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We report a detailed study of the stationary points szero-force pointsd of the potential energy surface
sPESd of a model structural glassformer. We compare stationary points found with two different
algorithms seigenvector following and square gradient minimizationd, and show that the mapping
between instantaneous configuration and stationary points defined by those algorithms is as different
as to strongly influence the instability index K versus temperature plot, which relevance in analyzing
the liquid dynamics is thus questioned. On the other hand, the plot of K versus energy is much less
sensitive to the algorithm employed, showing that the energy is the good variable to discuss
geometric properties of the PES. We find new evidence of a geometric transition between a
minima-dominated phase and a saddle-point-dominated one. We analyze the distances between
instantaneous configurations and stationary points, and find that above the glass transition, the
system is closer to saddle points than to minima. © 2006 American Institute of Physics.
fDOI: 10.1063/1.2151899g

I. INTRODUCTION

Interest in the geometric properties of the potential en-
ergy surface sPESd of liquids as a mean to understand their
dynamics and thermodynamics dates back to the work of
Goldstein1 and Stillinger and Weber.2 These works showed
that to analyze the low temperature dynamics of supercooled
liquids and glasses it is useful to map instantaneous configu-
rations sICsd to the slocald minimum of the PES found di-
rectly downhill, called inherent structure sISd. This mapping
allows to disregard fast vibrations, focusing on slow, acti-
vated, structural relaxations. But if one aims to describe the
dynamic crossover taking place around the mode coupling
theory sMCTd critical temperature sTMCd,3 the IS mapping is
not useful because barriers between minima are no longer
relevant at high temperatures and the two time scales cease
to be well separated. Within the PES point of view, two
approaches have been proposed. One is to consider whole
superstructures of minimia scalled metabasins4–6d. Another is
to focus on stationary points with some unstable directions:
saddle points sSPsd.7

The latter approach was motivated by results obtained on
the p-spin model sa mean field glass modeld. In this system,
a threshold energy exists which separates a low-energy,
minima-dominated region, from a high-energy, saddle domi-
nated one.8,9 The higher the energy, the larger the number K
of unstable directions of the typical SP sthis number is called
the order, or instability index of the SP, and is equal to the
number of negative eigenvalues of the Hessian matrix evalu-
ated at the SPd. In this model the average index as a function
of the energy of the SP KsEd can be computed.8 Furthermore,

it can be verified directly that at high temperatures the sta-
tionary point closer to the typical IC is a SP with extensive
K, while it is a minimum sK=0d at low temperatures.10 The
dynamic arrest observed at the dynamic transition is related
to the fact that the system starts getting trapped, or nearly
trapped.11,12 A similar scenario was then proposed7 for struc-
tural glasses: the glass transformation is the consequence of a
geometrical transition. In the saddle-dominated shigh energyd
phase, the system can relax either by jumping an energy
barrier or by finding an unstable direction. In the minima-
dominated phase slow energyd, the second mechanism is no
longer available; as a consequence relaxation times soar. It
was shown later that the two-step relaxation observed in the
supercooled liquid sand described by MCTd can be qualita-
tively understood as relaxation in the vicinity of a SP.13

This scenario has been explored in several numerical
studies of model liquids. Some of these works obtained esti-
mations of the KsEd curve,14–16 which have been found com-
patible with the existence of a geometric transition sfurther
evidence for the transition has been found in the context of
high frequency vibrations17d. We stress that the abscissa of
the KsEd curve is the energy of the saddle point, and not the
instantaneous equilibrium energy. Other works have instead
studied K as a function of the temperature T,18–22 showing
that K decreases dramatically on approaching TMC. In early
studies the view was held that a sharp transition can be ob-
served as a function of temperature, with K=0 for T,TMC

and K.0 for T.TMC, but further work has shown5,21,23 that
although K decreases very fast smost likely with an Arrenh-
ius law5,24d, it is still nonzero for T,TMC. This has prompted
criticism of the saddle-minima transition point of view ssee,
e.g., Ref. 24d, although a geometric transition, controlled byadElectronic mail: tgrigera@inifta.unlp.edu.ar
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the energy, is compatible with a smooth KsTd curve ssee Sec.
IVd.

