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Abstract
We describe coherent states and associated generalized Grassmann variables
for a system of m independent q-boson modes. A resolution of unity in terms
of generalized Berezin integrals leads to generalized Grassmann symbolic
calculus. Formulae for operator traces are given and the thermodynamic
partition function for a system of q-boson oscillators is discussed.

PACS numbers: 05.30.Pr, 03.65.Aa, 02.30.Cj

1. Introduction

Exclusion statistics is one possible way to generalize the pattern of bosonic or fermionic
particles [1]. A creation operator a† can create at most k − 1 particles at a given site (or mode)
by stating k-nilpotency: acting on a vacuum |0i,

(a†)n|0i 6= 0 for n = 0, . . . , k − 1

(a†)k|0i = 0. (1)

Standard bosons are recovered in the limit k → ∞, while the fermionic Pauli exclusion
principle corresponds to k = 2. Other ways to generalize ordinary statistics include the
braiding symmetrization of the many-body system wavefunction [2], the fractional exclusion
principle [3] and modifications of the algebra of commutation/anticommutation relations of
creation and annihilation operators [4, 5].

Amongst proposals of systems satisfying integer exclusion statistics with finite k > 3, we
are interested in this work in the so-called k-nilpotent q-boson particles [5]. We first review
the operator formulation of quantum mechanics for one degree of freedom and for a system
of m independent q-boson modes. Then we discuss the construction of coherent states, for
which it is necessary to introduce k-nilpotent para-Grassmann numbers [6] (cf Grassmann
numbers in the fermionic case). The order of nilpotency k is usually related to commutation
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rules for para-Grassmann numbers [7] (in a similar way that fermionic k = 2 nilpotency leads
to anticommuting Grassmann numbers). Ordering issues are then important and have made
the manipulation of coherent states cumbersome. Several authors have dealt with this problem
[7–12] generating a variety of conventions and finding unavoidable difficulties, in particular
when dealing with multiparticle states.

We explore in this work the consistency of using non-standard para-Grassmann
commutation relations and a normal order convention [13, 14], highly simplifying the
operations but still retaining the essence of exclusion statistics. We then write down a
para-Grassmann symbolic expression for the trace of operators and use it to study the
thermodynamics of q-boson systems. The partition function for non-interacting systems can
be readily computed, alongside with derived quantities like the mean free energy and the
specific heat, observing that k-nilpotent bosons interpolate the features of Fermi–Dirac and
Bose–Einstein statistics.

The present formalism could be useful in the study of strongly correlated systems in
low dimensions, where effective quasi-particles with exclusion statistical properties seem to
be ubiquitous. The constraints on available states for spin S particles, or for electrons in t-J
models, or for fermionic and bosonic occupation in representations of spin operators [15],
impose rules on statistical distributions which often manifest in fractional statistics. Notably,
the fractional exclusion statistics characterized by Haldane [3] is realized in several strongly
correlated systems in one and two dimensions like the Haldane–Shastry spin chain [16] and
generalizations [17], and the fractional quantum Hall effect [18] (where fractional exclusion
statistics is consistent with anyon braiding statistics [2]). In one-dimensional conformal field
theories, the underlying Yangian symmetry allows for the construction of a basis of quasi-
particle excitations which also have been proved to obey exclusion statistics [19].

Other approaches to exotic statistics, not mentioned above, have been developed. One
should recall the concept of quons [20] as particles interpolating between bosons and fermions,
and the fact that nilpotent particles canalso be described by q-fermions [21] (see for instance
[22] for a comparison of different approaches). Because of their potential utility, these proposals
receive current attention in relation with strongly correlated systems [23–25].

2. q-boson operators

The origin of q-bosons finds its roots in a Schwinger-like bosonic representation of the
quantum deformed SU (2)q generators [5], where q is a real deformation parameter; later, the
consideration of q as a rational phase [8] led to nilpotent operators.

