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I-00185 Roma, Italy
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Abstract. Diagrammatic techniques to compute perturbatively the spectral
properties of Euclidean random matrices (ERM) in the high-density regime
are introduced and discussed in detail. Such techniques are developed in two
alternative and very different formulations of the mathematical problem and are
shown to give identical results up to second order in the perturbative expansion.
One method, based on writing the so-called resolvent function as a Taylor series,
allows us to group the diagrams into a small number of topological classes,
providing a simple way to determine the infrared (small momenta) behaviour
of the theory up to third order, which is of interest for the comparison with
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experiments. The other method, which reformulates the problem as a field theory,
can instead be used to study the infrared behaviour at any perturbative order.

Keywords: random matrix theory and extensions
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1. Introduction

Random matrices [1] are N×N matrices whose entries are random numbers drawn from a
certain probability distribution. Their statistical spectral properties in the large N limit
describe a wide range of physical phenomena: nuclear spectra [2], quantum chaos [3],
localization in electronic systems [4], diffusion in random graphs [5], liquid dynamics [6]
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and the glass transition [7], complex networks [8] and superstrings [9]. Random matrices
may be grouped in a few universality classes according to their statistical properties [1].
For most of these classes, the density of eigenvalues follows Wigner’s semicircle law. It
has thus become of interest to identify ensembles where the semicircle law is modified in a
non-trivial way. One such ensemble results when the corresponding physical problem has
a conserved quantity (e.g. momentum in the case of propagating excitations, or number
density in diffusion problems). Under such circumstances, the random matrix that best
describes the problem is typically a Laplacian matrix [5], which has the property

∑

j

Mij = 0. (1)

This encodes the property that a vector whose components are identical is an eigenvector
with eigenvalue zero.

A kind of random matrix of particular relevance in the study of off-lattice systems is
the so-called Euclidean random matrices (ERM) [10, 21, 23]. Place N particles in positions
xi, i = 1, 2, . . . , N , belonging to some region of D-dimensional Euclidean space, of
volume V . The positions are drawn randomly from some probability distribution function
P ({xi}). The entries of an ERM are a deterministic function of these random positions,
Mij = f(xi−xj). If a conservation law is relevant for the problem at hand, we will rather
have a Laplacian ERM:

Mij = δij

N∑

k=1

f(xj − xk) − f(xi − xj). (2)

Note that we never find the same particle label twice in the argument of the function
f(xi − xj), since the term f(xi − xi) cancels. In a diagonal term, δijf(xi − xk), the kth
particle shall be called a medium particle, while the ith particle will be the chain particle.

The function f in equation (2) is quite general: only rotational invariance and the

existence of the Fourier transform f̂(p) are assumed (p =
√

p · p). Furthermore, even if in
this work f will be a scalar function, for some applications it should rather be a matrix-
valued function. It must be so, for instance, to account for the vector nature (longitudinal
or transversal) of vibrational dynamics [18]. Most of our results extend as such to this
more general case.

ERMs describe topologically disordered systems, at variance with problems where the
N positions {xi} are placed on a crystalline lattice [30]. We will be considering a extreme
case, in which the N positions are placed with uniform probability on the volume V . The
particle-number density, ρ = N/V , will be held fixed while we take the large N limit.
Note that there are two sources of statistical correlation among the entries of matrix (2),
even if the positions {xi} are totally uncorrelated. First, it is a Laplacian matrix; recall
equation (1). Second, due to the triangular inequality of Euclidean geometry, the distances
from two neighbouring particles to a third one are necessarily similar.

Specific applications of ERMs include disordered d-wave superconductors [11],
disordered magnetic semiconductors [12] (very similar to a spin-glass model [13]),
Instantaneous Normal Modes in liquids [6, 14], vibrations in glasses [7], [15]–[18], the
gelation transition in polymers [19] and vibrations in DNA [20]. ERMs have been studied
analytically and numerically both in the low particle-number density regime [14], [22]–[24]
and for high densities [10], [15]–[18], [31].
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In order to compute the basic spectral properties of ERM it turns out to be convenient
to introduce the resolvent :

G(p, z) = lim
N→∞

1

N

N∑

i,j=1

eip·(xj−xi)

[
1

z −M
]

ij

, (3)

where the complex number z ≡ λ + iη has a tiny imaginary part η and the overbar
stands for an average over the {xi}. If the ERM describes physical excitations (phonons,
electrons, etc) in topologically disordered systems, the resolvent (3) corresponds to the
single-particle Green function, or propagator, for such excitations. If the system is
isotropic, the resolvent depends only on p.

The density of eigenvalues g(λ), or density of states (DOS), is given by

g(λ) = −1

π
lim
p→∞

Im[G(p, λ + i0+)]. (4)

This limiting behaviour is characteristic of topologically disordered systems. It does not
hold for lattice systems. We note as well that the constraint (1) implies that a plane wave
eip·xi is an eigenvector of the matrix (2) if p = 0:

G(0, z) =
1

z
. (5)

As we shall discuss below, the resolvent takes a very simple form in the high-density limit
(it is actually the bare propagator of the theory):

G0(p, z) =
1

z − ε(p)
, ε(p) = ρ[f̂(0) − f̂(p)]. (6)

The physical interpretation is quite appealing [10]. The system behaves as an elastic
continuum medium. In the large ρ limit, the plane waves eip·xi become exact eigenvectors
of the matrix (2), with eigenvalues given by the dispersion relation ε(p) = ρ[f̂(0)− f̂(p)].
In particular, for small p, ε(p) = c2p2 + O(p4), where c is the speed of sound. This neat
physical picture motivates the introduction of a high-density expansion.

At large, but finite ρ, the resolvent can be written

G(p, z) =
1

z − ε(p) − Σ(p, z)
. (7)

The self-energy Σ(p, z), which is introduced to encode all the information about the
interactions (a standard practice in the Green function formalism), vanishes when ρ tends
to ∞. In our case, the interaction involved is that between the propagating excitations and
the topological disorder. An important theoretical challenge is to compute the self-energy
at finite densities ρ. In fact, in this case an eigenvector can be thought of as a packet of
plane waves (see section 2). The width of such a packet is related to the imaginary part
of Σ.

Some of us have argued that in the limit of small p, z the leading term at 1/ρ2 order
has the form [15]–[17]

Im Σ(p, z + i0+) = A z(D−2)/2p2 + O (z(D−2)/2p4, zDp2
)
, (8)
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(D is the space dimension, while A is an amplitude). This has been disputed recently by
an independent computation to order 1/ρ2, claiming that the actual analytic structure of
the self-energy for small z and p is [31]

Im Σ(p, z + i0+) ∝ zD/2p2 + · · · , (9)

analogous to what one finds in the Rayleigh theory of scattering and in lattice models
where disordered spring constants mimic the effect of topological disorder [30].

By reconsidering in detail the perturbative expansion, in this work we show that the
prefactor A in equation (8) is actually null, due to algebraic cancellations, and that this
cancellation arises at all orders in the perturbative expansion in 1/ρ. This is not related to
any known symmetry of the problem, but rather reflects the mathematical structure of the
perturbative contributions. On the other hand, we will also show that the result in [31],
recall equation (9), is incomplete, since the imaginary part admits a formal expansion for
small z:

Im Σ(p, z + i0+) = z(D−2)/2

∞∑

n=0

gn(p2) zn. (10)

The constraint (5) implies that gn(0) = 0 for all n, so that in general gn(p) = Anp
2+O(p4).

However, we find that, for all functions f and all ρ, A0 = 0, so that g0(p) ∼ p4 while
g1(p) ∼ p2. In this respect, we confirm that the interaction between free excitations
and disorder in topologically disordered systems (as long as ERMs describe them)
has a peculiar mathematical structure that is different from disordered lattice systems
(for lattice systems g0 vanishes identically). To show this we shall compute the self-
energy perturbatively within two unrelated approaches: (a) an improved form of the
combinatorial formalism introduced in [16] and (b) a field-theoretic formulation. The
field theory introduced here is quite different from standard formalisms in the theory of
random matrices (see, e.g., [10, 15]). It probably deserves an in-depth study, which is left
for future work. We remark that our combinatorial formalism is simpler than the field
theory, and is probably the method of choice to carry out higher-order computations in
the 1/ρ expansion. However, it has the drawback that the asymptotic g0(p

2) ∼ p4 appears
at order 1/ρ2 from an exact cancellation of two contributions of order p2 (at order 1/ρ3 we
find an exact cancellation of ten contributions of order p2). The field-theoretic framework
clarifies that these cancellations are not accidental and thus not restricted to low orders
in the 1/ρ expansion.

The layout of the remaining part of this work is as follows: in section 2 we discuss
a particular phenomenon (phonons in topologically disordered systems) where a theory
based on ERMs has been proposed in recent years. In section 3 we anticipate our main
result, namely the leading order of Im Σ(p, z + i0+). In section 4 we discuss in detail
the combinatorial formalism up to order 1/ρ2. We describe the rules to group all the
diagrams that arise at this order in a very small number of diagrams, according to
their topological structure, and show that up to second order in the function g0(p

2) the
prefactor of the term ∝p2 cancels out. We also see that this cancellation appears in a
given class of diagrams at 1/ρ3. In order to shed a light onto the mathematical origin of
such a cancellation, in section 5 we introduce a field-theoretical formulation that, despite
producing a much larger number of diagrams, allows us to give an argument explaining
the origin of the cancellation at any perturbative order.
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2. A case study for ERM: phonons in topologically disordered systems

Although ERMs have a wide range of applications, in this paper we are mainly interested
in the study of phonons in amorphous systems, such as glasses or supercooled liquids [25],
since the large amount of experimental evidence may provide fundamental insights about
the correctness of the theory. Of particular interest is the case where the frequencies
ω(p) of the phonons with wavevector p lie in the GHz to the THz region (high-frequency
sound). This is, in fact, the range explored by neutron and x-ray inelastic scattering
experiments. These give the inelastic contribution to the dynamic structure factor, i.e. a
Brillouin-like peak with position ω(p) and width Γ(p). Summarizing the experimental
findings, for p < p0 (p0 is the first maximum of the static structure factor, typically a few
nm−1 [26]) one finds a linear dispersion relation ω(p) ∼ cp, where the speed of sound c is
quite close to that obtained by acoustic measurements. The dispersion relation typically
saturates at p ∼ p0. Moreover, the p dependence of the peak width is often described by
Γ(p) ∝ pα. Interestingly enough, Γ(p) also saturates as the momentum becomes p ∼ p0.
There has been a hot debate among different experimental groups about the value of the
exponent α [27, 28], some claiming α ∼ 2 and some α ∼ 4. There is now some consensus
that, in the region where Γ is independent of temperature (i.e. ω(p) ≥ 1 THz), one has
α = 4, while at lower frequencies (the GHz region), where Γ has a strong temperature
dependence, the experimental value is α = 2 [29].