But there is another issue to be discussed when consid-
ering KsTd curves. Since the system is never precisely at a
SP, to define a KsTd curve one needs to introduce a mapping
between ICs and SPs sin a sense defining a “basin of attrac-
tion” of a SP, and generalizing the IS conceptd. Additionally,
if one wants to somehow interpret dynamic behavior from
such curve, the mapping should preserve at least some dy-
namic information. In analytical studies se.g., Refs. 10, 25,
and 26d ICs are sreasonablyd mapped to the nearest SP susing
the Euclidean distance or some overlap functiond. In con-
trast, in numerical work ICs are mapped to a SP through the
algorithm used to find the latter, thus in principle introducing
a dependence on the details of the procedure used to find
SPs25,26 and raising the question of the dynamical relevance
of the mapping. This is perhaps more worrying given that at
least one popular procedure fails rather often, leaving some
configurations unmapped ssee Ref. 21 and the discussion to
followd. Also puzzling are some results21,22 that seem to in-
dicate that in the typical distance from an instantaneous con-
figuration to a saddle or to a minimum is the same, at vari-
ance with the mean field situation.

In this paper we address the issue of the mapping be-
tween ICs and SPs, and analyze distances between ICs and
SPs and minima in more detail than has been previously
done. Our results show that the K vs T plots are algorithm-
dependent, and that, at least in the soft-sphere model we
consider, ICs at high temperature are closer to SPs with K
.0. The large number of SPs collected allows a new analy-
sis which provides new evidence for the existence of a geo-
metrical transition.

II. MODEL AND ALGORITHMS

We have considered the soft sphere binary mixture,27,28

which consists of 50% of particles of type A and 50% of type
B, interacting with a pair potential vijsrd= ssi+s jd12/r12. The
radii si are fixed by the conditions sB /sA=1.2 and s2sAd3

+2ssA+sBd3+ s2sBd3=4. We have used a system of N=70
particles at unit density and a smooth scubic polynomiald
long-range cut-off at Î3 as in Ref. 16 We have used swap
Monte Carlo29 to equilibrate the system at temperatures T
=1, 0.683, 0.482, 0.350, 0.260, 0.220. For this system TMC is
about 0.24.16,28 At each temperature, 40 000 equilibrated
configurations were saved and used as starting point for
minima and saddle point searches. Minima were obtained
with Nocedal and Liu’s LBFGS algorithm,30 which code can
be obtained from the internet.31 For SP searches, two differ-
ent algorithms were employed: square-gradient minimization
sSGMd and eigenvector following sEFd sdescribed in the fol-
lowingd, to compare two different IC-SP mappings. In all,
about 3.2·105 SPs were obtained.

A. Square gradient minimization

One way of finding SPs is minimizing the squared
modulus of the gradient,

f = u¹Vu2 = o
i=1

N

o
a=1

3 S ]V

]xi,a
D2

. s1d

Since f is non-negative, at the absolute minima f=0, which
implies ¹V=0 sa saddle pointd. This method is relatively
easy to implement, since good numerical minimization algo-
rithms are publicly available swe have used LBFGS

30,31d. The
biggest drawback is that minimization can sand does rather
oftend converge to a local minimum, which is neither a
saddle point, nor close to one in any reasonable sense.32

B. Eigenvector following

This method has been specifically designed to find sta-
tionary points of the potential energy. Based on an original
proposal by Cerjan and Miller,33 it has been substantially
improved by others ssee Ref. 34, and references thereind. The
problem originally considered33 was to find a saddle point of
index 1 starting from a local minimum of V. The idea was to
consider the function on a small sphere around the minimum.
Using Lagrange multipliers and a quadratic approximation,
one looks for local minima of the function constrained to the
sphere. Close enough to the initial point sminimumd, there is
one local minimum of the constrained function that has
higher energy: this is a point along the path that leads to the
sought saddle point, and is taken as the starting point of the
next iteration. Close to the saddle this criterion no longer
applies, so a Newton-Raphson step is taken.