We consider in this work a set of m, k-nilpotent, independent q-boson modes ai, a†
i

(i = 1, . . . , m). For each mode [8, 10, 12], ai is an annihilation operator and a†
i , its Hermitian

conjugate, is the corresponding creation operator satisfying the q-commutation relations

aia
†
i − qa†

i ai = q−Ni , (2)

and conjugate relations

aia
†
i − q−1a†

i ai = qNi , (3)

where q = ei π
k , k ∈ N, k > 2, and Ni is a number operator that, from (2), can be related with

ai, a†
i by

a†
i ai = qNi − q−Ni

q − q−1
. (4)
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From a vacuum vector |0ii annihilated by ai, one can construct a Fock space generated by the
orthonormal set

|nii =
¡
a†

i

¢ni

p
[ni]q!

|0ii, ni = 0, . . . , k − 1, (5)

where [n]q stands for the q-deformation of integer numbers

[n]q ≡ qn − q−n

q − q−1
(6)

and the factorial is defined by [0]q! ≡ 1, [n]q! ≡ [n]q[n − 1]q · · · [1]q. In this representation,
one can readily express the action of the basic operators

Ni|nii = ni|nii,
a†

i |nii = p
[ni + 1]q|ni + 1i, (7)

ai|nii = p
[ni]q|ni − 1i.

With q = ei π
k being a rational phase, one has

[n]q = sin(nπ/k)

sin(π/k)
(8)

so that [k]q = [0]q = 0 and the Fock space Hi ∼ C
k is finite dimensional, with

(ai)
k =

³
a†

i

´k
= 0.4 Due to the symmetry [n]q = [k−n]q, one has [n]q![k−1−n]q! = [k−1]q!

for any n = 0, . . . , k − 1. Relations (7) are conveniently seen as finite dimensional matrix
analogues of the usual harmonic oscillator (Heisenberg–Weyl) algebra, with q-deformed
integers [n]q instead of integers n.

From the deformed algebra (2), note that one recovers the usual commutation relations

[Ni, ai] = −ai,
£
Ni, a†

i

¤ = a†
i , (9)

reflecting that Ni is indeed the number operator for the ith mode. It is simple to recover q-
commutation relations (3) from the matrix representation, by noting that [n+1]q = q[n]q+q−n.

From the above facts, the k-nilpotent q-bosons describe a simple system exhibiting
exclusion statistics. They may be seen as hard core particles, with k regulating the core
hardness: they combine properties of bosons, but carry in their very formulation a maximum
occupation constraint. It is apparent that in the limit k → ∞ (i.e. q → 1) one recovers standard
bosons. However, the case k = 2 does not describe fermions (see (2)).

Regarding the commutation properties for different modes, we follow the criteria that
q-bosonic operators corresponding to different degrees of freedom commute [26, 27, 22],

[ai, a j] = £
a†

i , a†
j

¤ = £
ai, a†

j

¤ = 0 for i 6= j. (10)

This bosonic behaviour is set even for k = 2, another departure from fermions in our treatment.
The Fock space of the system is thus simply H = ⊗iHi. In comparison with standard bosons,
recovered in the limit q → 1, one must stress that a unitary transformation U (m) of q-bosons
does not render q-bosonic modes [27].

3. Coherent states—single particle case

We discuss in this section one single mode i. Coherent states in Hi may be defined as
eigenvectors of ai; however, one readily notes that the only eigenvector of ai in the finite

4 Much has been done [5, 26] for real q > 0, a case with very different features: [n]q forms an unbounded monotonic
sequence and the creation and annihilation operators are not nilpotent.
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dimensional space Hi is the vacuum, as it happens for fermionic operators. The way out is
to enlarge the Hilbert space by allowing linear combinations with coefficients that go beyond
the complex numbers. One is lead to introduce k-nilpotent para-Grassmann numbers [6], in
the same way that Grassmann numbers are needed to deal with fermionic coherent states [28].
Consider an indeterminate θi and a formal vector

|θi) =
k−1X
ni=0

αniθ
ni
i |nii, (11)

where αni are complex coefficients (we introduce the notation ‘| )’ [13] to distinguish this
expression from proper vectors in Hi), and evaluate

ai|θi) = θi

k−2X
ni=0

αn+1θ
ni
i

p
[ni + 1]q|nii. (12)

The conditions for having an eigenvector are

αni+1 = αni/
p

[ni + 1]q (13)

and

θ k
i = 0, (14)

imposing the k-nilpotency condition. One then obtains

|θi) =
k−1X
ni=0

¡
α0/

p
[ni]q!