A simple model of the high-frequency sound is afforded by scalar harmonic vibrations
around a topologically disordered structure made of N oscillation centres xi, placed with
uniform probability on a volume V 9. Particle displacements ϕi have an elastic energy

U({ϕi}) = 1
2

N∑

i,j=1

f(xi − xj)(ϕi − ϕj)
2 =

N∑

i,j=1

Mi,jϕiϕj, (11)

where the matrix M has the form equation (2) and f(x) is the spring constant connecting
particles separated by the vector x. We assume that f(x) is spherically symmetric, so

that f̂(p) = g(p2), where g is a smooth function. In the framework of the one-phonon
approximation, the inelastic dynamic structure factor is related to the resolvent via

S(p, ω) = − p2

ωπ
Im G(p, ω2 + i0+). (12)

As a consequence, the width of the Brillouin peak is related to the imaginary part of Σ
by

Im Σ(p, ω(p)) = ω(p)Γ(p). (13)

Then equation (10) implies that Γ(p) ∼ p4 for very small p (for p ∼ p0 the width saturates
and a mixed, more complex, scaling should be expected). In that regime the phonon–
disorder interaction can be thought of as a scattering phenomenon of the Rayleigh type.

Since ERMs describe the dynamics of vibrating particles within the context of the
harmonic approximation, the theoretical predictions based on ERM theory must be
compared with experiments in the region where Γ is independent of temperature; in fact,

9 One may just as easily introduce a model for vector harmonic vibrations [18]. In fact, all our results within the
combinatorial formalism translate directly to the vector case.
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the temperature dependence is an indication that the width of the peak is rather due
to thermal processes, such as anharmonicities or relaxations, which require more refined
theoretical approaches.

We finally mention that vibrational frequencies ω are related to ERM eigenvalues λ
(z = λ + i0+) by the relation λ = ω2, see equation (12). Hence, the width of spectral
peaks in λ space and in ω space are related by equation (13). Furthermore, equations (4)
and (10) imply that the DOS in λ space behaves for small λ as gλ(λ) ∝ λ(D−2)/2, which
translates to frequency space as a Debye spectrum gω(ω) ∝ ωD−1 (because of the Jacobian
in the change of variable: dλ = 2ω dω). At this point, the reader may object that lattice
systems have a Debye spectrum even if g0 in equation (10) vanishes for them. In fact,
their Debye spectrum is possible because equation (4) does not hold in the lattice case.

3. The main result

The main result of this work is the following. Expanding the self-energy in powers of 1/ρ,
i.e.

Σ(p, z) = Σ(1)(p, z) + Σ(2)(p, z) + · · · , (14)

where Σ(k) is of order 1/ρk, one has only one first-order contribution:

Σ(1)(p, z) =
1

ρ

∫
dDq

(2π)D
V (q,p)G0(q, z)V (q,p), (15)

while at second order

Σ(2)(p, z) = Σ
(2)
A (p, z) + Σ

(2)
B (p, z) + Σ

(2)
B (p, z), (16)

where the three topologically different pieces are

Σ
(2)
A (p, z) =

1

ρ

∫
dDq

(2π)D
V (q,p)G0(q, z)Σ(1)(q, z)G0(q, z)V (q,p), (17a)

Σ
(2)
B (p, z) =

1

ρ2

∫
dDq

(2π)D

dDk

(2π)D
V (p− q,p)G0(q, z)V (q − k,q)G0(k, z)

× V (p− q,p− q + k)G0(p − q + k, z)V (q − k,p), (17b)

Σ
(2)
C (p, z) =

1

ρ2

∫
dDq

(2π)D

dDk

(2π)D
V (p− q,p)G0(q, z)V (q − k, 2q − p)

× G0(k, z)V (p− k,p). (17c)

In equations (15)–(17) we have used

V (q,p) = ρ[f̂(q) − f̂(p− q)], (18)

which, as we will see below, plays the role of the interaction vertex. The bare propagator
G0 was defined in equation (6). Note that V (q,p) �= V (p,q). Other useful identities are

V (q,p) = V (−q,−p), V (q,p) = −V (p − q,p). (19)

Note that, since V (q, 0) = 0, we have

Σ
(2)
A (0, z) = Σ

(2)
B (0, z) = Σ

(2)
C (0, z) = 0. (20)
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The high-density expansion for Laplacian ERM was introduced in [15, 16].
Equation (15) was already reported there but, instead of equation (16), one had 39
diagrams of order 1/ρ2. Even if the final expressions were cumbersome, a numerical
evaluation of the amplitude A in equation (8) was attempted for a simple choice of the
function f . Presumably because of a numerical mistake, it was wrongly concluded that
A �= 0. Afterwards, it was announced (without supporting technical details) that the
39 diagrams previously found at order 1/ρ2 could be grouped as in equation (16) [18].
Unfortunately, a numerical re-evaluation of the amplitude A was not attempted from
these simpler expressions.

We remark as well that an independent computation of Σ to order 1/ρ2 has appeared
recently [31]. We have checked that their results are consistent with ours, letting aside
contact terms (in fact, these authors explicitly state that some contact terms are lacking
from their final expressions). Thus, their failure in identifying the g0 term in equation (10)
is not due to discrepancies in the final expressions. The underlying reason is rather more
mundane, as we explain below.

At first order the theory has the following behaviour. For small λ, z = λ + i0+, we
approximate the imaginary part of the propagator G0 by

Im G0(q, λ + i0+) = − π

2
√

λ
δ

(
q −

√
λ

c

)
(21)

(assuming a linear dispersion relation ε(p) ≈ c2p2). Then the only contribution to the

imaginary part comes from q =
√

λ/c. To evaluate the vertex V (q,p) at small q, and

small p we just need to recall that f̂(p) = g(p2). It is important to avoid any assumptions
about the ratio p/q, which can be either very large or very small when both p and q are
small (at the Brillouin peak p/q ∼ 1, but in [31] it was unjustifiedly assumed that p 
 q).
Then

V (q,p) = g(q2) − g(q2 + p2 − 2p · q)

≈ g(0) + g′(0)q2 − g(0) − g′(0)[q2 + p2 − 2p · q]

= −g′(0)[p2 − 2p · q]. (22)

If we now square the vertex function and perform the angular integral, we obtain (SD is
the surface of the sphere in D dimensions)

[g′(0)]2SD

(
p4 +

1

D
q2p2

)
. (23)

The integral over q is now straightforward, thanks to Dirac’s δ function in equation (15).
We get

Im Σ(1)(p, λ + i0+) ∝ −
[
λ(D−2)/2p4 + λD/2 p2

Dc2

]
. (24)

Hence, already at order 1/ρ, g0(p
2) in equation (10) is of order p4. Had we neglected the

p4 term in favour of the q2p2 term (as done in [31]), we would have failed in identifying
the g0 term. The physical reason for which the presence of such a term is mandatory
(namely the existence of a Debye spectrum) was discussed in the concluding paragraph
of section 2.
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Let us now check that the amplitude A in equation (8) vanishes. We merely need to
compute the imaginary part of the self-energy at its lowest order in λ, namely λ(D−2)/2.
A general term of the diagrammatic expansion involves the factor

∫
dDqG0(q, z) =

∫
dq dΩD qD−1G0(q, z), (25)

where we have expressed the measure in terms of polar coordinates in D dimensions.
Every bare propagator is associated to one or more vertices that are smooth functions of
the involved momenta. In fact, we can expand the product of such vertices in a Taylor
series. Now, the point is that, if we want the lowest order in z, we have to exclude all the
terms that are proportional to q and we have to take only the zeroth-order term of the
Taylor expansion. We can obtain this term simply making the following substitution:

˜Im

∫
dDqG0(q, λ + i0+) = −π

2
λ(D−2)/2

∫
dq dΩDδ(q) (26)

where ˜Im stands for the imaginary part proportional to λ(D−2)/2. Then

˜ImΣ
(2)
A (p, λ + i0+) = −π

2
λ(D−2)/2

∫
dq

∫
dΩD V 2(q, p) ∝ λ(D−2)/2p2 (27)

and

˜ImΣ
(2)
A (p, λ + i0+) = − ˜ImΣ

(2)
B (p, λ + i0+). (28)

It follows that the amplitude A vanishes, because the Σ
(2)
C contribution is already of order

p4:

˜ImΣ
(2)
C (p, λ + i0+) ∝ −2λ(D−2)/2V (p,p)Σ(1)(p, z) ∝ λ(D−2)/2p4. (29)

In the following, we will show explicitly that the cancellation of the λ(D−2)/2p2 term
arises even for a given topological class (quite large) of diagrams at 1/ρ3 order, and we
will provide an argument that predicts such a cancellation at any perturbative order.

4. The combinatorial computation

The first approach to the computation of the resolvent is based on the expansion of
equation (3) as a power series:

G(p, z) =

N∑

R=1

1

zR+1

⎛

⎝ lim
N→∞

1

N

N∑

i,j=1

eip·(xj−xi)[MR]ij

⎞

⎠ . (30)

Although the final results will only depend on p, in order to develop the formalism it is
convenient to reintroduce the dependence on p.
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4.1. Organizing the calculation. The bare propagator

4.1.1. Momentum shift: choosing wisely the integration order. The Rth term of the expansion
equation (30) is

∑

i0,i1,...,iR

1

N

N∑

i,j=1

eip·(xiR
−xi0

)[Mi0,i1Mi1,i2 · · ·MiR−1,iR], (31)

where the average over the vibrational centres take the form of a multi-dimensional integral
with measure

1

V N

∫ N∏

i=1

dxi.

As for all such integrals, although the final result is independent of the order in which the
individual integrals are performed, the difficulties encountered in a real computation are
dramatically smaller if one finds a wise ordering for iterated integrations.

Now consider the expression

e−ip·xil

[
δil,il+1

∑

kl �=il

f(xkl
− xil) − [1 − δil,il+1

]f(xil − xil+1
)

]
, (32)

which arises as a factor when introducing the explicit form (equation (2)) of M into
equation (31). When dealing with a diagonal term, we shall integrate over the position of
the medium particle, xkl

; when dealing with an off-diagonal term, we shall integrate over
xil . For a diagonal term, the integral over the position of the medium particle is easy, if
the particle index kl does not appear elsewhere in the chain (even if the index il is sure
to appear at least once more along the chain). For the non-diagonal term, the integral
over xil is very simple if it does not appear later in the chain (even if il+1 appears twice
or more times in the chain, to the right). The two integrals yield

1

V
[f̂(0)δil,il+1

− [1 − δil,il+1
]f̂(p)]e−ip·xil+1 .