We have used our own implementation of the eigenvec-
tor following method as described by Wales and
co-workers.22,35–37 At each iteration a step Dx is proposed,
which in the base that slocallyd diagonalizes the Hessian
is35,36

Dxm = Sm

2gm

uhmus1 + Î1 + 4gm
2 /hm

2 d
, s2d

where hm are the eigenvalues of the Hessian and gm are the
components of the gradient in the diagonal base sDxm is set
to 0 for the directions where hm=0, i.e., uniform displace-
mentsd. The sign Sm= ±1 is chosen as explained in the fol-
lowing. Note that as gm→0,

Dxm = −
gm

hm

+ Osgm
2 d, gm → 0, s3d

where the first term is the Newton-Raphson step. A set of
trust radii hdmj is mantained sone for each directiond.37 The
proposed step is rescaled so that uDxmuødm for all m, and
then the position is updated. Initially, the dm are set to 0.2,
and at each step are increased sdecreasedd by a factor 1.2
according to whether the quantity r= she−hmd /hm is less
sgreaterd than 1. he is an estimation of the eigenvalue, he

= sgm−gm8 d /Dxm8 , where the prime means the quantity evalu-
ated at the previous iteration.37

If Sm=1, the step increases the energy along the direction
m, thus the algorithm converges to a maximum along this
direction. Conversely if Sm=−1 the algorithm converges to a
minimum along m. Since a saddle point of order K is a maxi-
mum along K directions and a minimum along 3N−K direc-
tions, in princple the algorithm may be made to converge to
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a saddle of the desired index by setting Sm=−1 for 1øm
øK, and Sm=1 for m.K. In this work we do not want to fix
the index from the start of the search, so for each starting
configurations we run 20 steps with Sm=−sgn hm and only
then fix the index to whatever value it has reached after the
first 20 steps.22

C. Distances

The distance we report is the Euclidean distance

d = Îo
i,a

sxi,a − yi,ad2, s4d

minimized over the symmetry operations of the system si.e.,
translations, the 48 discrete symmetries of the simple cubic
lattice, and particle permutationsd. Minimization over trans-
lations is done applying Brent’s method38 sSec. 10.2d to a
distance minimized over the discrete symmetries and permu-
tations. This in turn is found by exhaustive exploration of the
discrete symmetries and using the Hungarian algorithm39 sas
implemented by Gerkey40d to minimize over permutations.

III. COMPARISON OF SGM AND EF MAPPINGS

A. Basins of attraction and success rate

In Fig. 1 we show the rms gradient g=Îf /N of the
configurations obtained after running SGM and EF on the
same set of ICs. EF produces tightly converged saddle points
sg,10−11d, while the configurations found by SGM have
rms gradients that cluster around about 10−6 and 10−2. To
decide whether these configurations are saddle points and
compute a success rate sFig. 1, insetd we have used the SGM
configurations as starting points for EF searches and com-
puted the distance between the SGM and corresponding EF
converged configurations. In some cases, after a few s3–5d
steps, EF found a saddle very close to the SGM configuration
sdistances of the order of 10−5–10−2d, while in other cases
the distance was Os1d or larger sand the number of steps
increasedd. The first case clearly corresponds to an absolute

minimum of f, and the second to a local minimum. The
criterion we used to accept the SGM configuration as a true
saddle was to require that the distance between it and the
corresponding EF saddle be less than 0.01. This is approxi-
mately equivalent to requiring g,10−4 for the SGM configu-
ration.