¢
θ

ni
i |nii (15)

satisfying

ai|θi) = θi|θi). (16)

Next, one introduces formal dual vectors by conjugation: consider θ̄i an indeterminate
conjugate to θi and dual vectors hni| in H∗

i to define

(θi| =
k−1X
ni=0

hni|
¡
ᾱ0/

p
[ni]q!

¢
θ̄

ni
i (17)

so that

(θi|a†
i = (θi|θ̄i. (18)

The action of (θi| on |θi) gives a polynomial in θi, θ̄i

(θi|θi) =
k−1X
ni=0

|α0|2 θ̄
ni
i θ

ni
i

[ni]q!
(19)

which is not a real number and cannot be normalized; we adopt the convention α0 = 1. We
remark that, up to this stage, the construction includes standard Grassmann numbers for k = 2.

Commutation relations and conjugation

Before prescribing an iterated integration rule over θi and θ̄i (see below), one needs a
commutation relation θiθ̄i = αθ̄iθi to be able to re-order general monomials. One usual criteria
is to ask for nilpotency of linear combinations χi = ρθi + σ θ̄i with complex coefficients ρ, σ

[7], leading as the simplest solution for α a primitive complex root of one of order k, for
instance α = ei 2π

k = q2,

θiθ̄i = ei 2π
k θ̄iθi. (20)
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This is the usual choice in the literature [8, 13, 12]. Note that only for k = 2 one finds that
χi and χ̄i satisfy the same commutation relations as θi and θ̄i (anti-commuting fermionic case,
with real α = −1). For k > 3, χi, χ̄i will not have the same commutation properties (20) that
θi, θ̄i have. Then, in contrast with Grassmann numbers, a linear change of para-Grassmann
generators with complex coefficients cannot preserve both k-nilpotency and commutation rules
(20) [11]. Moreover, relation (20) has a serious drawback for k > 3: it does not support the
usual conjugation of products (with the property (θθ 0) = θ 0 θ) [12, 14]. This has led some
authors to avoid the use of conjugation [12] or to adopt a non-standard conjugation rule for
products [13, 14].

We find no case in enforcing nilpotency under complex linear transformations while
commutation rules of the resulting combinations are drastically different from that of the
original ones. In this work, we consider instead the relation

θiθ̄i = αθ̄iθi (21)

with α ∈ R [14], with the advantage of supporting standard conjugation5.
We remark again that with the usual commutation relations (20) one cannot make a linear

transformation of para-Grassmann generators into para-Grassmann generators, in the sense
of preserving nilpotency and commutation relations. In the multi-particle case, this excludes
the use of Fourier transformations or any linear change of basis and makes it impossible to
map interacting modes into decoupled ones, even for quadratic Hamiltonians. Our choice (21)
is neither better or worse in this sense, but allows for a consistent definition of conjugation
and para-Grassmann symbolic calculus. Moreover, it leads to notable simplifications in the
applications.

Algebraic structure

The construction discussed above contains the following algebraic structures.
First an algebra C[θi, θ̄i]/hθ k

i , θ̄ k
i , θiθ̄i − αθ̄iθii (quotient of the non-commutative free

algebra of polynomials in θi, θ̄i with the two-sided ideal generated by θ k
i , θ̄ k

i and θiθ̄i − αθ̄iθi ),
which is a vector space of dimension k2 over the field C with a closed product of vectors. This
will be called [14] the complex para-Grassmann algebra PGk,α , characterized by a nilpotency
order k > 2 and a real commutation coefficient α (PG2,−1 is the standard Grassmann algebra).
Note that it is also a ring, with the sum and product of polynomials.

Second, the free module of the orthonormal set {|nii} in Hi over the ring PGk,ω. This is
an extension of the Hilbert space Hi, the linear span of a basis over coefficients (numbers) in
PGk,α that are more general than complex numbers, and will be called

Ki =
⎧⎨
⎩|v) =

k−1X
ni=0

γni |nii such that γni ∈ PGk,α

⎫⎬
⎭ . (22)

We will not distinguish left or right multiplication of PGk,ω numbers with vectors, so Ki is
technically a bimodule.