Since a term of order R has R such factors, the number of values the index kl (or il) can
take without violating the non-repetition condition is between N and N − R. But both
N/V and (N − R)/V tend to ρ in the thermodynamic limit, hence momentum can shift
through non-index-repeating elements from left to right:

e−ip·xil

[
δil,il+1

∑

kl �=il

f(xkl
− xil) − [1 − δil,il+1

]f(xil − xil+1
)

]
−→ ρ[f̂(0) − f̂(p)]e−ip·xil+1 .

(33)

Similarly, momentum can shift through non-repeating elements from right to left. In that
case, one would integrate over xkl

(diagonal term) or over xil+1
(non-diagonal):

[
δil,il+1

∑

kl �=il

f(xkl
− xil) − [1 − δil,il+1

]f(xil − xil+1
)

]
eip·xil+1 −→ eip·xil ρ[f̂(0) − f̂(p)].

(34)
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Note that a given matrix element might be considered as non-repeating for momentum
shift from right to left, but it could not be suitable for the left-to-right momentum shift.

At this point, the computation of the leading order is straightforward. If there are no
obstacles for momentum shift, we just push the left exponential e−ip·xi0 to the right until
it cancels out with eip·xiR , leaving us with (since there are precisely R matrix elements)

ρR[f̂(0) − f̂(p)]R. (35)

Then the high-density limit of the sum in equation (30) is

G0(p, z) =
1

z − ε(p)
, (36)

which is then the bare propagator of the theory, as announced in equation (6).

4.1.2. Repeated indices. Now consider a situation where we can shift the external
momentum p from left to right until a particular particle index (say il = 1 or kl = 1) is
repeated in the chain somewhere to the right, so that we must stop. At this point, we
shift the external momentum from right to left, until a particle label repetition ir+1 = 2
or kr = 2 stop us. We depict this situation as

. . . 1 [stuff] 2 . . . . (37)

At this point we will have

ρS[f̂(0) − f̂(p)]Se−ip·xil 1 [stuff] 2eip·xir+1 ρL[f̂(0) − f̂(p)]L.

Since the very same scheme of particle label repetitions 1[stuff]2 can be found for all values
L, S = 0, 1, 2, . . ., we can sum all those terms to find a contribution

G0(p, z)e−ip·xil 1 [stuff] 2eip·xir+1G0(p, z).

We interpret the two factors G0(p, z) as the external legs for a Dyson resummation of the
self-energy.

Clearly particle label repetitions are going to be very important in what follows, so
some terminology will be useful. A generic factor[

δil,il+1

∑

kl �=il

f(xkl
− xil) − [1 − δil,il+1

]f(xil − xil+1
)

]
(38)

will be called an L-stop if particles kl or il are repeated somewhere to the right (so that
momentum cannot be shifted from left to right through index il). Similarly, we shall call it
an R-stop if kl or il+1 are repeated somewhere to the left. We note that a matrix element
can be both an L-stop and an R-stop (if kl is repeated both to the right and to the left,
or if il is repeated to the right while il+1 is repeated to the left).

To make momentum flow through an L-stop or R-stops we resort to the so-called
fake-particle trick. Consider a particle label, say 1, that appears twice (for instance, in
an L-stop and in an R-stop to its right). Before carrying out the average over {xi}, we
multiply the term by 1 written as

1 =

∫
dDy1̃ δ(x1 − y1̃) =

1

(2π)D

∫
dDy1̃ dDq eiq(x1−y1̃). (39)

Then we can pretend that particle 1 takes two identities, 1 and 1̃, so that there is no
repetition. The price we pay for this simplification is that:
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• we have an extra integration over the internal momentum q,

• we have to deal with an extra factor eiqx1 at the L-stop and an extra e−iqy1̃ at the
R-stop, and

• the fake particle y1̃ does not bring a combinatorial N factor or an 1/V from the
normalization of the y1 integral, so that there is a lacking factor of ρ (this we can
ignore if we add compensating 1/ρ to the final expression).

However, the modified momentum-shift formulae are simple enough to justify these
inconveniences. Integrating over x1 we obtain

e−ipxil eiqx1[δil,il+1
f(x1 − xil) − (1 − δ1,il+1

)δ1,ilf(x1 − xil+1
)] −→ V (q,p)e−i(p−q)xil+1 .

(40a)

Similarly, integrating over y1̃ at the R-stop, we have

[δir ,ir+1f(y1̃ − xir) − (1 − δ1,ir)δ1̃,ir+1
f(xir − y1̃)]e

ipxir+1e−iqy1̃ −→ ei(p−q)xir V (q,p). (40b)

As a warning on momentum shift, note that one may shift momentum from left to
right as long as there is nothing to the left still needing integration (and similarly for
right-to-left shifts). Momentum shift can be visualized as a zip with two heads: one pulls
both heads until they meet (and then there are no integrals left to be done).

4.1.3. The reduction formula. Imagine we face the situation

. . . 1[stuff]1 . . . ,

i.e. the leftmost stop is an L-stop at index position l, the rightmost stop is an R-stop
at index position r + 1 and the particle that prevents the two momentum shifts is the
same at both ends, say il = ir+1 = 1 or any other possible combination (kl = ir+1 = 1,
il = kr = 1 or kl = kr). If the particle label 1 does not appear again inside the brackets,
a nice reduction formula follows:

e−ipxil [δil,il+1
f(x1 − xil) − [1 − δ1,il+1

]δil,1f(x1 − xil+1
)] × [stuff] × [δir ,ir+1f(x1 − xir)

− [1 − δir ,1]δir+1,1f(xir − x1)]e
ipxir+1 −→ 1

ρ

∫
dDq

(2π)D
V 2(q,p)

× e−iqxil+1 [stuff]e+iqxir . (41)

This can be proved by averaging over x1. To adjust the power of ρ, just recall that there
were order N choices for (say) the index coincidence kl = ir+1 = 1. Note that the proof
of equation (41) involves doing four different integrals. Let us see how the fake-particle
formulae (equations (40)) yield the same result effortlessly. The introduction of the fake
particle transforms the left-hand side of equation (41) to

e−ipxil eiqx1[δil,il+1
f(x1 − xil) − (1 − δ1,il+1

)δ1,ilf(x1 − xil+1
)] × [stuff] × [δir ,ir+1f(y1̃ − xir)

− (1 − δ1,ir)δ1̃,ir+1
f(xir − y1̃)]e

ipxir+1e−iqy1̃ . (42)

We now merely shift momentum to the right using equation (40a) and to the left using
equation (40b) to obtain

1

ρ

∫
dDq

(2π)D
V (q,p)2 e−i(p−q)xil+1 × [stuff] × e+i(p−q)xir .
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Now a change of integration variable q −→ p − q and the second of the identities (19)
yield equation (41).

Both Σ(1) and Σ
(2)
A follow directly from equation (41). Also, more general expressions

can be found easily from it, as we shall see below.

4.2. Order 1/ρ

If no further particle label repetition arise, the momentum e−iq·xil+1 in equation (41) can
be shifted to the right until it is killed by the second exponential eiq·xir . We have then a
set of contributions of the form

∑

a+b+c+2=R

[ρ(f̂(0) − f̂(p))]a

za+1
× 1

ρ

∫
dDq

(2π)D
V 2(q,p)

[ρ(f̂(0) − f̂(q))]b

zb+1
× [ρ(f̂(0) − f̂(p))]c

zc+1
,

(43)

composed of the product of three harmonic series that are easily seen to add up to

G0(p, z) × 1

ρ

∫
dDq

(2π)D
V 2(q,p)G0(q, z) × G0(p, z). (44)

If we interpret the two factors G0(p, z) as external legs of a Dyson resummation, we get

Σ(1)(p, z) =
1

ρ

∫
dDq

(2π)D
V 2(q,p)G0(q, z), (45)

which is the first-order result anticipated in section 3.

4.3. Order 1/ρ2

The cases with two pairs of repeated indices, or one index occurring three times, contribute
to the second-order corrections. The contributions separate naturally into three kinds,
according to the arrangement of the repeated indices.

4.3.1. The nested case: Σ(2)
A . Take now the scheme of particle repetitions giving rise to

equation (43) and place it in between an external pair of particle repetitions:

. . . 2 . . . 1 . . . 1 . . . 2 . . . .

Assume that the index 2 happens twice and only twice in the chain. We are thus entitled
to use the reduction formula, equation (41), for particle 2. The inner momentum q can
then be shifted (from either side) until it hits particle 1, where it produces a contribution
such as equation (43). The only difference is in that the role previously played by the
external momentum p is now played by the internal momentum q. We get, without need
for further computation:

Σ
(2)
A (p, z) =

1

ρ

∫
dDq

(2π)3
V (q,p)G0(q, z)Σ(1)(q, z)G0(q, z)V (q,p). (46)
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4.3.2. The interleaved case: Σ(2)
B . The Σ

(2)
B piece in equation (16) arises from the pattern

. . . 1 . . . 2 . . . 1 . . . 2 . . . .

A moment’s thought indicates that the leftmost 1 must belong to an L-stop, while
the rightmost 2 must be an R-stop. Furthermore, the internal 2 should be an L-stop
(otherwise, one would use a fake particle to shift momentum from left to right over it
trivially). For the same reason, the internal 1 should belong to an R-stop.

Our previous success with the reduction formula, equation (41), suggests that we try
to deal with all such terms at once, by performing the integral

∫
dDx1 dDx2

V 2
e−ipxil [δil,il+1

f(x1 − xil) − (1 − δ1,il+1
)δ1,ilf(x1 − xil+1

)][· · ·]
× [δir ,ir+1f(x2 − xir) − (1 − δ2,ir+1)δ2,irf(x2 − xir+1)][· · ·]
× [δis,is+1f(x1 − xis) − (1 − δ1,is)δ1,is+1f(xis − x1)][· · ·]
× [δiz ,iz+1f(x2 − xiz) − (1 − δ2,iz)δ2,iz+1f(xiz − x2)]e

ipxiz+1 . (47)

Here the several [· · ·] stand for arbitrary numbers of matrix elements without momentum
stops arising. Note that not all the . . . 1 . . . 2 . . . 1 . . . 2 . . . terms have the form
equation (47): the central 2, 1 particles may also collapse onto a single matrix element
(necessarily non-diagonal) which is both an R-stop and an L-stop. Such terms will be
considered in section 4.3.3.