The high failure rate of the SGM algorithm makes it
unsuitable to define basins of attraction of saddle points.21,22

This failure rate is not due to problems with the minimiza-
tion algorithm, but to the high number of local minima of the
function f.14,16,21 On the other hand the EF algorithm in
principle will always converge to a saddle point seventual
failures being due to numerical problems or implementation
detailsd. However, it should be remembered that although
basins of attraction for saddle points can be defined using EF,
these are not necessarily a reasonable generalization of IS. It
is well known that iterative nonlinear algorithms can lead to
multiply connected or even fractal basins sa case of fractal
basins is the Newton-Raphson algorithm applied to finding
the roots of the polynomial z3−1, see, e.g., Ref. 38 Sec. 9.4d.
In the case of EF, a detailed study on a three-atom cluster35

has shown that the basins, though not fractal, are still com-
plex and multiply connected. Their relevance to liquid dy-
namics is thus not to be taken for granted. We have not
performed such detailed analysis here, but in Fig. 2 we plot
the instantaneous energy along a short s1000 stepsd MD run,
along with the energy of the EF saddle points found starting
from each IC. All these ICs map to a single IS sminimumd.
The strong energy fluctuations of the saddles found in this
way indicate that the usefulness of the basins of attraction so
defined is probably rather limited in understanding the liquid
dynamics.

B. Saddle index curves

Let us first consider the saddle index versus temperature
curve. In Fig. 3 we plot separately the average value of K for
saddles obtained with EF and SGM. We also plot KsTd

FIG. 1. Root-mean-square gradient vs energy of the configuration obtained
with SGM or EF starting from 10 000 equilibrium configurations at T
=0.350. Inset: success rate sfraction of initial configurations that converge to
saddle pointsd vs temperature sSGM: circles, EF: squaresd.

FIG. 2. Instantaneous energy along a 1000-step MD run at T=0.260
sdashed-dotted lined and energy of the saddle points found by EF using the
MD configurations as starting points sfull lined. All instantaneous configu-
rations correspond to a single IS.
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evaluated for ICs fthe eigenvectors of the Hessian evaluated
at an IC are usually called INMsdg. The fact that the curves
are algorithm-dependent prevents one from drawing any dy-
namical conclusion from them, unless there is some reason
to expect that the mapping between ICs and SPs preserves
some dynamical information. In particular, the critical tem-
perature T0 where KsT0d=0 swhich might or might not be
greater than zerod is likely to be algorithm-dependent and
thus not of much significance without further evidence of the
dynamical relevance of the algorithm chosen to compute
KsTd.

On the other hand, if we consider K as a function of the
energy of the saddle point sFig. 3, rightd, the curves produced
from the SPs collected with EF and SGM are essentially
coincident in the region of energies where both algorithms
find a significant number of saddles ssee inset of Fig. 4d. The
corresponding curve for INM snot shownd is very close to
those corresponding to the SPs, in contrast to what is found
in Lennard-Jones.14 In this purely geometrical plot, the prob-
lem of the IC-SP mapping is avoided, and issues such as the
existence of a geometrical transition can be meaningfully
discussed.

Of course, this does not mean one should not worry
about possible biases introduced by the algorithms. Indeed, if
one considers the SPs within a given energy band, the distri-
bution of the saddle index is slightly different, with EF tend-
ing to be slightly narrower sFig. 4 shows a representative
energy bandd. It is also clear that SGM tends to find SPs with
lower energy sinset of Fig. 4d. However, we find that the
maximum of the log Nsamp vs K curves are the same for both
algorithms at all energy bands. The significance of this maxi-
mum can be appreciated from the considerations of Sec. IV.