As it is usual in the fermionic case, one can use functional analysis language calling
θi, θ̄i para-Grassmann variables and writing the PGk,α algebra elements as functions of such
variables

f (θi, θ̄i) =
X
n,n0

fnn0θn
i θ̄n0

i , (23)

5 We still call θi, θ̄i complex para-Grassmann numbers. As stated in the introduction, we will follow a normal order
prescription [13] that produces expressions not depending on the value of α, and working fine even for α = 1
(commuting para-Grassmann numbers).
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where the conditions θ k
i = θ̄ k

i = θiθ̄i−αθ̄iθi = 0 ensure that an arbitrary function is represented
by k2 complex coefficients (the form in (23) may be called an expansion of f in the anti-Wick
ordered basis of PGk,α). These functions are called holomorphic (antiholomorphic) when only
powers of θi (θ̄i) are present. Conjugation in PGk,α is then written as

f ∗¡θi, θ̄i
¢ =

X
n,n0

f̄nn0θn0
i θ̄n

i (24)

where f̄nm stands for complex conjugation. The ∗-algebra property ( f g)∗ = g∗ f ∗ is fulfilled
[14].

A sesquilinear form is naturally defined on Ki by the extension of the inner product in Hi:
given |ν) = Pk−1

ni=0 νni (θi, θ̄i)|nii and |η) = Pk−1
ni=0 ηni (θi, θ̄i)|nii, we define

(η|ν) =
k−1X
ni=0

η̄ni (θi, θ̄i)νni (θi, θ̄i). (25)

This is not an inner product (positivity does not make any sense), but is useful to write the
projections of elements in Ki onto the basis (5). According to previous notation,

hni|ν) = νni (θi, θ̄i),

(η|nii ≡ hni|η)∗ = η̄ni (θi, θ̄i). (26)

In particular,

hni|θi) = ¡
1/

p
[ni]q!

¢
θ

ni
i . (27)

Integration

Following Berezin’s seminal work on Grassmann integration, one defines a linear form
on PGk,α with integral-like properties. This, and a whole proposal for para-Grassmann
integral and differential calculus, has been done before using the commutation relation (20)
[6, 8, 9, 29]. We will not pursue here such a complete program, that would presumably be
simpler for PGk,α [31]; we just quote the basic Berezin-like integration rules for anti-Wick
ordered basis elements:Z

dθiθ
n
i θ̄n0

i = N δn,k−1θ̄
n0
i ,Z

θn
i θ̄n0

i dθ̄i = θn
i N δn0,k−1, (28)

where N is a positive normalization constant, and we stress that θi and θ̄i act as independent
variables under integration. ThenZ

dθi θ
n
i θ̄n0

i dθ̄i = N 2δn,k−1δn0,k−1 (29)

can be seen as a double iterated integral. The order of the factors and differentials must be cast
as it is in (29) before using the recipe. In what follows, we set for convenience [8, 12]

N = p
[k − 1]q!. (30)
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Completeness

The completeness of the coherent states construction is expressed as a ‘resolution of unity’ in
Hi. One has to make sense ofZ

dθi |θi)μi(θi, θ̄i)(θi| dθ̄i = I : Hi → Hi, (31)

where μi(θi, θ̄i) may be seen as a measure weight for the integral. (Because of ordering issues,
it is important to set a position for the weight factor; we write it for convenience in the middle.)

Given any two vectors |ui = Pk−1
ni=0 uni |nii, |vi = Pk−1

ni=0 vni |nii in Hi, we then ask
μi(θi, θ̄i) to fulfil

hv|
Z

dθi |θi)μi(θi, θ̄i)
¡
θi| dθ̄i |u® = hv|ui (32)

which amounts toZ
dθi

θ
ni
ip

[ni]q!
μi(θi, θ̄i)

θ̄
n0

i
iq£
n0

i

¤
q!

dθ̄i = δnin0
i
. (33)

Writing μi(θi, θ̄i) in the general anti-Wick form (23), the expression under integration is anti-
Wick ordered and may be solved with the rules (29). The weight factor must contain only
terms with equal powers of θi and θ̄i so as to produce non-vanishing results only for ni = n0

i.
One obtains

μi
¡
θi, θ̄i

¢ =
k−1X
p=0

1

[p]q!
θ

p
i θ̄

p
i (34)

as the unique (anti-Wick ordered) kernel making sense of (31).
Equation (31) singles out the auxiliary role of para-Grassman numbers and module Ki

vectors in our construction: when computing matrix elements in Hi, module vectors are
projected onto Hi and the expression leads to compute a complex valued integral on PGk,α .
Namely para-Grassmann numbers are ‘integrated out’ to recover results in the q-boson Fock
space, as it happens with standard Grassmann numbers in fermionic theories.