We now introduce two fake particles, 1̃ and 2̃, to transform the above integral into

∫
dDq dDk

(2π)2D

∫
dDx1 dDy1̃ dDx2 dDy2̃

V 2
e−ipxil

× [δil,il+1
eiqx1f(x1 − xil) − (1 − δ1,il+1

)δ1,ile
iqx1f(x1 − xil+1

)][· · ·]
× [δir ,ir+1e

ikx2f(x2 − xir) − (1 − δ2,ir+1)δ2,ire
ikx2f(x2 − xir+1)][· · ·]

× [δis,is+1e
−iqy1f(y1̃ − xis) − (1 − δ1̃,is)δ1̃,is+1

e−iqy1f(xis − y1̃)][· · ·]
× [δiz ,iz+1e

−iky2f(y2̃ − xiz) − (1 − δ2̃,iz)δ2̃,iz+1
e−iky2̃f(xiz − y2̃)]e

ipxiz+1 . (48)

One then shifts momentum from left to right up to is and from right to left again up to
is to find

1

ρ2

∫
dDq dDk

(2π)2D
V (q,p)G0(p− q, z)V (k,p− q)G0(p− q − k, z)

× V (q,p− k)G0(p− k, z)V (k,p). (49)

Equation (17b) follows after changing integration variables according to

p − q → q, and q − k → k. (50)

4.3.3. The collapse of an L-stop and an R-stop: Σ(2)
C . As we have remarked, it can happen

that the L-stop and R-stop of equation (47) actually belong to the same matrix element,
necessarily non-diagonal. However, any non-diagonal term should be paired with a
diagonal one. As we mentioned in section 4.1.1, a diagonal term can be both an L-
stop and an R-stop if the medium particle is repeated both to the left and to the right.
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Hence we will be considering here this kind of term (O: of diagonal matrix element, D:
diagonal matrix element):

1 . . . O(21) . . .2 + 1 . . .D(1) . . . 1. (51)

The terms with an off-diagonal index appearing three times (1 . . . O(1?) . . .1) do not

belong to Σ
(2)
C and are considered in section 4.3.4.

Let us start with the case 1 . . .D(1) . . . 1:
∫

dDx1

V
e−ipxil [δil,il+1

f(x1 − xil) − (1 − δ1,il+1
)δ1,ilf(x1 − xil+1

)][· · ·]
× δir ,ir+1f(x1 − xir)[· · ·][δis,is+1f(x1 − xis) − (1 − δ1,is)

× δ1,is+1f(xis − x1)]e
ipxis+1 . (52)

We now introduce two extra fake particles to substitute for particle 1, namely 1̃ and 1̂ via
the identity

1 =

∫
dDy1̃

∫
dDz1̂ δ(x1 − y1̃)δ(y1̃ − z1̂)

=
1

(2π)2D

∫
dDq dDk dDy1̃ dDz1̂ eiq(x1−y1̃)eik(y1̃−z1̂), (53)

to find
∫

dDq dDk

(2π)2D

∫
dDx1 dDy1̃ dDz1̂

V
e−ipxil [δil,il+1

f(x1 − xil) − (1 − δ1,il+1
)δ1,ilf(x1 − xil+1

)]

× eiqx1 [· · ·]δir ,ir+1f(y1̃ − xir)e
i(k−q)x̃1 [· · ·]e−ikz1̂

× [δis,is+1f(z1̂ − xis) − (1 − δ1̂,is+1
)δ1̂,is+1

f(xis − z1̂)]e
−ipxis+1 . (54)

Finally we shift momentum from left to right up to ir, from right to left up to ir+1 and
integrate over x̃1. We obtain

1 . . .D(1) . . . 1 =
1

ρ2

∫
dDq dDk

(2π)2D
V (q,p)G0(p− q, z)[ρf̂(k − q)]G0(p− k)V (k,p). (55)

Consider now 1 . . . O(21) . . .2:
∫

dDx1 dDx2

V 2
e−ipxil [δil,il+1

f(x1 − xil) − (1 − δ1,il+1
)δ1,ilf(x1 − xil+1

)][· · ·]
× [−δir ,2]δir+1,1f(x2 − x1)[· · ·][δis,is+1f(x2 − xis) − (1 − δ2,is)δ2,is+1

× f(xis − x2)]e
ipxis+1 . (56)

Introducing two fake particles, 1̃ and 2̃, we can rewrite it as
∫

dDq dDk dDx1 dDx2

(2π)2DV 2
e−ipxileiqx1 [δil,il+1

f(x1 − xil) − (1 − δ1,il+1
)δ1,ilf(x1 − xil+1

)][· · ·]
× [−e−iqy1̃ ]δir ,2δir+1,1̃f(x2 − y1̃)e

ikx2[· · ·][δis,is+1f(x2 − xis)

− (1 − δ2̃,is)δ2̃,is+1
f(xis − y2̃)]e

−iky2̃eipxis+1 . (57)

Shifting momentum left to right up to ir and from right to left up to ir+1 we are left with

− 1

V

∫
dDx2 dDy1̃ f(x2 − y1̃)e

−i(p−q−k)(x2−x1) = −f̂(p − q − k), (58)
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so that, adjusting the power of ρ, we get

1 . . . O(21) . . .2 =
1

ρ2

∫
dDq dDk

(2π)2D
V (q,p)G0(p− q, z)[−ρf̂ (p− q − k)]

× G0(p− k, z)V (k,p). (59)

Adding together the two pieces, equations (59) and (55), we finally find

Σ
(2)
C =

1

ρ2

∫
dDq dDk

(2π)2D
V (q,p)G0(p− q, z)V (k − q,p− 2q)G0(p− k, z)V (k,p), (60)

which after the change of variables

q −→ p − q, k −→ p− k, (61)

and use of identities equation (19) yield equation (17c).

4.3.4. The Dyson resummation to order 1/ρ2. Recalling equation (14), we notice that we
have still not identified the pattern of particle label repetitions that gives rise to the
second-order terms appearing in the Dyson resummation of the first-order self-energy:

Σ(1)(p, z)G0(p, z)Σ(1)(p, z), (62)

(we have not written the irrelevant external legs). The natural candidate is

1 . . . 1 . . . 2 . . . 2, (63)

where the sequence is L-stop, R-stop, L-stop, R-stop. This expectation is correct, but it
will turn out that the constraint imposed by the matrix-product structure needs extra
terms to build equation (62). These missing terms will be provided by the pattern
1 . . . O(1?) . . . 1.

Let us first compute blindly the term 1 . . . 1 . . . 2 . . . 2, incurring a quite instructive
mistake. We introduce only one fake particle, 1̃:

e−ipxil eiqx1[δil,il+1
f(x1 − xil) − (1 − δ1,il+1

)δ1,ilf(x1 − xil+1
)][· · ·]

× e−iqy1̃ [δir ,ir+1f(y1̃ − xir) − (1 − δ1̃,ir)δ1̃,ir+1
f(xir − y1̃)][· · ·]

× [δis,is+1f(x2 − xis) − (1 − δ2,is+1)δ2,isf(x2 − xis+1)][· · ·]
× [δiz ,iz+1f(x2 − xir) − (1 − δ2,iz)δ2,iz+1f(xir − x2)]e

ipxiz+1 . (64)

We shift momentum from left to right up to ir as usual. At this point, we still need to
push the momentum to the right (this is unusual). We need to perform two integrals:
∫

dDy1̃ e−i(p−q)xir e−iqy1̃[δir ,ir+1f(y1̃ − xir)] = f̂(q)eipxis+1 , (65)

∫
dDxir e−i(p−q)xir e−iqy1̃ [−(1 − δ1̃,ir)δ1̃,ir+1

f(xir − y1̃)] = −f̂(p− q)eipxis+1 . (66)

Hence the integrations up to this point yield

1

ρ

∫
dDq

(2π)D
V (q,p)G0(p − q, z)V (q,p)eipxis+1 = Σ(1)(p, z)eipxis+1 . (67)
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It seems to be an easy matter to complete the computation: one pushes momentum p
to the right up to is, seemingly yielding a bare propagator G0(p, z), and we would be
left with 2 . . . 2 (a standard diagram for the self-energy at order 1/ρ). However, after
some reflection it is clear that an R-stop and an L-stop such as . . . 1 . . . 2 . . ., where both
particle 1 and particle 2 appear in off-diagonal matrix elements, must be separated by at
least one off-diagonal matrix element. Hence if there are S matrix elements between the
R-stop and the L-stop, when shifting momentum p we will encounter a factor

ρS[f̂(0) − f̂(p)]S − [ρf̂(0)]S

which, adding the geometric series, means

G0(p, z) − 1

z − ρf̂(0)
.

Hence the correct result is

1 . . . 1 . . . 2 . . . 2 = Σ(1)(p, z)G0(p, z)Σ(1)(p, z)

− 1

z − ρf̂(0)

1

ρ2

∫
dDq dDk

(2π)2D
V (q,p)G0(p− q, z)[ρf̂(p − q)]

× [ρf̂(p − k)]G0(p− k, z)V (k,p). (68)

We will now show that the second term in equation (68) is cancelled by the
contribution from

1 . . . O(1?) . . .1.

In this pattern, the leftmost 1 belongs to an L-stop and the rightmost one to an R-stop.
The first observation is that the central 1 in the O(1?) must necessarily appear in an
R-stop (because we never find the same particle in any matrix element f(xi − xj), and
due to the constraint imposed by the matrix product). The second observation is that
there must be at least one off-diagonal matrix element between the two R-stops sharing
the common particle 1. Introducing fake particles 1 and 1̃, we are left with
∫

dDq dDk

(2π)2D

∫
dDx1 dDy1̃ dDz1̂

V
e−ipxil

× [δil,il+1
f(x1 − xil) − (1 − δ1,il+1

)δ1,ilf(x1 − xil+1
)]eiqx1[· · ·]

× [−(1 − δ1̃,ir+1
)δ1̃,ir+1

f(xir − y1̃)]e
i(k−q)y1̃ [· · ·]′

× e−ikz1̂ [δis,is+1f(z1̂ − xis) − (1 − δ1̂,is
)δ1̂,is+1

f(xis − z1̂)]e
−ipxis+1 . (69)

All that remains is a simple momentum shift, keeping in mind that, when going over the
factor [· · ·]′, it will give

G0(p− k, z) − 1

z − ρf̂(0)
= −ρf̂ (p− k)

G0(p − k, z)

z − ρf̂(0)
. (70)

Thus one finally finds

1 . . . O(1?) . . . 1 =
1

z − ρf̂(0)

1

ρ2

∫
dDq dDk

(2π)2D
V (q,p)G0(p − q, z)[ρf̂ (p− q)]

× [ρf̂(p − k)]G0(p− k, z)V (k,p). (71)
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4.4. Higher orders

The argument of section 4.3.1 is fully general. Consider the contribution of order 1/ρn

to the propagator, rather than the self-energy (i.e. let us include both the connected and
disconnected pieces). We can write this as G0(p, z)H(n)(p, z)G0(p, z). Let us emphasize
that H(n)(p, z) refers to the full contribution to the propagator at order 1/ρn, not to a
particular topological subset (such as the cactus [17]).

