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Some time ago Cafiero and Adamowicz1 calculated the
dipole moments of LiH and LiD without resorting to the
Born–Oppenheimer sBOd approximation. Their approach
consists of the expansion of the eigenfunction of the Cou-
lomb Hamiltonian in a basis set of floating s-type explicitly
correlated Gaussian functions.1 The dipole moments ob-
tained in this way are essentially identical to the experimen-
tal values2 and the authors claim that their calculations simu-
late experiment more closely than any previous ones.1 They
also applied basically the same approach to the calculation of
molecular polarizabilities.3–5

The purpose of this paper is to analyze that non-BO
calculation of dipole moments of diatomic molecules in the
light of the Hellmann–Feynman theorem.6,7 We first outline
some well known properties of the molecular Hamiltonian
that are necessary for present discussion of the nonadiabatic
calculation of dipole moments. A more detailed analysis was
provided earlier by other authors8,9 and also in our recent
report on this subject.7 Following Cafiero and Adamowicz1

we consider a nonrelativistic Coulomb Hamiltonian of the
form8,9
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where mi, qi and p̂i are the mass, charge, and momentum,
respectively, of particle i located at position ri, rij = uri−r ju is
the distance between particles i and j, and e0 is the vacuum
permittivity. The first step in the treatment of such system of
particles is the separation of the motion of the center of mass
which we carry out by means of a linear transformation so

that the Hamiltonian operator s1d becomes ĤT= ĤM + ĤCM. In
this way we remove the motion of the center of mass given

by ĤCM and are left with the translation-free molecular

Hamiltonian ĤM.1,7–9

The inversion operator ı̂ changes the sign of the coordi-

nates and momenta of all the particles: ı̂r jı̂
−1=−r j and

ı̂p̂ jı̂
−1=−p̂j, where ı̂−1= ı̂. It is clear that the translation-free

Hamiltonian operator is invariant under inversion ı̂ĤMı̂−1

= ĤM. Therefore, if c and E are an eigenfunction and its

eigenvalue, respectively, of ĤM then ı̂ĤMc= ĤMı̂c=Eı̂c. If

the state is nondegenerate we conclude that ı̂c= 6c because

ı̂2= 1̂ sthe identity operatord. In particular, the ground state is
nondegenerate and spherically symmetric.8–10

The classical dipole moment for a neutral distribution of
charges is given by the well-known expression

m = o
j

qjr j . s2d

It follows from ı̂mı̂−1=−m and what was said above that
kcumucl=0 for any nondegenerate molecular state. In other
words, the outcome of the quantum-mechanical nonadiabatic
calculation of the dipole moment as the expectation value of
the corresponding operator is zero for any molecule in its
ground state. In order to circumvent this difficulty, Cafiero
and Adamowicz1 considered the classical interaction be-
tween the dipole moment and the field e, thus obtaining the
semiclassical Hamiltonian

Ĥe = ĤM − e · m s3d

that behaves as ı̂Ĥesedı̂−1= Ĥes−ed. If we choose e along the z
axis e= s0,0 ,ed, then e ·m=emz. If ce and Ee are an eigen-

function and its eigenvalue, respectively, of Ĥe we have

ı̂Ĥesedce= Ĥes−edı̂ce=Eeı̂ce. Consequently, if the state is
nondegenerate then the energy is an even function of the
field Ees−ed=Eesed.

Throughout this paper we omit the fact that the Hamil-
tonian operator s3d does not support bound states because it
was not an issue in the nonadiabatic calculation of molecular
dipole moments and polarizabilities.1,3–5

Cafiero and Adamowicz1 fitted three points of the energy
curve Eesed with a second-degree polynomial and obtained
mz from the coefficient of the linear term

Eesed < e0 + e1e + e2e2 + . . . s4d

They resorted to polynomials of higher degree in other
calculations.3–5

According to the Hellmann–Feynman theorem6,7 we ex-
pect that

]Ee

]e
= − km̂zle s5d

for the kind of variational function that Cafiero and
Adamowicz1 chose to solve the Schrödinger equation ap-
proximately. Consequently,

U ]Ee

]e
U

e=0
= e1 = − km̂zl0 = 0, s6d

unless the variational function is not fully optimized or it
does not recover the correct symmetry as e→0. This result is
consistent with the argument above that Eesed is an even
function of e.
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The simple arguments outlined above clearly show that a
nonadiabatic calculation, either as an expectation value or by
fitting the energy with a polynomial function of the field
intensity, should produce the only result of zero dipole mo-
ment. However, Cafiero and Adamowicz1 managed to obtain
the dipole moments of the diatomic molecules by means of
the following “trick:”1 “The energy was calculated for each
basis with three electric field strengths ez=0,−0.0016 and
20.0032 a.u., and the energy curve was fitted with a second
order polynomial in ei. m is then the first order coefficient of
this fit.” In fact, the theoretical dipole moments estimated in
this curious way appear to converge smoothly toward the
experimental ones as the number of basis functions
increases.1 Later they explained this procedure in a more
detailed way:4 “We use the finite field approach in the
present work, i.e., we calculate the energies of the system for
several field strengths, we fit the energy as a function of the
field strength with a polynomial, and last we use the polyno-
mial to determine the energy derivatives with respect to the
field at the zero field. As is clear from the discussion above,
the non-BO energy of a molecule at the field strength f is
identical to the energy at the field −f because when the di-
rection of the field changes the orientation of the molecule
follows the field direction. Thus, for any system in the H2