Anti-normal order prescription

Once we set μ(θi, θ̄i) as a measure weight, the use of the identity resolution (31) may lead
us to integrals where the factors of θi and θ̄i are not anti-Wick ordered. Following [13, 14],
we define a linear anti-normal order prescription : :, moving in each term under : : all θi

factors to the left and all θ̄i factors to the right, without using commutation rules.
This prescription is useful in several situations. First, the weight factor in (34) can be

written as

μi
¡
θi, θ̄i

¢ =: eθi θ̄i
q : (35)

where the q-deformed exponential is defined, as it is usual in q-deformed algebras, by

ex
q =

k−1X
p=0

1

[p]q!
xp. (36)

Second, one can define non-ambiguous Toeplitz operators from a PGk,α-valued symbol:
given a function φ(θi, θ̄i), one considers homomorphisms in Hi of the form

Tφ(θi,θ̄i)
=

Z
dθi : |θi)μi(θi, θ̄i)φ(θi, θ̄i)(θi| : dθ̄i : Hi → Hi. (37)

7
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In this notation, these are generically called anti-Wick or contravariant operators [30] with
symbol φ(θi, θ̄i) and are intimately related to Toeplitz operators [14]. For bosonic coherent
states |zi associated with Lie algebras [32], such operators are ‘diagonal’ in the coherent states
basis [33]; once applied to Fock space states, and projected onto the coherent state basis,
they properly become Toeplitz operators mapping holomorphic square integrable functions
on a Kahler manifold onto themselves, through a Bargmann projection. They implement the
Berezin–Toepliz (or coherent states) quantization of the classical function φ(z, z̄).

The same structure may be realized here; indeed, ordering ambiguities and the conflict
between para-Grassmann conjugation and commutation relations in (20) prevent a consistent
Berezin–Toepliz quantization of a para-Grassmann algebra. The ordering problem was solved
in [13] by introducing an anti-Wick ordering prescription, but still with commutation relations
as in (20) requiring a non∗-algebra conjugation. More recently [14], the consideration of
k-nilpotent para-Grassmann algebras with independent (real) α-commutation relations as in
(21) allowed us to construct a well-defined reproducing kernel (expressing the Bargmann
projection and therefore the resolution of the identity) and Toeplitz operators. It is notable
that the q-boson operators ai and a†

i can be written as the Berezin–Toeplitz quantization of the
simple symbols θi and θ̄i, respectively [13]. These recent papers are the basis for our present
approach.

A sesquilinear form is naturally defined in the para-Grassmann algebra [14] as

( f (θi, θ̄i), g(θi, θ̄i)) =
Z

dθi : f ∗(θi, θ̄i)μ(θi, θ̄i)g(θi, θ̄i) : dθ̄i (38)

with f (θi, θ̄i), g(θi, θ̄i) in PGk,α . In contrast to (25), this definition does provide an inner
product in PGk,α .

We remark that under any order prescription, the commutation rules for para-Grassmann
variables play no further role; the k-nilpotency, defining [n]q, and the measure weight μ(θi, ¯θi),
setting orthonormality, are the key ingredients of the present construction. In particular, one
can manipulate the use of (31) in a clean way under the anti-normal order prescription. In
section 5, we develop simple trace formulae for operators acting on Hi.

4. Coherent states—multi-particle states

For a system with m independent degrees of freedom, the coherent states are the direct product
of single mode coherent states. The key point in this section is that, in our scheme, handling
multi-particle coherent states presents no further complications.