We may enclose the scheme of particle label repetitions that generates H (n)(p, z)
within an L-stop and an R-stop with equal particle labels that do not appear again
along the chain. Under such circumstances, we are entitled to use the reduction formula,
equation (41), which yields

Σ
(n+1)
A (p, z) =

1

ρ

∫
dDq

(2π)D
V (q,p)G0(q, z)H(n)(q, z)G0(q, z)V (q,p). (72)

Clearly this is not the full self-energy at order 1/ρn+1, but it is a genuine part of it that
automatically verifies

Σ
(n+1)
A (p, z) = 0. (73)

In particular if n = 1 this gives the 1/ρ2 term Σ2
A(p, z) discussed above. It is interesting

to note that

Im Σ
(n+1)
A (p, λ + i0+) ∼ p2λ(D−2)/2, (74)

since for q ∼ 1 and z = λ + i0+, for small λ it is expected that (for the Debye spectrum
see section 2)

Im H(n)(q, z) ∝ λ(D−2)/2. (75)

Thus, the vanishing of the amplitude A in equation (8) implies that non-trivial
cancellations occur at all orders in perturbation theory. Since we are presenting arguments

for such a cancellation, we agree with [31] in that the Σ
(n+1)
A terms alone do not reproduce

the correct analytic structure of the theory.

4.4.1. Towards the self-energy at third order. Using the combinatorial rules described above,
it is possible to push the perturbative computation to order 1/ρ3, which has never been
attempted before. Here we will limit ourselves to the terms without collapse of an R-stop
with an L-stop (i.e. we will retain only the terms with 6 vertex functions). The reason is
that the combinatorial computation suggests very simple Feynman rules that can be used
to obtain the diagrams, without lengthy computations. The purpose is to check that, at
least within this subclass of diagrams, the cancellation of the prefactor of the p2ωD−2 term
still occurs.

Let us describe the Feynman rules. Take for instance a term such as

L1 . . .L3 . . .L2 . . .R3 . . .R1 . . .R2.

The rules are as follows:

(1) Draw an horizontal full line and mark on it the stops (preserving the ordering).

(2) Join the corresponding L- and R-stops with a dashed line.
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(3) The diagram has an incoming momentum p, from left to right.

(4) Attach a momentum to every line (full or dashed), applying momentum conservation
at each stop.

(5) Associate a bare propagator, G0, to each full line.

(6) Associate a vertex function to every stop, such that its first argument is always the
momentum running over the dotted line.

(7) For an L-stop, the second argument of the vertex will be the momentum running over
the full line to its left.

(8) For an R-stop, the second argument of the vertex will be the momentum running over
the full line to its right.

(9) Multiply by 1/ρ3 and integrate over the internal momenta.

Applying these rules to the patterns without stop collapse, we obtain the following
contributions.

(a) Terms L1 . . .L2 . . .L3 . . .R3 . . .R2 . . .R1.

I1 = =
1

ρ3

∫
dDq dDk dDl

(2π)3D

× V (p− q,p)G0(q, z)V (q − k,q)G0(k, z)V (k − l,k)

× G0(l, z)V (k − l,k)G0(k, z)V (q − k,q)G0(q, z)V (p− q,p). (76)

Now we wish to compute (SD : surface of the unit sphere in D dimensions) the limit

J1 = −(2π)D

πSD

lim
z→0+

Im I1(p, z)

z(D−2)/2
, (77)

and in general, Jk, defined from Ik(p, z) as the same limiting procedure.
The rules to obtain the limit painlessly are simple:

(1) Locate a propagator, G(q), whose running momentum is never a second argument of
a vertex function V (·, q).

(2) Substitute that propagator by −(πSD/(2π)D)z(D−2)/2δ(q) and perform the q integral.

(3) Apply the simplification

G0(q, z)V (q,q) =
V (q,q)

z + V (q,q)
= 1 + O(z). (78)

For I1 only l = 0 gives a contribution to J1, hence

J1 =
1

ρ3

∫
dDq dDk

(2π)2D
V (p− q,p)G0(q, z)V (q − k,q)V (q − k,q)

× G0(q, z)V (p− q,p). (79)
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(b) Terms L1 . . .L2 . . .L3 . . .R2 . . .R3 . . .R1

I2 = =
1

ρ3

∫
dDq dDk dDl

(2π)3D

× V (p− q,p)G0(q, z)V (q − k,q)G0(k, z)V (k − l,k)

× G0(l, z)V (q − k,q − k + l)

× G0(q − k + l, z)V (k − l,q)G0(q, z)V (p− q,p). (80)

For I2 one easily realizes that only l = 0 contributes to J2:

J2 =
1

ρ3

∫
dDq dDk

(2π)2D
V (p− q,p)G0(q, z)V (q − k,q)V (k,q)G0(q, z)V (p− q,p). (81)

Since V (q − k,q) = −V (k,q), one has J2 = −J1.

(c) Terms L1 . . .L2 . . .R2 . . .L3 . . .R3 . . .R1

I3 = =
1

ρ3

∫
dDq dDk dDl

(2π)3D

× V (p− q,p)G0(q, z)V (q − k,q)G0(k, z)V (q − k,q)

× G0(q, z)V (q − l,q)G0(l, z)V (q − l,q)G0(q, z)V (p− q,p). (82)

Both k = 0 and l = 0 contribute to J3 (for k = 0 we changed the dummy variable l to k):

J3 =
2

ρ3

∫
dDq dDk

(2π)2D
V (p− q,p)V (q − k,q)G0(k, z)V (q − k,q)G0(q, z)V (p− q,p).

(83)

(d) Terms L1 . . .L3 . . .R3 . . .L2 . . .R1 . . .R2

I4 = =
1

ρ3

∫
dDq dDk dDl

(2π)3D

× V (p− q,p)G0(q, z)V (q − k,q)G0(k, z)V (q − k,q)

× G0(q, z)V (q − l,q)G0(l, z)V (p− q,p− q + l)

× G0(p− q + l, z)V (q − l,p). (84)

For J4 both k = 0 and l = 0 are relevant:

J4 =
1

ρ3

∫
dDq dDk

(2π)2D
V (p− q,p)V (q − k,q)G0(k, z)V (p− q,p− q + k)

× G0(p− q + k, z)V (q − k,p) +
1

ρ3

∫
dDq dDk

(2π)2D
V (p− q,p)

× G0(q, z)V (q − k,q)G0(k, z)V (q − k,q)V (q,p). (85)
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(e) Terms L1 . . .L2 . . .L3 . . .R3 . . .R1 . . .R2

I5 = =
1

ρ3

∫
dDq dDk dDl

(2π)3D

× V (p− q,p)G0(q, z)V (q − k,q)G0(k, z)V (k − l,k)

× G0(l, z)V (k − l,k)G0(k, z)V (p− q,p− q + k)

× G0(p− q + k, z)V (q − k,p). (86)

The only relevant contribution is now l = 0:

J5 =
1

ρ3

∫
dDq dDk

(2π)2D
V (p− q,p)G0(q, z)V (q − k,q)V (p− q,p− q + k)

× G0(p− q + k, z)V (q − k,p). (87)

(f) Terms L1 . . .L2 . . .R1 . . .L3 . . .R3 . . .R2

I6 = =
1

ρ3

∫
dDq dDk dDl

(2π)3D

× V (p− q,p)G0(q, z)V (q − k,q)G0(k, z)V (p − q,p − q + k)

× G0(p− q + k, z)V (p− q + k − l,p− q + k)G0(l, z)

× V (p− q + k − l,p− q + k)G0(p− q + k, z)V (q − k,p). (88)

J6 stems both from k = 0 and from l = 0. For the k = 0 contribution, we make the
change of variable q −→ p− q to identify the cancellation with J3:

J6 =
1

ρ3

∫
dDq dDk

(2π)2D
V (q,p)V (q − k,q)G0(k, z)V (q − k,q)G0(q, z)V (p− q,p)

+
1

ρ3

∫
dDq dDk

(2π)2D
V (p − q,p)G0(q, z)V (q − k,q)G0(k, z)

× V (p− q,p− q + k)V (q − k,p). (89)

(g) Terms L1 . . .L2 . . .L3 . . .R1 . . .R3 . . .R2

I7 = =
1

ρ3

∫
dDq dDk dDl

(2π)3D

× V (p− q,p)G0(q, z)V (q − k,q)G0(k, z)V (k − l,k)

× G0(l, z)V (p− q,p − q + l)G0(p− q + l, z)

× V (k − l,p− q + k)G0(p − q + k, z)V (q − k,p). (90)
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Only l = 0 contributes to J7:

J7 =
1

ρ3

∫
dDq dDk

(2π)2D
V (p− q,p)G0(q, z)V (q − k,q)V (k,p− q + k)

× G0(p− q + k, z)V (q − k,p). (91)

(h) Terms L1 . . .L3 . . .L2 . . .R1 . . .R3 . . .R2

I8 = =
1

ρ3

∫
dD q dDk dDl

(2π)3D

× V (p− q,p)G0(q, z)V (q − k,q)G0(k, z)V (k − l,k)

× G0(l, z)V (p− q,p − q + l)G0(p− q + l, z)V (q − k,p + l − k)

× G0(p + l − k, z)V (k − l,p). (92)

Again, only l = 0 matters:

J8 =
1

ρ3

∫
dDq dDk

(2π)2D
V (p− q,p)G0(q, z)V (q − k,q)V (q − k,p − k)G0(p− k, z)V (k,p).

(93)

(i) Terms L1 . . .L3 . . .L2 . . .R3 . . .R1 . . .R2

I9 = =
1

ρ3

∫
dDq dDk dDl

(2π)3D

× V (p− q,p)G0(q, z)V (q − k,q)G0(k, z)V (k − l,k)

× G0(l, z)V (q − k,q − k + l)G0(q − k + l, z)V (p− q,p− k + l)

× G0(p− k + l, z)V (k − l,p). (94)

And, once again, only l = 0 contributes:

J9 =
1

ρ3

∫
dDq dDk

(2π)2D
V (p− q,p)G0(q, z)V (q − k,q)V (p− q,p− k)G0(p− k, z)V (k,p).

(95)

(j) Terms L1 . . .L3 . . .R1 . . .L2 . . .R3 . . .R2

I10 = =
1

ρ3

∫
dDq dDk dDl

(2π)3D

× V (p− q,p)G0(q, z)V (q − k,q)G0(k, z)V (p − q,p − q + k)

× G0(p− q + k, z)V (p− q + k − l,p− q + k)G0(l, z)

× V (q − k,q − k + l)G0(q − k + l, z)V (p − q + k − l,p). (96)
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Here we have a contribution from k = 0 as well as from l = 0:

J10 =
2

ρ3

∫
dDq dDk

(2π)2D
V (p− q,p)V (p− q − k,p− q)G0(k, z)V (q,q + k)

× G0(q + k, z)V (p− q − k,p). (97)

4.4.2. Resummation of the imaginary parts. The resummation of the imaginary parts of
the previous diagrams is simple. Using the properties of the vertex V (p,q) and changing
carefully the integration variables when necessary we can show that

J1 + J2 = 0 (98)

J3 + J4 + J6 + J10 = 0 (99)

J5 + J7 = 0 (100)

J8 + J9 = 0 (101)

so that
10∑

i=1

Ji = 0, (102)

and the total contribution to the imaginary part proportional to z(D−2)/2 vanishes.