It turns out that one can fit the KsTd curves with the
expression given by Keyes et al. for the random energy
model sREMd41 sFig. 3d. This model consists of a number of
units with fixed ground state energy and excited states with

random energies; these units are interpreted as the Adam-
Gibbs cooperatively rearranging regions.42 The expressions
are41

kksedl =
1

2
F1 − erfS e − e

2d
DG , s5d

kksTdl =
1

2
F1 − erfS d

2T
DG , s6d

where k=K /N, e=E /N, and e and d are fit parameters. The
KsTd fit is satisfactory within this temperature range if one
includes an additional multiplicative fitting parameter A and
allows different A and d for EF and SGM saddles. This is
needed for two reasons. First, the REM attempts to model
interactions between cooperative regions whose size is un-
kown, and the value of K we obtain includes eigendirections
interior to these regions, which the model does not account
for. Second, and more important, the algorithm-dependent
IC-SP mapping swhich is not an issue in the REMd has to be
modeled somehow. On the other hand, the REM KsEd ex-
pression is not as successful, even if one allows for different
values of A and d. The discrepancy at low K is to be ex-
pected if there is indeed a geometric transition in the soft
sphere model sas evidence suggests, see Sec. IVd, because
Eq. s5d predicts ksed.0 for all e fsince erfsxd,1g. Another
problem of using the REM to interpret the present data is that
the distribution of K at fixed energy is much narrower than
the REM prediction, Eq. s18d of Ref. 41 snot shownd.

C. Distances

Finally we consider the distances between ICs and the
stationary points sIS, EF saddles and SGM saddlesd obtained
starting from the given IC. The distances reported here are
those obtained after minimizing over the symmetries of the
Hamiltonian, as discussed in sec. II C. We have found that
this distance coincides most of the time with the distance
obtained without applying minimizations when one consid-
ers an IC and the stationary point obtained from it, so that the

FIG. 4. Logarithm of the number of SPs found vs instability index, for the
energy band 1.9øe,2.0. Inset: Logarithm of the number of SPs vs energy.

FIG. 3. Average instability index vs temperature sleftd and energy srightd for
INM, SGM saddles, and EF saddles. Each point is an average over SPs
obtained from 40 000 ICs. Lines are fits to the REM expressions ssee the
textd.
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averages we report are not significantly different from those
obtained without minimizing. Minimization is however im-
portant when computing distances between a configuration
and a stationary point obtained from a different IC, as we do
in the following.

The average distances as a function of temperature are
plotted in Fig. 5. Two things are to be noted: first, SGM
saddles are always closer than EF saddles; second, IS are
farther than SGM saddles at high temperatures but start to be
found closer as temperature is lowered. The first fact points
to the influence of the algorithm in defining an IC-SP map-
ping, stressing the problems of interpretation of KsTd curves.
The second provides direct evidence that at high tempera-
tures there is a saddle point to be found closer to the typical
IC than the corresponding IS.

To investigate this matter more closely, we look in detail
at a short MD trajectory at T=0.26, slightly above TMC sFig.
6d. For all ICs in this run, apart from computing the corre-
sponding IS and SGM saddle as usual, we have searched for

the nearest SP in the pool of all SPs found at the correspond-
ing temperature. We find again that the system is mostly
close to a saddle point of order Kù1, as can be also seen in
the inset. This result is natural within the geometrical transi-
tion scenario, but this is, to our knowledge, the first direct
observation of this fact in a liquid. We furthermore find that
the SGM saddle is not the closest saddle point. Of course,
our procedure does not guarantee to give the closest saddle
to a given IC, but we do find SPs closer than the SGM
saddle. We must note that Wales and Doyle,22 in an analysis
of a Lennard-Jones binary mixture, did not find differences
in the mean distances from ICs to SPs or ISs. It would be
interesting to analyze that system at the single configuration
level sin the spirit of Fig. 6d.

