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1 Introduction

In 1947, Löwdin [23] or [24], introduced a method to obtain an orthonormal basis
from a given basis motivated by problems arising in quantum chemistry. Nowadays
this method is known as Löwdin orthogonalization, and it has two relevant advantages
with respect to the classical Gram-Schmidt process: first, it is an order-independent
procedure, and second, the constructed orthonormal basis is characterized as the closest
orthonormal basis to the given basis. Frank et al. [12] generalized Lödwin orthogo-
nalization to frames in Hilbert spaces, under the name of symmetric approximation of
frames. As we will show below, this might be seen as a best approximation problem
by partial isometries. The aim of this paper is to study best approximation problems
by partial isometries, and apply the results to symmetric approximation of frames.

A family of vectors { f j }n
1 spanning a subspace K ⊆ C

m is called a finite frame for
K. In general, frames are redundant spanning sets, and this is the key property which
makes them useful to applications such as internet coding, quantum computing, filter
banks, robust transmission and speech recognition (see e.g. [4–6]). If the frame { f j }n

1
satisfies the Parseval identity

‖ f ‖2 =
n∑

j=1

| 〈 f, f j
〉 |2

for every f ∈ K, then it is called a Parseval frame (or normalized tight frame). For
this class of frames, it is not difficult to prove that for every f ∈ K,

f =
n∑

j=1

〈
f, f j

〉
f j .

This may be interpreted as a reconstruction formula, which shows that f can be
recovered from the coordinates {〈 f, f j

〉}n
1 with the same formula used for orthonormal

bases. It is important to remark that general frames still have a reconstruction formula
comparable to that of bases; however its expression turns out to be more complicated.
This is one of the main reasons why Parseval frames are relevant in applications.

The method of symmetric approximation of frames consists in finding the closest
Parseval frame to a given frame. More precisely, a Parseval frame {u j }n

1 is said to be
a symmetric approximation of a frame { f j }n

1 for a subspace K ⊆ C
m if

n∑

j=1

‖ f j − u j‖2 ≤
n∑

j=1

‖ f j − x j‖2

for all the Parseval frames {x j }n
1 for subspaces of Cm which are weakly similar to

{ f j }n
1. This latter condition means that there is an invertible matrix T satisfying T f j =

x j , j = 1, . . . , n. We would like to emphasize that, a priori, the subspace spanned
by the Parseval frame {u j }n

1 does not need to be the subspace K. Note that, as this
method is order-independent, it becomes useful for many types of frames, such as
those associated with finite groups [11], where there is no canonical order of vectors
to apply Gram–Schmidt.
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The symmetric approximation of frames can be rewritten as a best approximation
problem by partial isometries using the Frobenious norm ‖ · ‖2. Recall that an m × n
matrix X is a partial isometry if ‖X f ‖ = ‖ f ‖ for all f ∈ ker(F)⊥. Let F be the
synthesis matrix of the frame { f j }n

1 for a subspace K ⊆ C
m , i.e. F is the m × n

matrix whose columns are the vectors f1, . . . , fn . It is straightforward to prove that
the synthesis matrix of a Parseval frame for some subspace is a partial isometry. Then,
the Parseval frame {u j }n

1 with synthesis matrix U is a symmetric approximation of
{ f j }n

1 if

‖F − U‖2 ≤ ‖F − X‖2

for all m × n partial isometries X such that ker(X) = ker(F). This condition on the
kernels of the synthesis matrices is easily seen equivalent to the respective frames
weakly similar. The formula for the unique symmetric approximation {u j }n

1 proved in
[12] is given by u j = Ue j , j = 1, . . . , n, where {e j }n

1 is the standard basis of C
n and

F = U |F | is the canonical polar decomposition (i.e. U is the unique partial isometry
satisfying F = U |F | and ker(U ) = ker(F)). This frame {u j }n

1 is called the canonical
Parseval frame associated to { f j }n

1, and satisfies that span {u j }n
1 = span { f j }n

1. Nowwe
remark that Lödwin orthogonalization may be thought as a special case when { f j }n

1
is a basis, and {u j }n

1 turns out to be an orthonormal basis (see [13]).