5. A field theory approach

In this section we will introduce a field-theoretical representation for the resolvent G(p, z).
Within this formalism one is able to obtain the perturbative computation for the self-
energy in a more straightforward way than with previous formulations [15]. Interestingly
enough, due to the ultraviolet behaviour of the bare propagator of the field involved, such
a perturbative expansion yields some divergent terms that can be summed up to zero.
The starting point is the following representation for the resolvent:

G(p, z) =

1

N

∑

ij

eip·(xi−xj)

∫
(
∏N

i dφi)φiφj exp{−(1/2)
∑

lm φl[(z−
∑

k f(xl−xk))δlm+f(xl−xm)]φm}∫
(
∏N

i dφi) exp{−(1/2)
∑

lm φl[(z−
∑

k f(xl−xk))δlm+f(xl−xm)]φm}
.

(103)

Introducing the fields

φ(x) ≡
{

φi x = xi,

arbitrary x �= xi,
(104)

ρ(x) ≡ 1

ρ

∑

k

δ(x − xk), (105)
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one has

G(p, z) =
ρ2

N

∫
dDx dDyeip·(x−y)

ρ(x)ρ(y)

Zρ

∫ ( N∏

i

dφ(xi)φ(x)φ(y) exp{Sρ[φ]}
)

, (106)

where we have introduced the action and the partition function at a fixed realization of
the disorder, given respectively by

Sρ[φ] = −ρ

2

∫
dDx dDy φ(x)

[
zρ(x)δ(x − y) − ρρ(x)δ(x − y)

∫
dDσ f(x − σ)ρ(σ)

+ ρρ(x)f(x − y)ρ(y)

]
φ(y), (107)

Zρ =

∫ ( N∏

i

dφ(xi)

)
exp{Sρ[φ]}. (108)

Now we note that the action equation (107) depends on the field φ only through the
values that it assumes on the random positions {xi}. In fact, in the action, the field φ is
always multiplied by the random field ρ, which selects the random points of the lattice
{xi}. So, we can substitute the discretized functional measure with the continuous one:
this is a crucial step. The continuous version of the functional integral is invariant under
the following transformation of the field φ, which we shall call a gauge transformation:

φ′(x) = φ(x) + h(x), with h(xi) = 0, i = 1, . . . , N. (109)

This is a local transformation, but we can see that its global version is trivial because
the condition equation (109) implies that a global transformation can be possible only for
h = 0. This local symmetry is not present in other field-theoretic formulations [15].

We now look at the resolvent: it can be written in the form

G(p, z) =

∫
dDx dDyeip·(x−y) ρ

2

N
ρ(x)ρ(y)〈φ(x)φ(y)〉, (110)

where 〈·〉 stands for the average over the action Sρ[φ]. We immediately see that
ρ(x)ρ(y)〈φ(x)φ(y)〉 is gauge-invariant. With the change of variables

ρ(x) = 1 + δρ(x) (111)

the resolvent can be written

G(p, z) =

∫
dDx dDyeip·(x−y)

{
ρ2

N
〈φ(x)φ(y)〉 + 2

ρ2

N
δρ(x)〈φ(x)φ(y)〉

+
ρ2

N
δρ(x)δρ(y)〈φ(x)φ(y)〉

}
, (112)

with the action

Sρ[φ] = −ρ

2

∫
dDx dDy φ(x)[(z − ρf̃(0))δ(x − y) + ρf(x − y)]φ(y)

− ρ

2

∫
dDx dDy dσ φ(x)φ(y)δρ(σ)V3(x,y, σ)

− ρ

2

∫
dDx dDy dσ dγ φ(x)φ(y)δρ(σ)δρ(γ)V4(x,y, σ, γ), (113)
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where

V3(x,y, σ) = [(z − ρf̂(0))δ(x − y)δ(σ − x) − ρδ(x − y)f(x− σ)

− ρf(x − y)(δ(x − σ) + δ(σ − y))], (114)

V4(x,y, σ, γ) = ρδ(γ − x)f(x − y)δ(y − σ) − ρδ(γ − x)δ(x − y)f(x − σ). (115)

Note that the first term of equation (112), when computed in the limit δρ = 0 of
the action (equation (113)), yields the bare propagator G0(p, z). The first term then
corresponds to the free (Gaussian) part of the field theory and the terms involving three
and four fields are the interacting part. The latter can be treated perturbatively using
standard diagrammatic techniques of field theory. One can easily see from the form of the
interacting terms that in such diagrams no loops involving the δρ field may arise because,
at fixed disorder, it acts as an external field while a generic n-loop diagram comes from
the average over the disorder and yields a 1/ρn contribution to the resolvent.

5.1. The correlation functions for the density field

In order to perform the loop expansion one needs the n-point correlation functions of the
δρ field. Since

ρ(x) = 1 + δρ(x) =

∫ ( N∏

i

dDxi

V

)
1

ρ

N∑

k

δ(x − xk) =
1

ρ

N

V
= 1, (116)

one has

δρ(x) = 0. (117)

Similarly, the fact that

ρ(x)ρ(y) = 1 + δρ(x) + δρ(y) + δρ(x)δρ(y) = 1 + δρ(x)δρ(y)

=
1

ρ2

N∑

k

N∑

j

∫ ( N∏

i

dDxi

V

)
δ(x − xk)δ(y − xj)

=
1

ρ2

∑

k �=j

∫ ( N∏

i

dDxi

V

)
δ(x − xk)δ(y − xj)

+
1

ρ2

N∑

k

∫ ( N∏

i

dDxi

V

)
δ(x − xk)δ(y − xk)

=
N(N − 1)

ρ2V 2
+

N

V ρ2
δ(x − y) −→ 1 +

1

ρ
δ(x − y) (118)

implies that

δρ(x)δρ(y) =
1

ρ
δ(x − y). (119)

To carry our the perturbative expansion up to order 1/ρ2, the three- and four-point
correlations are needed. These can be derived according to the lines described above,
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giving

δρ(x)δρ(y)δρ(z) =
1

ρ2
δ(x − y)δ(y − z) = δρ(x)δρ(y) · δρ(y)δρ(z), (120)

δρ(x)δρ(y)δρ(z)δρ(t) =
1

ρ3
δ(x − y)δ(y − z)δ(z− t) + δρ(x)δρ(y) · δρ(z)δρ(t)

+ δρ(x)δρ(z) · δρ(y)δρ(t) + δρ(x)δρ(t) · δρ(y)δρ(z). (121)

5.1.1. The general expression. We may write as well the expression for the arbitrary n-
point correlation δρ(y1)δρ(y2) · · · δρ(yk), needed to compute the self-energy to order 1/ρ3

or higher in the field theory. To give our result, we shall need some notations.
Let ω be an arbitrary partition of the set {1, 2, . . . , k} into subsets. For instance,

for k = 4, ω could be a partition into two subsets, such as ω = {{1, 2}, {3, 4}} or
{{1, 3}, {2, 4}}, or a partition into four subsets such as {{1}, {2}, {3}, {4}}, etc. Let
‖α‖ be the cardinality of the set α, for instance, if ω = {{1, 2}, {3, 4}}, then ‖ω‖ = 2.

We also define P(k), the set of all possible partitions of {1, 2, . . . , k}. Given a partition
ω, the subsets associated with it will be Ωl,ω, with l = 1, 2, . . . , ‖ω‖. We shall need to
consider H(k), a subset of the set of all partitions P(k). H(k) is made of all partitions ω
such that ‖Ωl,ω‖ > 1 for all l = 1, 2, . . . , ‖ω‖, i.e. partitions in which none of the subsets
contains less than two integers. Then the general result is

δρ(y1)δρ(y2) · · · δρ(yk) =
∑

ω∈H(k)

1

ρk−‖ω‖

⎡

⎣
‖ω‖∏

l=1

⎛

⎝
‖Ωl,ω‖−1∏

r=1

δ(y
α

(l,ω)
r

− y
α

(l,ω)
r+1

)

⎞

⎠

⎤

⎦ . (122)

The proof is given in the appendix. To recover equation (120) from this formula, note
that the set H(3) of allowed partitions of {x,y, z} contains a single partition, with
just one subset (‖ω‖ = 1), namely ω = {{x,y, z}}. On the other hand, to obtain
equation (121) we need the set H(4) of allowed partitions for {{x,y, z, t}}. There are four
such partitions, namely ω1 = {x,y, z, t}, ω2 = {{x,y}, {z, t}}, ω3 = {{x, z}, {y, t}} and
ω4 = {{x, t}, {y, z}}. Clearly, ‖ω1‖ = 1, while ‖ω2‖ = ‖ω3‖ = ‖ω4‖ = 2.

5.2. Diagrammatic expansion: one loop

In order to write down the one-loop term it turns out to be convenient to write V3 and V4

in terms of the interaction vertex (equation (18)):
∫

dDx dDσeip1·x+ip2·σV3(x,y, σ) = [G−1
0 (p1) − V (p2,−p1)]e

i(p1+p2)·y

≡ μ(p1,p2)e
i(p1+p2)·y (123)

∫
dDx dDσ dDγ eip1·x+ip2·σ+ip3·γV4(x,y, σ, γ) = −V (p2,−p1)e

i(p1+p2+p3)·y. (124)

The latter expression depends only on two momenta. Thus when the vertex V4 is involved,
one has to make its expression symmetric by joining the δρ propagators with the two
possible external links offered by this vertex.
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Figure 1. Diagrammatic notation.

Figure 1 defines our diagrammatic notation. Note that the vertex V4 is not symmetric
under the interchange of the two δρ lines. Now we are able to write down the one-loop
diagrams.