Formally, we first introduce m complex para-Grassmann variables θ1, . . . , θm. As the
different mode operators commute (see (10)) and we do not require nilpotency of linear
combinations of para-Grassmann variables, for i 6= j we set

θiθ j = θ jθi,

θiθ̄ j = θ̄ jθi. (39)

We then define the m-mode para-Grassmann algebra Pm
k,α = C[θ1, θ̄1, . . . , θm, θ̄m]/

hθ k
i , θ̄ k

i , θiθ̄i − ωθ̄iθi, θiθ j − θ jθii as the quotient of the free algebra of polynomials in m
complex indeterminates with the ideal expressing k-nilpotency and all commutation relations,
and the direct product of modules Km = K1 ⊗· · ·⊗Km. Denoting θ = {θ1, . . . , θm}, we define
coherent states as

|θ ) = |θ1) ⊗ · · · ⊗ |θm). (40)

8
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The elements of PGm
k,α are functions of several para-Grassman variables, that have unique

coefficients when written in anti-normal order

f (θ, θ̄ ) =
X

{n}{n0}
f{n}{n0}θnm

m · · · θn1
1 θ̄n0

m
m · · · θ̄n0

1
1 , (41)

where {n} = {n1, . . . , nm} is summed over each ni = 0, . . . , k − 1. Strictly speaking, the order
is already set when each θi is on the left of the corresponding θ̄i; we annotate a complete order
of para-Grassmann variables, with decreasing indices, for convenience in solving integrals.
For several variables, we use for the anti-normal order prescription the same notation : : as
before, moving in each term under : : all θi factors to the left and all θ̄i factors to the right,
without using commutation rules and ordering commuting variables in decreasing index order
just for convenience.

Integration is defined iteratively. For the function in (41), the integral readsZ
dθ f (θ, θ̄ )dθ̄ =

X
{n}{n0}

f{n}{n0}
Z

dθ1 · · · dθmθnm
m · · · θn1

1

Z
θ̄n0

m
m · · · θ̄n0

1
1 dθ̄1 · · · dθ̄m

=
X

{n}{n0}
f{n}{n0}

Z
dθ1θ

n1
1 · · ·

Z
dθmθnm

m

Z
θ̄n0

m
m dθ̄m · · ·

Z
θ̄

n0
1

1 dθ̄1 (42)

providing a non vanishing result, from (28), only from the term with n1 = n0
1 = · · · = nm =

n0
m = k − 1.

Resolution of the identity in H = H1 ⊗ · · · ⊗ Hm is readily written asZ
dθ |θ )μ(θ, θ̄ )(θ | dθ̄ = I : H → H, (43)

with measure weight

μ(θ, θ̄ ) =: eθ1 θ̄1
q : · · · : eθm θ̄m

q :=: eθ1 θ̄1
q · · · eθm θ̄m

q : (44)

We remark that the multi-particle version is a simple generalization of the one particle results.
This is due to the normal order prescription, partially taken from [13]. Indeed, we have changed
the q-commutation rules proposed by these authors for different para-Grassmann variables,
which requires an extra order prescription and generates a conjugation problem.

It is simple to generalize the results in [14] to multi-particle states. A sesquilinear form
in PGm

k,α is defined by

( f (θ, θ̄ ), g(θ, θ̄ )) =
Z

dθ : f ∗(θ, θ̄ )μ(θ, θ̄ )g(θ, θ̄ ) : dθ̄ . (45)

An anti-Wick operator

Tφ(θ,θ̄ ) =
Z

dθ : |θ )μ(θ, θ̄ )φ(θ, θ̄ )(θ | : dθ̄ (46)

can be projected onto coherent states defining a Toeplitz operator [14]; in this way, creation
and annihilation operators act on holomorphic functions [13] by

ai = Tθi ,

a†
i = Tθ̄i

. (47)

Our objective here is to apply the above formalism in the construction of coherent states
trace formulae.

9
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5. Trace formulae

Given an operator A : H → H, its trace can be written as an integral over coherent states in
much the standard way. In the one-particle case, say for a mode i,

Tr(A) =
k−1X
ni=0

hni|A|nii

=
k−1X
ni=0

Z
dθi hni|A|θi)μi(θi, θ̄i)(θi|nii dθ̄i

=
Z

dθi : μi
¡
θi, θ̄i

¢ k−1X
n=0

(θi|niihni|A|θi) : dθ̄i

=
Z

dθi : μi(θi, θ̄i)(θi|A|θi) : dθ̄i, (48)

where we used the identity (31) and a reordering of factors under the anti-normal order
prescription.