isotopomer series the energy is an even function of the field,
and if it is approximated by a polynomial, only even powers
need to be used. This obviously results in a zero dipole for
any system if the dipole moment is determined as described
above. An alternative approach is to apply stronger fields and
only use energies calculated for positive field strengths in
generating the polynomial fit. In this case the use of both
even and odd powers is appropriate. As we have shown in
our previous work on LiH,1 the dipole moment derived from
our non-BO calculations with the procedure that uses only
positive fields and polynomial fits with both even and odd
powers matches very well the experimental results. Thus in
the present work we will show the results obtained using
interpolations with even and odd-power polynomials.” Sum-
marizing, Cafiero and Adamowicz1,4 tell us that it is possible
to fit an even function by means of a polynomial with even
and odd powers of the variable provided one chooses suffi-
ciently great values on the positive side of the variable axis.
It is clear that the nonzero coefficients of the odd powers
should be the product of numerical errors. Otherwise, if we
apply this argument to, for example, cossfd, then we will
prove that sins0dÞ0. A question arises: if the outcome of the
linear term in the expansion of the energy as a function of the
electric-field intensity was due to numerical errors, why did
the dipole moments estimated by Cafiero and Adamowicz1

agree so accurately with the experimental ones? Notice that
this same trick led to negligible dipole moments for the A2

diatoms,4 which is consistent with the classical view that
they should have zero dipole moments: “Applying the same
approach to homonuclear species sH2, D2, and T2d should
give the dipoles identically equal to zero. In our calculations,
these actually come out to 10−8. This small noise that entered
our calculations was due in part to the previously mentioned
fact that the zero-field wave function we use is not an eigen-

function of Ĵ2 as it should be. The level of noise introduced

is negligible, as 10−8 is four orders of magnitude smaller than
the size of the dipole moments for the heteronuclear
species.”

It seems that Cafiero and Adamowicz1 chose suitable
trial wave functions for the calculation of the dipole mo-
ments that did not reflect the expected symmetry of the exact
eigenfunctions at zero field strength fotherwise the linear
term of the polynomial s4d would have been zerog. The suc-
cess of their calculation was probably due to the particular
placement of the floating Gaussian functions which reflects
the ionic character of the chemist’s classical picture of the
molecules:1 “Thus the centers corresponding to the hydrogen
nucleus were scattered from about 2.9 to about 3.1 bohrs.
The lithium nucleus was, of course, placed at the origin of
the internal coordinate system. The functional centers corre-
sponding to the electrons were located primarily on the two
nuclei with two electrons at the origin sabout
0.060.001 bohrs in all three directionsd and two electrons
near the H nucleus sabout 3.0560.06 bohrsd per basis set.
This reflects the strong ionic character in the lithium/
hydrogen bond. The LiD non-BO wave function was opti-
mized starting from the converged LiH wave function.”
Therefore, it is not clear that the variational wave function
reflects the correct symmetry of the system for the values of
the electric-field intensity chosen for the fit. If the variational
functions were allowed to approach the symmetry of the ex-

act eigenfunctions of Ĥe→0= ĤM as the field vanishes, the
linear terms of the fitting polynomials would be zero as well
as the predicted dipole moments.10 This may probably be the
case of the homonuclear diatoms.4

When the field is on, the wavefunction does no longer
have spherical symmetry, the expectation value of m̂ is non-
zero and depends on the field strength e. However, it is well
known that Ees−ed=Eesed and the expansion of the energy
about e=0 should exhibit only even powers of the field
strength sas we have briefly argued aboved. In other words,
the linear term should be zero in agreement with the
Hellmann–Feynman theorem s6d.

We have shown that if one allows the optimized varia-
tional wave function to recover the correct spherical symme-
try when the field intensity vanishes then the linear term of
the polynomial s4d should be zero as well as the predicted
dipole moment. Apparently, the optimized variational wave
function used by Cafiero and co-workers1,3–5 retains when
e→0, the cylindrical symmetry it has for e.0. This may be
due to the particular placement of the floating Gaussians in
space. Another hint was given by Cafiero et al.:11 “Since the

basis functions used here are eigenfunctions of Ĵz but not Ĵ2,
they are of correct symmetry only for the nonzero-field cal-
culations. In order to maintain equal representation of all the
points in the fit, though, they are used for the zero field point
as well. This should introduce only mild contamination by
excited rotational states and has not been a practical problem
in the past.” However, that contamination may be the cause
of the occurrence of the linear term in the fit of Eesed. For
that reason, we believe that the apparent success of the ap-
proach proposed by Cafiero and co-workers1,3–5 should be
further investigated.
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