The accurate calculation of resonances in multiple-well oscillators

Francisco M Fernández
INIFTA (Conicet, UNLP), División Química Teórica, Diag 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina
E-mail: fernande@quimica.unlp.edu.ar

Received 14 November 2007, in final form 17 December 2007
Published 29 January 2008
Online at stacks.iop.org/JPhysA/41/065202

Abstract

Quantum-mechanical multiple-well oscillators exhibit curious complex eigenvalues that resemble resonances in models with continuum spectra. We discuss a method for the accurate calculation of their real and imaginary parts.

PACS number: 03.65.Ge

1. Introduction

Some time ago, Benassi et al [1] discussed the occurrence of complex eigenvalues, or 'resonances', in some quantum-mechanical multiple-well oscillators, and calculated them for a particular example. Recently Killingbeck [2] showed that the Hill-series method yields quite accurate results for both the real and imaginary parts of those eigenvalues if one introduces a complex parameter in the exponential factor of the expansion. In principle, one has to tune up this parameter in order to obtain an acceptable rate of convergence. Such 'complexification' of the well-known Hill-series method had been tried successfully before in perturbation and matrix approaches [3-5]. Complexification is a term coined to indicate the use of, for example, a complex frequency in the treatment of a perturbed harmonic oscillator or a complex atomic number in the case of a perturbed Coulomb problem [2-5].

Moiseyev et al [6] have already stressed the physical significance of tunnelling rates in bound systems and obtained the corresponding complex eigenvalues by the complex coordinate method.

The Riccati-Padé method (RPM) is known to be suitable for the accurate calculation of bound states and resonances of simple quantum-mechanical models [7-15]. However, it has only been applied to the most commonplace resonances in the continuum spectrum [11-15]. The purpose of this paper is to investigate if the RPM is also a reasonable alternative to the calculation of the unusual kind of resonances considered by Benassi et al [1], Killingbeck [2] and Moiseyev et al [6].

In section 2 we outline the RPM and in section 3 we apply it to the three-well oscillator treated explicitly by Benassi et al [1], Killingbeck [2] and Moiseyev et al [6].

2. The Riccati-Padé method (RPM)

In order to make this paper reasonably self-contained, in this section we outline the RPM in a quite general way. Suppose that a solution to the eigenvalue equation

$$
\begin{equation*}
\Psi^{\prime \prime}(x)+[E-V(x)] \Psi(x)=0 \tag{1}
\end{equation*}
$$

can be expanded in the form

$$
\begin{equation*}
\Psi(x)=x^{\alpha} \sum_{j=0}^{\infty} c_{j} x^{\beta j}, \alpha, \beta>0 \tag{2}
\end{equation*}
$$

The power-series expansion for the regularized logarithmic derivative

$$
\begin{equation*}
f(x)=\frac{\alpha}{x}-\frac{\Psi^{\prime}(x)}{\Psi(x)}=x^{\beta-1} \sum_{j=0}^{\infty} f_{j} x^{\beta j} \tag{3}
\end{equation*}
$$

converges in a neighbourhood of $x=0$ and the coefficients f_{j} depend on the eigenvalue E. The function $f(x)$ is a solution to the Riccati equation

$$
\begin{equation*}
f^{\prime}(x)-f(x)^{2}+\frac{2 \alpha}{x} f(x)+V(x)-E-\frac{\alpha(\alpha-1)}{x^{2}}=0 . \tag{4}
\end{equation*}
$$

Equations (1)-(4) apply to both one-dimensional ($-\infty<x<\infty$) and central-field $(0 \leqslant x<\infty)$ models. If $V(x)$ is a parity-invariant one-dimensional potential, then $\alpha=0$ for even states, $\alpha=1$ for odd ones, and $\beta=2$ for both cases. If $\lim _{x \rightarrow 0^{+}} x^{2} V(x)=V_{-2}>0$, then $\alpha(\alpha-1)=V_{-2}+l(l+1)$ removes the singularity at origin in the case of a central-field model, where $l=0,1, \ldots$ is the angular momentum quantum number. If $V_{-2}=0$ then $\alpha=l+1$.