IV. SADDLE-MINIMA TRANSITION

Consider the number NsK ,Ed of saddle points of order
K and energy between E and E+dE. For short-range interac-
tions, one expects to be able to divide the system into effec-
tively independent subsystems, so that NsK ,Ed should be
exponential in the size of the system.22,43,44 Then log N is
extensive in the thermodynamic limit, and the complexity
osk ,ed= s1/Ndlog NsK ,Ed is an intensive quantity. The sin-
tensived average saddle index can then be written se=E /Nd

kksedl =
1

ZE0

` K

N
expfNSsK/N,edgdK s7d

=
N

ZE0

`

k expfNSsk,edgdk , s8d

where

Z = E
0

`

expfNSsk,edgdk . s9d

Using the saddle point method one gets

kksedl = k̂sed + Os1/Nd , s10d

where k̂sed is the point where osk ,ed attains a maximum
swith e fixedd, i.e., the solution of ]osk ,ed /]k=0. The
saddle-minima transition should be understood as happening
at the threshold energy eth, defined as the maximum energy

for which k̂sed=0. In the thermodynamic limit this implies
kkseøethdl=0. In finite systems the average will remain
positive, but the kksedl curve will show a fast crossover, rem-
nant of the sharp N→` transition, just as in other thermo-
dynamic phase transitions. Clearly, the transition does not
mean that there are no saddles for e,eth squite the contrary,
there is an exponential number of themd, but that they are
subdominant respect to minima: NsK.0d /Ns0d→0 expo-
nentially with N.

The control parameter of the (geometric) saddle-minima
transition is the energy.7,14–17 If one considers KsTd sassum-

FIG. 5. Average distance from instantaneous configurations vs temperature
for minima, EF saddles, and SGM saddles. Error bars are estimates of
sample standard deviation snot errors on the averages themselvesd.

FIG. 6. Distance from instantaneous configurations along a short MD run at
T=0.26 to the corresponding IS, SGM saddle, and nearest SP found. Inset:
index of nearest SP.
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ing one defines a mapping free from the above-discussed
problemsd, one will very likely find K.0 below TMC be-
cause relaxation processes, though slow, will eventually
sample saddle points stransition statesd. A smooth KsTd curve
is thus compatible with a geometric transition. Within the
landscape point of view, one can understand the sharp dy-
namic crossover happening in fragile liquids around TMC as
the signature of a geometric transition.16,17

Given the large number of SPs obtained for this work
sabout 3.2·105d, we can try to obtain a rough estimate of the
qualitative behavior of osk ,ed. The SPs have been classified
into energy bands of width 0.1, and for each band a histo-
gram in K was constructed. The logarithm of the histogram
heights gives an estimate of the shape of the actual o and is
shown in Fig. 7. One can clearly see a maximum that goes to
k=0 for low values of the energy. From the present data one
obtains eth=1.77±0.01, which is compatible with the values
found in Refs. 16 and 17.

V. CONCLUSIONS

We have shown that in numerical studies of the PES of
liquids, the algorithm chosen to associate instantaneous con-
figurations and saddle points can have a significant influence
in the analysis of quantities like the saddle index versus tem-
perature curve. Of the two algorithms used, we have found
that the saddles found with SGM are closer to the instanta-
neous configurations than those found with EF. Since no
such difference was found in Ref. 22, the present results may
reflect a property of the soft-sphere model, or of the present
implementation of the EF algorithm. In any case, the point is
that curves such as KsTd are not meaningful unless the va-
lidity of the IC-SP mapping with respect to dynamic proper-
ties is established. It seems that neither of these algorithms is
useful to define a particion of phase space into basins of
attraction of a SP sin the case of SGM it is rigorously
impossible21d.

The natural variable to analyze geometrical properties of
the PES is the energy. We have shown that this choice of
variable largely avoids the issue of the IC-SP mapping fin
particular the KsEd plot is mostly independent of the map-
pingg, though the algorithms introduce some detectable bias

in the sampling. We have produced an estimate of the shape
of the saddle complexity that provides new evidence for the
existence of a geometric transition in the soft-sphere model.

Finally, our analysis of distances has shown that in this
model above TMC the system is closer to saddle points than
to inherent structures, as has been shown to be the case in
some mean-field models sp-spin,10 k-trigonometric25d. We
have also found that there are saddles closer than the SGM
saddle sthis has been explored analytically in the
k-trigonometric model, where the SGM saddle was found to
be the closest saddle,25 and the mean-field f4 model, where
it is not26d.
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