Recalling that the resolvent G(p, z) is given by equation (112), we compute the one-

loop contribution to 〈φ(x)φ(y)〉:

L
(1)
1 ≡ =

G2
0(p, z)

ρ

∫
dDq

(2π)D
G0(p− q, z)μ2(p,−q) (125)

= 0 (126)

The last diagram gives a general result: every tadpole made with a vertex with four fields
gives a vanishing contribution due to the form of the vertex. The term with one external
δρ insertion, arising from δρ(x)〈φ(x)φ(y)〉 is given by

L
(1)
2 ≡ = −2G2

0(p, z)

ρ

∫
dDq

(2π)D
G0(p− q, z)μ(p,−q) (127)

The last contribution to the self-energy at one loop comes from δρ(x)δρ(y)〈φ(x)φ(y)〉 and
is

L
(1)
3 ≡ =

1

ρ

∫
dDq

(2π)D
G0(p− q, z). (128)
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Note that this last contribution has an ultraviolet divergence since the propagator goes to
a finite constant when the internal momentum goes to infinity. Nevertheless, by adding
the four diagrams

L
(1)
1 + L

(1)
2 + L

(3)
1 =

1

ρ

∫
dDq

(2π)D
G0(p− q, z)[μ(p,−q)G0(p, z) − 1]2

=
G2

0(p, z)

ρ

∫
dDq

(2π)D
G0(q, z)V 2(q,p) ≡ G2

0(p, z)Σ(1)(p, z), (129)

the divergence disappears and one recovers the combinatorial result for the one-loop self-
energy.

5.3. Two loops

Let us first consider the two-loop diagrams arising from 〈φ(x)φ(y)〉:

L
(2)
1 ≡ =

G2
0(p, z)

ρ2

∫
dDq dDk

(2π)2D
G2

0(q, z)G0(q − k, z)

× μ2(p,q − p)μ2(q,−k) (130)

L
(2)
2 ≡ =

G2
0(p, z)

ρ2

∫
dDq dDk

(2π)2D
G0(q, z)G0(k, z)G0(p− q − k, z)

× μ(p,q − p)μ(p,k − p)μ(q,k − p)μ(k,q − p) (131)

L
(2)
3 ≡ = −G2

0(p, z)

ρ2

∫
dDq dDk

(2π)2D
G0(q, z)G0(k, z)μ(p,q − p)

× μ(p,k − q)μ(p,k − p) (132)

L
(2)
4 ≡ =

G2
0(p, z)

ρ2

∫
dDq dDk

(2π)2D
G0(q, z)G0(k, z)μ(p,q − p)μ(p,k − p)

× [V (p− q,−q) − V (k − p,−q)] (133)

L
(2)
5 ≡ = −2G2

0(p, z)

ρ2

∫
dDq dDk

(2π)2D
G0(q, z)G0(q − k, z)μ(q,−k)

× [ − V (p− q,k − q) − V (k,k − q)] (134)

L
(2)
6 ≡ =

G2
0(p, z)

ρ2

∫
dDq dDk

(2π)2D
G0(p− q − k, z)V (q,p)

× [V (q,k + q − p) + V (k,k + q − p)] (135)

L
(2)
7 ≡ =

G3
0(p, z)

ρ2

∫
dDq dDk

(2π)2D
G0(k, z)G0(q, z)μ2(p,q − p)

× μ2(p,k − p). (136)
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The diagram L
(2)
7 seems to be already included in the Dyson resummation of the one-

loop result. However, since diagrams with one and zero external legs have to be included
in the diagrammatic expansion, it also provides a genuine contribution to the two-loop

result. Note that in order to obtain L
(2)
3 one uses equation (120) for the three-point

correlation of δρ. The other diagrams involve only the disconnected part of the four-point
correlation function, while the connected one would only matter at three loops.

Next we must consider the contribution arising from δρ(x)〈φ(x)φ(y)〉:

L
(2)
8 ≡ = −2G0(p, z)

ρ2

∫
dDq dDk

(2π)2D
G2

0(q, z)G0(q − k, z)μ(p,q − p)

× μ2(q,−k) (137)

L
(2)
9 ≡ = −2G0(p, z)

ρ2

∫
dDq dDk

(2π)2D
G0(q, z)G0(k, z)G0(p− q − k, z)

× μ2(k,q − p)μ(q,k − p)μ(p,k − p) (138)

L
(2)
10 ≡ =

2G0(p, z)

ρ2

∫
dDq dDk

(2π)2D
G0(q, z)G0(k, z)μ(q,k − q)

× μ(p,k − p) (139)

L
(2)
11 ≡ = −2G0(p, z)

ρ2

∫
dDq dDk

(2π)2D
G0(q, z)G0(k, z)μ(q,k − q)

× [V (p− q,−k) + V (q − k,−k)] (140)

L
(2)
12 ≡ = −2G0(p, z)

ρ2

∫
dDq dDk

(2π)2D
G0(q, z)G0(k, z)μ(p,k − p)

× [V (p− q,−q) + V (k − p,−q)] (141)

L
(2)
13 ≡ = −2G2

0(p, z)

ρ2

∫
dDq dDk

(2π)2D
G0(q, z)G0(k, z)μ2(p,k − p)

× μ(p,q − p). (142)

As before, we have used the disconnected part of the four-point function, apart from L
(2)
10

where we have used the three-point function. Note also that L
(2)
13 arises both in the Dyson

resummation and in the two-loop expansion.
Finally, we consider the diagrams arising from δρ(x)δρ(y)〈φ(x)φ(y)〉:

L
(2)
14 ≡ =

1

ρ2

∫
dDq dDk

(2π)2D
G2

0(q, z)G0(q − k, z)μ2(q,−k) (143)

L
(2)
15 ≡ =

1

ρ2

∫
dDq dDk

(2π)2D
G0(q, z)G0(k, z)G0(p− q − k, z)

× μ2(q,k − p)μ(k,q − p) (144)
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L
(2)
16 ≡ = − 1

ρ2

∫
dDq dDk

(2π)2D
G0(q, z)G0(k, z)μ(q,k − q) (145)

L
(2)
17 ≡ =

1

ρ2

∫
dDq dDk

(2π)2D
G0(q, z)G0(k, z)

× [V (p− q,−q) + V (k − p,−q)] (146)

L
(2)
18 ≡ =

G0(p, z)

ρ2

∫
dDq dDk

(2π)2D
G0(q, z)G0(k, z)

× μ(p,q − p)μ(p,k − p). (147)

We now show how the diagrams can be summed up to give the combinatorial expressions

for the self-energy. Consider the diagram L
(2)
1 ; it has the same topology (in the sense of

momenta flow and vertex positions) of Σ
(2)
A . In fact, it can be combined with L

(2)
8 and

L
(2)
14 to give

L
(2)
1 + L

(2)
8 + L

(2)
14 =

1

ρ2

∫
dDq dDk

(2π)2D
G2

0(p, z)G2
0(q, z)G0(q − k, z)

× V 2(p− q,p)μ2(q,−k) (148)

= Σ
(2)
A (p, z) + Ω1(p, z), (149)

where we have defined

Ω1(p, z) =
1

ρ2

∫
dDq dDk

(2π)2D
[G2

0(p, z)G0(k, z)V 2(p− q,p) − 2G2
0(p, z)G0(q, z)

× G0(k, z)V 2(p− q,p)V (q − k, q)]. (150)

In the same way we can combine L
(2)
2 , L

(2)
9 and L

(2)
15 ; they have the same topology of

ΣB(p, z):

L
(2)
2 + L

(2)
9 + L

(2)
15 =

1

ρ2

∫
dDq dDk

(2π)2D
G0(q, z)G0(k, z)G0(p− q − k, z)μ(q,k − p)

× μ(k,q − p)V (p − q,p)V (p− k,p) = Σ
(2)
B (p, z) + Ω2(p, z) (151)

where

Ω2(p, z) =
1

ρ2

∫
dDq dDk

(2π)2D
[G2

0(p, z)G0(p − q − k, z)V (p − q,p)V (p− k,p)

− 2G2
0(p, z)G0(q, z)G0(k, z)V (q + k,p)V (p− k,p)V (q + k,k)]. (152)

We now add the diagrams L
(2)
7 , L

(2)
13 and L

(2)
18 because they produce the Dyson

resummation of the self-energy at one loop that we want to isolate from the other
contributions that have to be included in the self-energy at two loops. They give

L
(2)
7 + L

(2)
13 + L

(2)
18 =

1

ρ2

∫
dDq dDk

(2π)2D
G3

0(p, z)G0(q, z)G0(k, z)V (p− q,p)

× V (p− k,p)μ(p,q − p)μ(p,k − p) = G0(p, z)Σ(1)(p, z)

× G0(p, z)Σ(1)(p, z)G0(p, z) + Ω3(p, z), (153)
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where

Ω3(p, z) =
1

ρ2

∫
dDq dDk

(2π)2D
[G0(p, z)G0(q, z)G0(k, z)V (p − q,p)V (p− k,p)

× (1 − 2G0(p, z)V (p− q,p))]. (154)

At this point one can check that

Ω1(p, z) + Ω2(p, z) + Ω3(p, z) + L
(2)
3 + L

(2)
4 + L

(2)
5 + L

(2)
6 + L

(2)
10 + L

(2)
11 + L

(2)
12 + L

(2)
16 + L

(2)
17

= Σ
(2)
C (p, z) (155)

and the combinatorial result is recovered.

5.4. The small p behaviour

We will now prove that the prefactor of the term p2λ(D−2)/2 is zero to all orders in
perturbation theory. For this purpose, the field theory approach turns out to be very
convenient. Consider the vertex V3 with three fields:

= G−1
0 (p, z) + V (q,p) = z − ρf̂(0) + ρf̂(p) + ρf̂(q) − ρf̂(p− q). (156)

It is easy to see that this vertex is symmetric and can be written as

V3 = z + S(p,q), where S(p,q) = S(q,p). (157)

Moreover one can check directly that

S(p, 0) = S(0,p) = 0. (158)

Consider now the vertex with four fields. We see that the Wick contractions between the
fields δρ symmetrize the vertex. In fact in every diagram this vertex appears in the form

= −(V (k,−p) + V (q − p − k,−p))

= −ρ(f̂(k) − f̂(p + k) + f̂(q − p − k) − f̂(q − k)). (159)

The important thing is that this vertex vanishes when one of the two G0 bare propagators
carries a null momentum. Consider now a diagram that arises from the expansion of the
resolvent G(p, z). At the lowest order in z when the diagram contains some three-field
vertices one has to consider only the symmetric part of these vertices. Let us apply the
method explained above in order to extract the contribution to the self-energy proportional
to z(D−2)/2. Apparently, if one sets to zero the momentum of a bare propagator that enters
into a vertex then its contribution to the imaginary part vanishes. This seems very strange

because from this argument it follows that only L
(1)
3 contributes to the imaginary part.

Moreover if we consider the two-loop contributions we see that there are no contributions
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to the imaginary part of the self-energy because the diagrammatic expansion L
(2)
1 –L

(2)
18

contains at least one vertex that vanishes when we set to zero one of the momenta brought
by a φ propagator. However, the argument is not complete. Actually, the diagrammatic

expansion L
(2)
1 –L

(2)
18 does not contain only the contribution

G0(p, z)Σ(2)(p, z)G0(p, z) (160)

since it contains also the Dyson resummation of the one-loop self-energy. This is the fact
that completes the argument and will lead us to prove that a contribution proportional
to z(D−2)/2p2 cannot appear at any order in perturbation theory.