1.1 Main Results of This Paper

The authors in [12] showed a simple example to illustrate that the canonical Parseval
frame is not the closest Parseval frame if one is allowed to consider non weakly similar
frames in the minimization problem. This fact leads to the following question: which
is the closest Parseval frame to a given frame when one considers non weakly similar
Parseval frames? On the other hand, the assumption of weak similarity conserves
the redundancy of the given frame { f j }n

1, i.e. the linear dependence of the vectors
f1, . . . , fn . But the redundancy, and thus the dimension of the subspace spanned by
{ f j }n

1, are very sensitive to perturbations. It is therefore natural to ask which is the
closest Parseval frame to { f j }n

1 with a fixed redundancy.
We address these questions in terms of best approximation problems by partial

isometries. Further, we consider more general norms than the Frobeniuous norm, the
class of unitarily invariant norms (see Sect. 2 for the definition). For k = 1, . . . , q =
min{m, n}, denote by Ik

m,n the set of m × n partial isometries of rank k. The results
of this paper are the following.

• A solution to the best approximation problem by partial isometries from Ik
m,n for

every unitarily invariant norm (Theorem 3.1);
• A parametrization of all the minimizers in the previous problem when the norm
is defined by a strictly convex symmetric gauge function, and in particular, a
uniqueness condition (Theorems 3.3 and 3.5);

• A solution to the global best approximation problem by partial isometries for every
unitarily invariant norm (Theorem 3.7);
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• An extension of the method of symmetric approximation of frames to the follow-
ing families: Parseval frames with fixed redundancy, all the Parseval frames and
Parseval frames in a fixed subspace (Corollaries 4.3 and 4.5, Theorem 4.6).

The main theoretical tools for the proofs are the singular value decomposition and
the Lidskii–Mirsky–Wielandt theorem [1,22]. Uniqueness results rely on the analysis
of the equality case in this latter theorem recently carried out in [26]. The solution
of the lower rank and global best approximation problems by partial isometries may
be described using the canonical partial isometry associated to a best lower rank
approximation; meanwhile in the higher rank approximation case the solutions are
given by the partial isometries associated to (non canonical) polar decompositions
(see Remark 3.6).

1.2 Previous Related Results

Problems of best approximation by partial isometries have been considered by several
authors. In the case where k = n ≤ m, it is well known that the isometric factor of a
polar decomposition of F solves the best approximation problem by partial isometries
from Ik

m,n . Here, by a polar decomposition we mean a (in general non unique) repre-
sentation F = U |F |, where U is an isometry (i.e. U∗U = I ) and |F | = (F∗F)1/2.
The earliest result of this type is the Fan–Hoffmann theorem [10], which established
the case m = n. Later on, Rao [28] stated without proof the case n < m. This was
proved more recently by Laszkiewicz and Ziȩtak [21]. They also treated the case
k = rank(F), and showed that the partially isometric factor of the canonical polar
decomposition is a solution. For applications in matrix ODEs which have orthogonal
solutions we refer to [17, Sect. 2.6] and the references therein. A special class of
solutions to the global best approximation by the partial isometries were also given in
[21]. On the other hand, little attention has been paid in the literature to uniqueness
questions, or parametrization of the minimizers in the case of multiple minimizers.
For the fixed rank problem, it is known that when F has full rank and k = n ≤ m,
there is a unique minimizer (see [17, Theorem 8.2]).

Other results concerning best approximation by partial isometries were proved for
operators defined in infinite dimensional spaces and special classes of norms (see
[25,30]). The notion of symmetric approximation of frames in infinite dimensional
Hilbert spaces was also developed in [12]. In addition, best approximation of frames
with additional structure was studied by Janssen and Strohmer [20], and by Han
[15,16]. Although the results obtained in our paper are in the finite dimensional setting,
they can be also applied to infinite dimensional settings where, due to some invariance,
the problem can be reduced to finite dimensional problems. Some examples of this
situation, of major relevance in harmonic analysis, are Gabor frames, shift-invariant
frames and wavelets (see [2,3,29]).