In the multi-particle case, we can operate the same way, using the identity (43) and
commutation relations (39). We start writing the trace in the canonical basis |{n}i =
|n1i ⊗ · · · ⊗ |nmi,

Tr(A) =
X
{n}

h{n}|A|{n}i

=
X
{ni}

Z
dθ h{n}|A|θ )μ(θ, θ̄ )(θ |{n}i dθ̄

=
Z

dθ : μ(θ, θ̄ )
X
{n}

(θ |{n}ih{n}|A|θ ) : dθ̄

=
Z

dθ : μ(θ, θ̄ )(θ |A|θ ) : dθ̄ . (49)

As said before, no further complications arise in handling multiparticle states in terms of
independentpara-Grassmann variables.

6. Applications: thermodynamics in simple examples

We are interested in computing the thermodynamical partition function for a system of nilpotent
q-bosons with Hamiltonian H at temperature kBT = 1/β. We thus need to evaluate coherent
state matrix elements (θ |e−βH |θ ), a task that provides closed results only for some simple
Hamiltonians.

6.1. One q-boson in a thermal bath

Consider one q-boson oscillator (q = eiπ/k) with Hamiltonian

H1 = ²N1, (50)

having spectrum ²n1 = n1², n1 = 0, . . . , k − 1 (note that here n1 counts the excitations in the
one particle spectrum, not particle number). We compute the canonical (one particle) partition
function in a thermal bath,

Z1(β) = Tr(e−βH1 ). (51)

10
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Figure 1. Mean energy of a q-boson in a thermal bath, for different nilpotency orders k (in arbitrary
units). Note that at finite k the mean energy saturates at high enough temperatures, where each of
the energy levels is found with equal probability. In contrast, for standard bosons (k → ∞) the
mean energy grows linearly with temperature.

In order to compute (θ1|e−βH1 |θ1), it is convenient to expand the coherent states using (15),
obtaining

¡
θ1|e−βH1 |θ1

¢ =
k−1X
n1=0

θ̄
n1
1 θ

n1
1

[n1]!
e−β²n1 . (52)

The trace formula (48) is easily integrated using the rules (29) providing

Z1(β) =
k−1X
n1=0

e−β²n1 = 1 − e−kβ²

1 − e−β²
. (53)

This is of course the trace result straightforwardly computed in the canonical basis (5). The
corresponding mean energy reads

E1(β) = −∂ logZ1(β)

∂β
=

µ
1

eβ² − 1
− k

ekβ² − 1

¶
² (54)

and the specific heat

C(β) = −β2 ∂E1

∂β
= 1

4
(β²)2

µ
1

sinh2(β²/2)
− k2

sinh2(kβ²/2)

¶
. (55)

We show in figures 1 and 2 these functions for low values of k together with the limit
case k → ∞, to make explicit that the k-nilpotent behaviour interpolates between fermionic
(k = 2) and bosonic (k → ∞) standard results.

A similar analysis can be done for one q-boson oscillator with Hamiltonian

H 0
1 = ²a†

1a1, (56)

which has spectrum ²n1 = [n1]q², n1 = 0, . . . , k − 1. One obtains

(θ1|e−βH 0
1 |θ ) =

k−1X
n1=0

θ̄n1θn1

[n1]!
e−β²[n1]q , (57)

11
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Figure 2. Specific heat for different nilpotency orders k (in arbitrary units). Note that at finite k
the specific heat has a maximum and decays to zero when the mean energy saturates. For standard
bosons, this does not occur (no saturation is possible).

so the partition function gives

Z 0
1(β) =

k−1X
n1=0

e−β²[n1]q . (58)

6.2. System of q-bosons

In setting a multi-particle system of nilpotent q-bosons, one must take into account that a linear
transformation (in particular the Fourier transformation) of q-boson annihilation or creation
operators does not render modes with the same commutation relations. The same occurs with
para-Grassmann variables in our approach (and any other in the literature). We restrict to
Hamiltonians in which different degrees of freedom do not interact. Speculatively, one can
think of a system with a finite dimensional Hilbert space per degree of freedom, such as a spin
S system in the presence of strong interactions, which after a suitable transformation leads to
independent k-nilpotent q-boson modes.