We start checking the argument just given at the one-loop level. Let us introduce the
notation

= G−1
0 (p, z), (161)

so that the self-energy at one loop can be written diagrammatically as

Σ(1)(p, z) = + + . (162)

From this expansion and from the above argument one sees that the imaginary part of
the self-energy (we will refer always to the imaginary part proportional to z(D−2)/2) may
come from the last diagram and is correctly given by

˜Im lim
ε→0+

Σ(1)(p, z + iε) ∝ z(D−2)/2V 2(p,p), (163)

which is also the contribution that can be easily calculated from the combinatorial
expression. Now consider the expansion at two loops. From the combinatorial expressions

of the self-energy we immediately see that the imaginary part comes from only Σ
(2)
C and

can be rewritten in the form

˜Im lim
ε→0

Σ(2)(p, z + iε) ∝ −2z(D−2)/2V (p,p)Σ(1)(p, z). (164)

Consider now the diagrammatic expansion for the two-loop self-energy L
(2)
1 –L

(2)
18 . We have

to extract from this expansion the term

Σ(1)(p, z)G0(p, z)Σ(1)(p, z). (165)

Now we will do this in a diagrammatic way. Consider the diagrammatic expansion for
the above term (figure 2). If we want the imaginary part of the self-energy proportional
to z(D−2)/2 we have to consider the term

Λ(p, z) ≡ [G0(p, z)]−1
18∑

i=1

L
(2)
i [G0(p, z)]−1

and the diagrams in figure 2. When we calculate this contribution we have to set to zero
the momentum carried by one internal propagator G0 so that the contribution coming
from Λ(p, z) does not matter. We have to calculate only the term coming from the Dyson
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Figure 2. Diagrammatic expression for equation (165).

resummation so that the imaginary part of the self-energy at two loops is given by

˜Im lim
ε→0+

Σ(2)(p, z + iε) = −2

[
˜Im lim

ε→0+
Σ(1)(p, z + iε)

]

× − 2Σ(1)(p, z) ˜Im lim
ε→0+

[ ]

+ ˜Im lim
ε→0+

[ ]
(166)

= −2Σ(1)(p, z) ˜Im lim
ε→0+

[ ]
∝ −2z(D−2)/2V (p,p)Σ(1)(p, z). (167)

At this point we can give also the analytical argument

˜Im lim
ε→0

Σ(2)(p, z + iε) = − ˜Im lim
ε→0

[
Σ(1)(p, z + iε)G0(p, z + iε)Σ(1)(p, z + iε)

]
(168)

∝ −2V (p,p)Σ(1)(p, z) (169)

where we have used the fact that

Σ(0, z) = 0. (170)

On the same line we can give the imaginary part proportional to z(D−2)/2 at three loops
because this contribution comes from the Dyson resummation of one- and two-loop self-
energy:

˜Im lim
ε→0

Σ(3)(p, z + iε) = − ˜Im lim
ε→0

[
Σ(1)G0Σ

(1)G0Σ
(1) + 2Σ(1)G0Σ

(2)
]

(171)

∝ z(D−2)/2
(
3[Σ(1)]2 − 2V (p,p)Σ(2)

)
. (172)

doi:10.1088/1742-5468/2011/02/P02015 33

http://dx.doi.org/10.1088/1742-5468/2011/02/P02015


J.S
tat.M

ech.
(2011)

P
02015

On the high-density expansion for Euclidean random matrices

At this point we can give a general expression for the imaginary part proportional to
z(D−2)/2 at any perturbative order:

˜Im lim
ε→0

Σ(n)(p, z + iε) = − ˜Im lim
ε→0

⎡

⎢⎣

⎛

⎜⎝
n∑

k=2

∑

i1,...,ik∑
iσ=n;iσ<n

k∏

α=1

(Σ(iα)(p, z + iε)G0(p, z + iε))

⎞

⎟⎠

× [G0(p, z + iε)]−1

⎤

⎥⎦ . (173)

From this expression we can prove by induction that the imaginary part of the self-energy
proportional to z(D−2)/2 cannot appear at any order in perturbation theory. In fact, we
have seen that it does not appear at one and two loops so we can prove that if it does not
appear up to n loops it does not appear up to n + 1 loops too. We can see that

˜Im lim
ε→0

Σ(k)(p, z + iε)G0(p, z + iε) ∝ z(D−2)/2pγ (174)

where γ ≥ 2 and where we have showed only the term at lowest order in z. Moreover we
have

Σ(k)(p, z)G0(p, z) ∼ 1 + O(p2) (175)

where we have neglected the higher order in z. It follows that the generic term in (173)
is of order

z(D−2)/2pβ (176)

with β ≥ 4 because [G0(p, z)]−1 ∼ p2. This completes the proof.

6. Conclusions

In conclusion, we have given a detailed description of the perturbative high-density
computation of the resolvent (and, in particular, the density of states) of Euclidean random
matrices within two different formalisms. The combinatorial formalism of section 4 results
in fewer diagrams and is probably more convenient when the goal is to obtain an expression
of the self-energy at a given order. On the other hand, the field-theoretic formalism
(section 5), though producing a higher number of diagrams, has allowed us to analyse
the p → 0 behaviour at all orders in perturbation theory. This analysis shows that
the imaginary part of the self-energy in the limit of small momenta (which controls the
width of the Brillouin peak of the dynamic structure factor) has, in contrast to previous
claims [15]–[18, 31], the structure

− Im Σ(λ, p) = Bλ(D−2)/2p4 + CλD/2p2

c2
+ · · · , (177)

where C,B > 0 are amplitudes and c is the speed of sound. This implies in particular a
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p4 scaling for the Brillouin peak width, but it also shows that the structure of the theory
is more complex than in the case of scattering from lattice models [30].
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Appendix. Proof of equation (122)

The proof proceeds by induction. First note that the explicit computation in
equations (117) and (119) already implies that equation (122) holds for k = 1 and 2.

The cornerstone of the proof is a general result for the k-point correlation functions
of ρ (rather than δρ). The sought correlation function, in the thermodynamic limit, is

ρ(y1)ρ(y2) · · ·ρ(yk) = 1 +
∑

ω∈P(k),‖ω‖<k

1

ρk−‖ω‖

⎡

⎣
‖ω‖∏

l=1,‖Ωl,ω‖>1

⎛

⎝
‖Ωl,ω‖−1∏

r=1

δ(y
α

(l,ω)
r

− y
α

(l,ω)
r+1

)

⎞

⎠

⎤

⎦ .

(A.1)

Equation (A.1) looks very similar to equation (122), yet we note the following crucial
differences.

• The partitions ω belong to P(k) rather than to the restricted set H(k). In particular,
the term equal to 1 in equation (A.1) follows from the only partition ω with ‖ω‖ = k,
namely {{1}, {3}, . . . , {k}}, which obviously does not belong to H(k).

• In the innermost product in equation (A.1), a subset Ωl,ω with just one element,
‖Ωl,ω‖ = 1, merely contributes a factor of one. Hence, for all practical purposes, such
a subset Ωl,ω can be ignored.

To establish equation (A.1), first note that

ρ(y1)ρ(y2) · · ·ρ(yk) =
1

ρk

N∑

i1,i2,...,ik=1

δ(y1 − xi1)δ(y1 − xi2) · · · δ(yk − xik), (A.2)

where the average is taken with respect to the flat probability measure:
∏N

i=1 dDxi

V N
.

Now, for a given assignment of the k particle labels i1, i2, . . . , ik, we declare that all
terms with a coinciding particle label ir form a subset Ωl,ω. It is then obvious that every
assignment of the k particle labels i1, i2, . . . , ik defines a partition ω in P(k). Furthermore,
a little reflection shows that all possible partitions in P(k) can be obtained in this way.
Equation (A.1) follows from the following three facts about a given partition ω:

(1) There are N(N − 1) · · · (N − N‖ω‖) possible assignments of the k particle labels i1,
i2, . . . , ik that yield the partition ω (you are given N choices for the particle that
appears in the subset Ω1,ω, N − 1 for that appearing in Ω2,ω, and so forth).

(2) A subset with a single element, ‖Ωl,ω‖ = 1, contributes a factor 1/V .
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(3) A subset with more than one element, ‖Ωl,ω‖ > 1, contributes a factor

1

V

‖Ωl,ω‖−1∏

r=1

δ(y
α

(l,ω)
r

− y
α

(l,ω)
r+1

).

Now consider a partition ω that belongs to P(k) but does not belong to H(k). Imagine
that ω contains k − s subsets Ωl,ω with just one element. The values that s can take are
s = 0, 2, 3, 4, . . . , k− 1. We are not interested in the trivial case s = 0, which corresponds
to the partition {{1}, {3}, . . . , {k}}. Hence, for s > 0, we simply erase from ω all the k−s
subsets Ωl,ω with ‖Ωl,s‖ = 1. The s integers

Λ = {βΛ
1 , βΛ

2 , . . . , βΛ
s },

that belong to the remaining Ωl,ω, form the irreducible set Λ associated with the partition
ω. The list of Ωl,ω with ‖Ωl,ω‖ > 1 provides a partition ω̃ of Λ, which obviously belongs
to H(s,Λ). Furthermore, ‖ω‖ = k− s+ ‖ω̃‖, so we have for the prefactor in equation (A.1)
that

1

ρk−‖ω‖ =
1

ρs−‖ω̃‖ .

Hence, since s < k, the induction hypothesis implies that the added contribution in
equation (A.1) of all the partitions sharing the same irreducible set, Λ, is

δρ(yβΛ
1
)δρ(yβΛ

2
) · · · δρ(yβΛ

s
).

At this point, we may rewrite equation (A.1) as

ρ(y1)ρ(y2) · · ·ρ(yk) = 1 +
∑

ω∈H(k)

1

ρk−‖ω‖

⎡

⎣
‖ω‖∏

l=1

⎛

⎝
‖Ωl,ω‖−1∏

r=1

δ(y
α

(l,ω)
r

− y
α

(l,ω)
r+1

)

⎞

⎠

⎤

⎦

+
k−1∑

s=2

∑

Λ={βΛ
1 ,βΛ

1 ,...,βΛ
s }

δρ(yβΛ
1
)δρ(yβΛ

2
) · · · δρ(yβΛ

s
). (A.3)

We finally note that, if one writes ρ(yr) = 1 + δρ(yr):

ρ(y1)ρ(y2) · · ·ρ(yk) = 1 + δρ(y1)δρ(y2) · · · δρ(yk)

+

k−1∑

s=2

∑

Λ={βΛ
1 ,βΛ

1 ,...,βΛ
s }

δρ(yβΛ
1
)δρ(yβΛ

2
) · · · δρ(yβΛ

s
). (A.4)

Comparison of equations (A.3) and (A.4) completes the proof.
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