The paper is organized as follows. In Sect. 2 we establish notation and give the
necessary background. In Sect. 3 we present the results concerning approximation by
partial isometries. Section 4 is devoted to the applications in symmetric approximation
of frames. In Sect. 5 we prove the main results.
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2 Preliminaries and Notation

Let Mm,n be the space of complex m × n matrices. When m = n, we write Mn .
Set q = min{m, n}. Given F ∈ Mm,n , the vector of singular values of F (i.e.
the eigenvalues of |F | = (F∗F)1/2) arranged in nonincreasing order is given by
s(F) = (s1(F), . . . , sq(F)). Note that there are at most q non-zero eigenvalues of
|F |, so we are only taking into account its largest q eigenvalues.

Partial Isometries. A matrix X ∈ Mm,n is a partial isometry if ‖X f ‖ = ‖ f ‖
for all f ∈ ker(X)⊥. This is equivalent to saying that X∗ X is a projection (or X X∗
is a projection). Another characterization of a partial isometry is as a matrix whose
singular values are all 0 or 1. We will use the following notation

Im,n = { X ∈ Mm,n : X is a partial isometry }.

The connected components of the set of all partial isometries are determined by the
rank. We denote each connected component by

Ik
m,n = { X ∈ Im,n : rank(X) = k },

where k = 1, . . . , q. Let Un denote the group of n × n unitary matrices. We note that
there is a left action of the group Um × Un on Im,n given by

(V, W ) · X := V X W ∗, V ∈ Um, W ∈ Um, X ∈ Im,n .

Furthermore, the orbits of this action coincide with the connected components of Im,n

(see for instance [14]).

Singular Value Decomposition. Let F ∈ Mm,n be of rank r . Then F has a singular
value decomposition (SVD)

F = V �W ∗,

where

� =
[
�r 0
0 0m−r,n−r

]
,

V ∈ Um , W ∈ Un and �r = diag(s1(F), . . . , sr (F)). The columns {w1, . . . , wn} of
W form an orthonormal basis of eigenvectors of F∗F , while the columns {v1, . . . , vm}
of V are eigenvectors of F F∗.

Remark 2.1 Note that, although the matrix � is completely determined by the non-
zero singular values, the unitary matrices are not unique. If F = Ṽ �W̃ ∗ is another
SVD, then

Ṽ = V

[
D 0
0 R1

]
, W̃ = W

[
D 0
0 R2

]
,
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where D ∈ Ur is block diagonal with Di j = 0 if si (F) �= s j (F), and R1 ∈ Um−r ,
R2 ∈ Un−r are arbitrary.

The Polar Decomposition. Given a matrix F ∈ Mm,n , there is a unique decom-
position F = U |F | satisfying the conditions U ∈ Im,n and ker(U ) = ker(F). This
decomposition is called the canonical polar decomposition. The partial isometry U
of the canonical polar decomposition is the canonical partial isometry.

If the matrix F has an SVD given by F = V �W ∗ and rank equal to r , the canonical
partial isometry can be expressed as

U = V

[
Ir 0
0 0m−r,n−r

]
W ∗. (1)

This expression does not depend on the pair of matrices V , W that one considers for
an SVD.

Remark 2.2 The requirement that ker(U ) = ker(F) in the canonical polar decom-
position forces U to be unique. When r = q (= min{m, n}), there is also a unique
partial isometry X such that F = X |F |. Indeed, X is given by the formula (1) after
deleting all the zero rows in the second factor when q = n or all the zero columns
when q = m. In the case in which r < q there are infinitely many partial isometries
X satisfying F = X |F |. It is well known that all these partial isometries are described
by

X = V

[
Ir 0
0 S

]
W ∗.

where S ∈ Mm−r,n−r is a partial isometry (see for instance [17, Theorem 8.1] or
[18]).

Majorization, Unitarily Invariant Norms and Symmetric Gauge Functions. Let
x = (x1, . . . , xq)be a vector inRq .Wedenote by x↓ the vector obtained by rearranging
the coordinates of x in nonincreasing order. This means that x↓ = (x↓

1 , · · · , x↓
q )

satisfies x↓
1 ≥ . . . ≥ x↓

q . Given two vectors x, y ∈ R
q , we write x ≺w y if

k∑

i=1

x↓
i ≤

k∑

i=1

y↓
i , k = 1, . . . , q. (2)

In this case, we say that x is submajorized by y and we write x ≺w y. If, in addition,
there is an equality for k = q in (2), then we write x ≺ y and we say that x is majorized
by y.