The RPM consists of rewriting the partial sums of the power series (3) as Padé approximants $x^{\beta-1}[N+d / N](z), z=x^{\beta}$, in such a way that

$$
\begin{equation*}
[N+d / N](z)=\frac{\sum_{j=0}^{N+d} a_{j} z^{j}}{\sum_{j=0}^{N} b_{j} z^{j}}=\sum_{j=0}^{2 N+d+1} f_{j} z^{j}+O\left(z^{2 N+d+2}\right) \tag{5}
\end{equation*}
$$

In order to satisfy this condition the Hankel determinant H_{D}^{d}, with matrix elements $f_{i+j+d+1}, i, j=0,1, \ldots, N$, vanishes, where $D=N+1=2,3, \ldots$ is the determinant dimension, and $d=0,1, \ldots$ is the displacement [7-15]. The main assumption of the RPM is that there is a sequence of roots $E^{[D, d]}$ of the Hankel determinants H_{D}^{d} that converges towards a given eigenvalue of the Schrödinger equation (1) as D increases [7-15]. For brevity we call it a Hankel sequence.

Note that one obtains the coefficients f_{j} from the expansion of the Schrödinger equation (1) or the Riccati equation (4) quite easily, and that unlike the Hill-series method [2] the RPM does not require an adjustable complex parameter. Besides, it is not necessary to take into account the boundary conditions explicitly in order to apply the RPM, and, for that reason, the method provides both bound states and resonances simultaneously [7-15].

Table 1. Convergence of a Hankel sequence $E^{[D, 0]}$ towards the lowest complex eigenvalue of the oscillator (6) with $g=0.14$.

D	$\operatorname{Re} E$	$\operatorname{Im} E$
2	0.96913474062929793208	0
3	0.96912933030952144688	0
4	0.96912932029284635448	0
5	0.96912932006642961226	$3.6781221743857153252 \times 10^{-10}$
6	0.96912932002647227146	$3.3990326234127550889 \times 10^{-10}$
7	0.96912932002710973379	$3.3801038698293392418 \times 10^{-10}$
8	0.96912932002717289039	$3.3798079586780234680 \times 10^{-10}$
9	0.96912932002717518442	$3.3798093143407212241 \times 10^{-10}$
10	0.96912932002717525409	$3.3798095397280767486 \times 10^{-10}$
11	0.96912932002717525622	$3.3798095479442123313 \times 10^{-10}$
12	0.96912932002717525629	$3.3798095481219295624 \times 10^{-10}$
13	0.96912932002717525629	$3.3798095481219029216 \times 10^{-10}$
14	0.96912932002717525629	$3.3798095481216587093 \times 10^{-10}$
15	0.96912932002717525629	$3.3798095481216435223 \times 10^{-10}$

Table 2. Complex eigenvalue of the oscillator (6) for several values of g.

g	$\operatorname{Re} E\left(g^{2}\right)$	$\operatorname{Im} E\left(g^{2}\right)$	$\operatorname{Im} E\left(g^{2}\right) g^{2} \exp \left(1 /\left(2 g^{2}\right)\right)$
0.08	0.99025645954150600314	1.16994×10^{-32}	0.6362094894
0.09	0.98761765110834730415	$1.28623698 \times 10^{-25}$	0.6700502315
0.10	0.98464158830285882643	$1.3513930260 \times 10^{-20}$	0.7006574893
0.12	0.97763491479323529157	$4.3530125379031 \times 10^{-14}$	0.7530467190
0.14	0.96912932002717525629	$3.37980954812164 \times 10^{-10}$	0.7944913345
0.16	0.95896997046169207832	$1.0619001732959989 \times 10^{-7}$	0.8253492417
0.18	0.94691604067745932355	$5.18077667159013113 \times 10^{-6}$	0.8453084682
0.20	0.93255571582477452180	$7.94775543996767651 \times 10^{-5}$	0.8530716514
0.22	0.91525354748034208273	$5.70253065914296141 \times 10^{-4}$	0.8461088416
0.24	0.89442055320991452496	$2.424632840047890532 \times 10^{-3}$	0.8222158493
0.26	0.87011531157430539225	$7.104058338260953225 \times 10^{-3}$	0.7828715436
0.28	0.84333442392342060412	$1.5915859465250206010 \times 10^{-2}$	0.7343132667
0.30	0.81560795814733914293	$2.9400216892153485663 \times 10^{-2}$	0.6844475376