Let us consider a system of m q-bosons a j, a†
j with Hamiltonian

H =
mX

j=1

² jNj. (59)

The grand partition function at finite temperature kBT = 1/β is given by

Z(β) = Tr(e−β(H−μN)), (60)

where N = Pm
j=1 Nj is the total number operator. One needs to compute

(θ |e−β(H−μN)|θ ) =
⎛
⎝θ |

mY
j=1

e−β(² j−μ)Nj |θ
⎞
⎠ (61)

which simply factorizes to give
mY

j=1

¡
θ j|e−β(² j−μ)Nj |θ j

¢ =
X
{n}

θ̄
n1
1 θ

n1
1

[n1]!
e−β(²1−μ)n1 · · · θ̄

nm
1 θ

nm
1

[nm]!
e−β(²m−μ)nm (62)

12
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Figure 3. Average occupation number of levels ² j for a system of q-bosons at low temperature.
For k = 2, the behaviour corresponds to fermions, while for k → ∞ it corresponds to standard
bosons.

The trace is computed according to (49)Z
dθ : μ(θ, θ̄ )

mY
j=1

¡
θ j|e−β(² j−μ)Nj |θ j

¢
: dθ̄ =

mY
j=1

×
⎛
⎝Z

dθ j : μ j
¡
θ j, θ̄ j

¢X
n j

θ̄
n j

j θ
n j

j

[n j]!
e−β(² j−μ)n j : dθ̄ j

⎞
⎠ (63)

giving rise to

Z(β) =
mY

j=1

1 − e−kβ(² j−μ)

1 − e−β(² j−μ)
. (64)

The relevant quantity to compute here is the mean occupation number of levels ² j, which
reads

n j(β, μ) = 1

eβ(² j−μ) − 1
− k

ekβ(² j−μ) − 1
. (65)

For finite k, this is well defined even for ² j = μ (evitable singularity), while the limit
k → ∞ is finite only for ² j > μ (the correct behaviour for standard bosons). In figure 3, it can
be seen that the mean occupation at ² j = μ is (k − 1)/2 (identical to fermions, for k = 2) and
diverges for k → ∞ (Bose–Einstein condensation). For k = 3, the present result for n(²) is
markedly close to the distribution of Z3 parafermions and of particles with g = 1/3 Haldane
exclusion statistics illustrated in [19].

We note again that the k-nilpotent behaviour interpolates between fermionic and bosonic
standard results.

7. Conclusions

The construction of coherent states for q-commuting particles requires the introduction of
para-Grassmann variables. In particular, when q is a complex rational primitive root of
unity, q = eiπ/k, the required para-Grassmann variables are k-nilpotent. Many attempts have

13
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been made towards a consistent formulation of nilpotent para-Grassmann calculus, leading to
different difficulties in the multiparticle case. In consequence, no consensus has been reached
yet in the proper characterization of such nilpotent variables.

We have traced back the source of difficulties, as well as figured forward the applicability,
of para-Grassmann variables in systems of nilpotent q-bosons. In this work, we present a
construction, in line with recent proposals [13, 14], that incorporates on the one hand para-
Grassmann commutation rules which are independent from the nilpotency order, and on the
other hand a normal order prescription for the generalized Berezin integration.

Our approach solves the conjugation problem for complex para-Grassmann variables and
allows for a consistent symbolic para-Grassmann calculus. In particular, it makes possible to
handle in much the standard way a resolution of unity as a generalized Berezin integral of
multi-particle coherent state projectors. This allows for simple trace formulae, which have
been used here to study the thermodynamics of simple Hamiltonians; the distribution of
k-nilpotent q-bosons in a multiparticle system turns out to be Fermi-like, with mean occupation
per mode bounded by k. This exclusion statistics could find application in the study of the
plethora of novel phases in strongly correlated systems, where different types of ‘novel’
statistics have already shown up [3, 16, 19, 34, 35], mainly as a consequence of the
strong interactions. In different contexts, constraints in the occupation number of bosons
are introduced in order to select a Fock subspace [15, 36]; it would be interesting to investigate
the connection with our present approach, although it is out of the scope of this paper. Our
formalism allows for a thermodynamical description, hence providing the tools to compare
with experimental measurements to come.
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