A norm � on Rq is called a symmetric gauge function if it satisfies

�(x1, . . . , xq) = �(|xσ(1)|, . . . , |xσ(q)|),

for every permutation σ of the integers 1, . . . , q. Symmetric gauge functions can be
used to define norms inMm,n . Indeed, if q = min{m, n} and � is a symmetric gauge
function on R

q , one can define a norm on Mm,n by
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‖F‖� = �(s1(F), . . . , sq(F)). (3)

From this expression in terms of the singular values, these norms turn out to be unitarily
invariant; that is, ‖W FU‖� = ‖F‖� , whenever F ∈ Mm,n , U ∈ Un and W ∈ Um .
Conversely, every unitarily invariant norm inMm,n can be constructed as in formula
(3) for some symmetric gauge function (see e.g. [19, Theorem 3.5.18]).

Many well-known norms are unitarily invariant norms. If the symmetric gauge
function is the �p norm, for p ≥ 1, then one gets the p-Schatten norms on the space
Mm,n . If p = ∞, then we get the usual operator norm. If p = 2, then we have the
Frobenious norm, which has the following expressions

‖F‖2 =
( q∑

i=1

s2i (F)

)1/2

=
(

n∑

i=1

‖Fvi‖2
)1/2

;

where {vi }n
1 is any orthonormal basis of Cn . Other relevant norms are the Ky-Fan

k-norms (1 ≤ k ≤ q) given by

‖F‖(k) =
k∑

i=1

si (F),

where the symmetric norms are �(k)(x1, . . . , xq) = ∑k
i=1 |x |↓i .

The connection between the notion ofmajorization and the unitarily invariant norms
is the following result, known as the Ky-Fan dominance principle:

Theorem 2.3 Let x, y ∈ R
q , then the following statements are equivalent:

(i) �(x) ≤ �(y) for every symmetric gauge function �;
(ii) x ≺w y.

In order to prove uniqueness properties, we will restrict to the following particular
class of symmetric gauge functions. A norm � on R

q is strictly convex when for all
x, y ∈ R

q , x �= y, if �(x) = �(y) = 1 and λ ∈ (0, 1), then

�(λx + (1 − λ)y) < 1.

For instance, Schatten p-norms are strictly convex if p ∈ (1,∞). On the other hand,
Schatten p-norms with p = 1,∞, and Ky-Fan norms are not strictly convex.

3 Approximation by Partial Isometries

Let ‖ · ‖� be a unitarily invariant norm in Mm,n , where � is a symmetric gauge
function in Rq . As before, we set q = min{m, n}. We begin by stating the solution to
the best approximation problem of a given matrix F ∈ Mm,n by partial isometries in
Ik

m,n with respect to the distance induced by ‖ · ‖�.



J Fourier Anal Appl (2018) 24:1098–1118 1105

Theorem 3.1 Let 1 ≤ k ≤ q, and let F ∈ Mm,n. Given a singular value decompo-
sition F = V �W ∗, the partial isometry

Uk = V

[
Ik 0
0 0m−k,n−k

]
W ∗

belongs to Ik
m,n and satisfies

‖F − Uk‖� = min{ ‖F − X‖� : X ∈ Ik
m,n }, (4)

for every unitarily invariant norm ‖ · ‖�.

Remark 3.2 From the above result, we can compute the distance of a matrix F of rank
r to each connected component Ik

m,n of the partial partial isometries, i.e.

d�(F, Ik
m,n) = min{ ‖F − X‖� : X ∈ Ik

m,n },

where k = 1, . . . , q. Indeed, we have

• If k<r : d�(F, Ik
m,n)=�(s1(F)−1, . . . , sk(F)−1, sk+1(F), . . . , sr (F), 0, . . . , 0).

• If k = r : d�(F, Ir
m,n) = �(s1(F) − 1, . . . , sr (F) − 1, 0, . . . , 0).