3. Results and discussion

In what follows we apply the RPM to calculate the curious complex eigenvalue of the triplewell oscillator

$$
\begin{equation*}
V(x)=x^{2}-2 g^{2} x^{4}+g^{4} x^{6} \tag{6}
\end{equation*}
$$

reported by Benassi et al [1], Killingbeck [2], and Moiseyev et al [6]. In this case $\beta=2$ and we choose $\alpha=0$ for even states as discussed above.

Table 1 shows a Hankel sequence $E^{[D, 0]}$ that converges towards the lowest complex eigenvalue when $g=0.14$. We have kept twenty digits in all entries in order to show how they become stable as D increases. Note the remarkable rate of convergence of the Hankel sequence for both the real and imaginary parts of the eigenvalue.

Table 2 shows the same complex eigenvalue for a range of g-values somewhat wider than those chosen by Benassi et al [1] and Killingbeck [2]. We have truncated the results, obtained

Table 3. Lowest resonance of the oscillator (7) for several values of g.

g	$\operatorname{Re} E\left(g^{2}\right)$	$\operatorname{Im} E\left(g^{2}\right)$	$\operatorname{Im} E\left(g^{2}\right) g \exp \left(1 /\left(3 g^{2}\right)\right)$
0.08	0.99017315154568105030	$4.66667951 \times 10^{-22}$	1.554541174
0.09	0.98748105548308533216	$2.3014736620 \times 10^{-17}$	1.543296673
0.10	0.98442766976525540084	$5.1093948883947 \times 10^{-14}$	1.530566484
0.12	0.97716020191841551216	$1.1063680213861671 \times 10^{-9}$	1.500354438
0.14	0.96816424784205963513	$4.297124100601175228 \times 10^{-7}$	1.463074727
0.16	0.95708500653988706061	$1.9606870293524100682 \times 10^{-5}$	1.417112487
0.18	0.94328218799381038166	$2.5699864836055797687 \times 10^{-4}$	1.35910675
0.20	0.92594246107314318252	$1.5440221243204925966 \times 10^{-3}$	1.284707315
0.22	0.90482508551985951067	$5.5395017058573660278 \times 10^{-3}$	1.193719284
0.24	0.88093011197386366807	$1.3978475279423154843 \times 10^{-2}$	1.093828654
0.26	0.85613353763295142744	$2.767004146177769213 \times 10^{-2}$	0.9964939951
0.28	0.8325989985769363726	$4.6300611971065823176 \times 10^{-2}$	0.9104055713
0.30	0.81052712217939364397	$6.8908503646837670242 \times 10^{-2}$	0.839251556

Table 4. Convergence of a Hankel sequence $E^{[D, 0]}$ towards a real eigenvalue of the oscillator (6) with $g=0.26$.

D	$E^{[D, 0]}$	$E^{[D, 1]}$
10	0.82421738753193440391	0.86410860341872976700
11	0.86293525161653266846	0.86327704895478421038
12	0.86337027887545057047	0.86340278372882974435
13	0.86338849889044805032	0.86338746126545299457
14	0.86338823092039473097	0.86338927612095345665
15	0.86338902249896465299	0.86338907153739926667
16	0.86338923752314275941	0.86338909364833816363
17	0.86338908980986217846	0.86338909134979284691
18	0.86338909184016369855	0.86338909158035775725
19	0.86338909153882366976	0.86338909155797962168
20	0.86338909156204462624	0.86338909156008631882

from Hankel determinants with $D \leqslant 15$ and $d=0$, to the apparently last stable digit. The first digits of our results agree with those given by Benassi et al [1] and Killingbeck [2]. We note that $\operatorname{Im} E\left(g^{2}\right) g^{2} \exp \left(1 /\left(2 g^{2}\right)\right)$ does not seem to approach a constant for those values of g. It may be that $\operatorname{Im} E\left(g^{2}\right)$ attains the WKB asymptotics [1] at smaller values of g.

