-energy state (n0 = 0)
scales as Nα(θ)−1, thus ruling out the possibility of anyon condensation predicted in the
case of free anyons [45]. For n À N , the bosonic momentum distribution cπ

n decays like
n−4 [25, 48, 49]. We expect this to be true for anyonic statistics as well (see figure 2).
Under this assumption, the terms cθ

n(N) for n À N will not contribute significantly to
the entanglement entropy. The main contribution to Sθ

1(N) can be extracted by using
equation (11) in its range of validity. This gives roughly a ∝ ln N leading order behaviour
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Figure 2. cθ
n(N) obtained from numerical analysis and equation (11) (black line)

versus n for θ = π/2 and N = 61. The inset is the same plot for n > 0 on
a log–log scale (red/dark grey curve), while the dashed curve is a visual guide,
proportional to n−4.

Figure 3. (a) Entanglement entropy as a function of N for θ = π (plus signs),
θ = π/2 (dots), θ = π/10 (crosses) in log–linear scale, fitted according to
equation (12). (b) f(θ) obtained by numerical integration (plus signs) and the
corresponding sine fit (plain line).

for the large N asymptotics. However, the numerical results show that, for finite N , the
crossover region, between the asymptotic (11) and the power law, is important, especially
near the fermionic point θ = 0 (see figure 2).

We have determined numerically the value of the one-particle von Neumann entropy
Sθ

1(N) for different values of N (figures 3(a), (b)). We were able to explicitly verify
that, in the proximity of the bosonic point, the one-particle subsystem occupies with high
probability the momentum states with n0 ≈ 0. For instance, if we consider N = 61 and
−4 ≤ n0 ≤ 4, this probability is ∼0.8 for θ = π and ∼0.3 for θ = π/2. As already said
before, the entanglement entropy measures the uncertainty of attributing a state to the
subsystem. We thus expect the entanglement entropy to decrease from free fermions to
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hard-core bosons. The numerical data (see figure 3) suggest the entanglement entropy
to scale as the logarithm of the number of particles plus some negative correction f(θ)
depending only on θ (f(0) = 0). The deviation from this behaviour is below 1% already
for N > 81 and it is found to be well fitted by the power law function ∝ N−1/2. On the
basis of the above discussions we have fitted our data with the following guess:

Sθ
1(N) ≈ ln N + f(θ) +

κ(θ)√
N

. (12)

We have checked that, among the possible choices, the above scaling formula is the
one which fits better the numerical results. Equation (12) is reminiscent of the scaling
behaviour of the block entropy SA(l) where the anyonic dependence is expected to appear
in the sub-leading order. The anyonic-parameter-dependent function f(θ) was determined
numerically for system sizes for which the last term of this expansion cannot be neglected.
However, in the thermodynamic limit, only f(θ) will remain relevant in our discussion.
The results of our numerical analysis are displayed in figure 3, where panel (a) shows
the data as fitted by equation (12) for three values of the anyonic parameter and panel
(b) is the resulting f(θ). This function decreases monotonically from free fermions to
hard-core bosons where it respectively takes the values f(0) = 0 and f(π) ≈ −0.3, and
from figures 3(b) it can be seen to be well fitted by a sine function.

To conclude, we have investigated analytically and numerically the one-particle von
Neumann entropy and the momentum distributions of N hard-core anyons on a ring. We
have determined the asymptotic expressions for the one-particle density matrix and for
the momentum distributions. Numerical results show the entanglement entropy exhibits
a simple and non-trivial dependence on the anyonic parameter, making it a suitable tool
for studying the topological properties of many-body quantum states.

The authors thank I Carusotto, A Minguzzi, A Recati and P Scudo for helpful discussions.
In particular the authors thank P Calabrese for important suggestions. RS is also grateful
for the financial support by ANR (05-BLAN-0099-01).
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