• If k > r : d�(F, Ik
m,n) = �(s1(F) − 1, . . . , sr (F) − 1, 1, . . . , 1︸ ︷︷ ︸

k−r

, 0, . . . , 0).

Theorem 3.3 (Uniqueness) Let 1 ≤ k ≤ q, and let F ∈ Mm,n. Suppose that � is a
strictly convex symmetric gauge function. Then every minimizer of the above problem
(4) has the form

Uk = V

[
Ik 0
0 0m−k,n−k

]
W ∗,

where V and W are any pair of unitary matrices such that F = V �W ∗ is an SVD.

It is not difficult to construct examples which show that there are other minimizers
when � is not strictly convex.

Example 3.4 Given a > b > 1, consider the matrices

F =
[

a 0
0 b

]
, U1 =

[
1 0
0 0

]
, and X =

[
0 0
0 1

]
.

Take the Schatten norm for p = 1, i.e. ‖A‖1 = s1(A) + s2(A), A ∈ M2. If we look
for the closest partial isometry of rank one, then

‖F − U1‖1 = a + b − 1 = ‖F − X‖1.

From the assumption on the numbers a, b, it follows that all the possible unitaries
associated to the SVDs of F are given by V = W = diag(λ1, λ2), |λ1| = |λ2| = 1.
Therefore, X is a minimizer which does not have the form described in Theorem 3.3.
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The expression of the minimizers can be further simplified according to the follow-
ing cases.

Theorem 3.5 (Parametrization of minimizers) Let 1 ≤ k ≤ q, and let F ∈ Mm,n

be of rank r . Suppose that � is a strictly convex symmetric gauge function. Then the
minimizers of problem (4) satisfy the following:

(i) If k < r , then there is a unique minimizer if and only if sk(F) �= sk+1(F). In the
case in which sk(F) = sk+1(F), there are infinitely many minimizers given as
follows. Set

�k = #{ j : s j (F) < sk(F)}, ek = #{ j : s j (F) = sk(F) }.

Given F = V �W ∗ an SVD, the minimizers are parametrized by

Uk,P = V

⎡

⎣
I�k 0 0
0 P 0
0 0 0m−�k−ek ,n−�k−ek

⎤

⎦ W ∗,

where P is an orthogonal projection in Mek of rank k − �k .
(ii) If k = r and F = U |F | is the canonical polar decomposition, then U is the

unique minimizer.
(iii) If r < k ≤ q, then there are infinitely many minimizers. Given F = V �W ∗ an

SVD, the minimizers are described by

Uk,S = V

[
Ir 0
0 S

]
W ∗,

where S is a partial isometry of rank k − r .

Remark 3.6 Let F = V �W ∗ be an SVD, and suppose that 1 ≤ k ≤ r . Define the
orthogonal projection

Pk = W

[
Ik 0
0 0

]
W ∗.

Noting that the non-zero singular values of F Pk are s1(F), . . . , sk(F), we see that an
SVD is given by

F Pk = V

[
diag(s1(F), . . . , sk(F)) 0

0 0m−k,n−k

]
W ∗.

If F Pk = U0|F Pk | is the canonical polar decomposition, then from the expression
in (1), we find that U0 = Uk . As a consequence of our results, and following the
terminology in [8], any solution to the problem of finding the closest partial isometry
with a given lower or equal rank can be constructed by a lift-and-project method. First,
we lift the problem to the spaceMm,n and find a closest matrix of lower or equal rank
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given by F Pk . Then, we project to the set of all partial isometries by taking the partial
isometry in the canonical polar decomposition.

In the case where r < k ≤ q, we cannot find the minimizers using a lift-and-project
method. Indeed,

inf{ ‖F − G‖� : G ∈ Mm,n , rank(G) = k }

is attained if and only if rank(F) ≤ k (see [27, Theorem 3]). However, the set of
minimizers { Uk,S : S ∈ Ik−r

m−r,n−r } has another characterization. It consists of all the
partial isometries X of rank k satisfying F = X |F | (see Remark 2.2).