It is interesting to compare the strange resonance of the potential (6) with the more commonplace one of the potential

$$
\begin{equation*}
V_{2}(x)=x^{2}-2 g^{2} x^{4} \tag{7}
\end{equation*}
$$

that was treated earlier by means of the RPM [11]. Table 3 shows the lowest resonance for this model for the same values of g considered before. We appreciate that the imaginary part of this resonance is considerably greater than the previous one and that it seems to approach the WKB asymptotics $\operatorname{Im} E^{W K B}\left(g^{2}\right)=\left[4 /\left(2 \pi g^{2}\right)\right] \exp \left(-1 /\left[3 g^{2}\right]\right)$ somewhat faster.

The Hankel determinants are polynomial functions of E and their real roots give rise to sequences that converge towards bound-state eigenvalues. Table 4 shows a real sequence that converges towards the bound-state eigenvalue close to the complex one discussed above. The rate of convergence of the real Hankel sequences decreases as g decreases and the real an complex eigenvalue approach each other. Our calculations suggest that the rate of convergence
is always greater for the complex eigenvalue. We calculated the real roots for the same values of g shown in table 2 . For $g \leqslant 0.16$ the Hankel sequences seem to appear at $D>20$.

The results of this paper clearly show that the RPM is suitable for the calculation of both real and complex eigenvalues of simple Hamiltonian operators, even in the case of quite small imaginary parts. We believe that this approach is a most useful tool in the numerical investigation of a wide variety of eigenvalue problems. Its main advantages are as follows: great rate of convergence and simple straightforward application that does not require adjustable parameters or explicit consideration of boundary conditions. From a purely practical point of view, we do not believe that the RPM is more efficient than the Hill-series method [2-5], but in our opinion the former approach is interesting by itself because of its most singular features, some of which have already been outlined above.

Present method is not restricted to the Schrödinger equation. We have recently applied a variant of the RPM, which we may call Padé-Hankel method, to nonlinear two-point boundary value problems, obtaining very accurate results for the unknown parameters in several models of physical interest [17].

Finally, we mention that the complex rotation of the coordinate [6] is more general than both the Hill series [2-5] and present RPM which are in principle restricted to separable models.

References

[1] Benassi L, Graffi S and Grecchi V 1979 Phys. Lett. B 82229
[2] Killinbeck J P 2007 J. Phys. A: Math. Theor. 409017
[3] Killingbeck J P, Grosjean A and Jolicard G 2004 J. Phys. A: Math. Gen. 377971
[4] Killingbeck J P, Grosjean A and Jolicard G 2005 J. Phys. A: Math. Gen. 38 L695
[5] Killingbeck J P, Grosjean A and Jolicard G 2006 J. Phys. A: Math. Gen. 39 L547
[6] Moiseyev N, Lipkin N, Farrelly D, Atabek O and Lefebvre R 1989 J. Chem. Phys. 916246
[7] Fernández F M, Ma Q and Tipping R H 1989 Phys. Rev. A 391605
[8] Fernández F M, Ma Q and Tipping R H 1989 Phys. Rev. A 406149
[9] Fernández F M 1992 Phys. Lett. A 166173
[10] Fernández F M and Guardiola R 1993 J. Phys. A: Math. Gen. 267169
[11] Fernández F M 1995 J. Phys. A: Math. Gen. 284043
[12] Fernández F M 1995 Phys. Lett. A 203275
[13] Fernández F M 1996 J. Phys. A: Math. Gen. 293167
[14] Fernández F M 1996 Phys. Rev. A 541206
[15] Fernández F M 1997 Chem. Phys. Lett 281337
[16] Bender C M and Wu T T 1973 Phys. Rev. D 71620
[17] Amore P and Fernández F M 2007 Rational Approximation for Two-Point Boundary Value Problems Preprint 0705.3862