As a consequence of the above results we consider the global best approximation
problem: given F ∈ Mm,n , we seek for the minimizers of

d�(F, Im,n) = min{ ‖F − X‖� : X ∈ Im,n }. (5)

Using that the sets Ik
m,n , k = 1, . . . , q, are the connected components of Im,n , we see

that

d�(F, Im,n) = min
1≤k≤r

d�(F, Ik
m,n),

where r = rank(F). Notice thatwe have ruled out the components given by r < k ≤ q.
This follows from Remark 3.2, which implies that d�(F, Ir

m,n) ≤ d�(F, Ik
m,n) for

k = r + 1, . . . , q. Then, global minimizers can be obtained from the connected
components Ik

m,n , k = 1, . . . , r . Thus, they are also characterized as the canonical
partial isometry associated to a best lower or equal rank approximation. The connected
componentwhere eachminimizer lies is determinedby the singular values of thematrix
F . We will omit the proof of our next result, which now follows from these remarks,
Theorems 3.1 and 3.3.

Theorem 3.7 (Global minimizers) Let F ∈ Mm,n be of rank r .

(a) Suppose that si (F) �= 1/2 for all i = 1, . . . , r .
(i) If sr (F) > 1/2 and F = U |F | is the canonical polar decomposition, then U

is a minimizer of (5).
More generally, if sk(F) > 1/2 > sk+1(F) for some k = 1, . . . , r − 1, then
the closest partial isometry from Ik

m,n to F is a minimizer of (5).
(ii) If s1(F) < 1/2, then the closest partial isometries from I1

m,n to F are mini-
mizers of (5).

(b) Suppose that { j : s j (F) = 1/2} = {k, . . . , k + l}, where 1 ≤ k ≤ r and
0 ≤ l ≤ r − k.
(i) If k = 1, then the closest partial isometries from I1

m,n, . . . , Il+1
m,n to F are

minimizers of (5).
(ii) If 1 < k ≤ r , then the closest partial isometries from Ik−1

m,n , . . . , Ik+l+1
m,n to F

are minimizers of (5).

Moreover, in all the cases these are the only minimizers provided that the symmetric
gauge function � is strictly convex.
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4 Symmetric Approximation of Finite Frames

Let H be an m-dimensional Hilbert space. A family of vectors { f j }n
1 spanning a

subspace K ⊆ H is called a finite frame for K. Equivalently, { f j }n
1 is a finite frame

for K if there are constants A, B > 0 such that, for every f ∈ K, we have

A‖ f ‖2 ≤
n∑

j=1

| 〈 f, f j
〉 |2 ≤ B‖ f ‖2.

The optimal constants A, B where these inequalities hold for all f ∈ K are called
the lower and upper bounds for the frame. The frame is a tight frame if A = B and a
Parseval frame if A = B = 1. A comprehensive introduction to frame theory in finite
dimensional spaces and its applications can be found in [4,7]. As in the Introduction,
we will assume that H = C

m . There is no loss of generality because the Frobenious
norm is unitarily invariant and our results only depend on the coordinates of vectors.

For the sake of simplicity, finite frames (resp. Parseval frames) for subspaces of
C

m consisting of n vectors, counted with repetitions if it is necessary, will be called
n-frames (resp. n-Parseval frames).

Definition 4.1 Let J be a family of n-Parseval frames. Given a frame { f j }n
1 for a

subspace K ⊆ C
m , a Parseval frame {u j }n

1 ∈ J is called a symmetric approximation
of { f j }n

1 in J if

n∑

j=1

‖ f j − u j‖2 ≤
n∑

j=1

‖ f j − x j‖2

for all Parseval frames {x j }n
1 ∈ J .

Remark 4.2 Let Jw be the family of all n-Parseval frames weakly similar to a given
frame { f j }n

1. Then, a Parseval frame {u j }n
1 ∈ Jw is a symmetric approximation of

{ f j }n
1 in Jw exactly when {u j }n

1 is a symmetric approximation of { f j }n
1 in the sense

of [12].

In the Introduction, we have explained the connection of approximation by partial
isometries and symmetric approximation of frames. The first family of n-Parseval
frames that we shall consider to study symmetric approximations is determined by
the rank of the partial isometries. In the language of frames, this corresponds to the
notion of redundancy or excess of a frame. To recall this notion, we write In for the
set { 1, . . . , n}. The excess of a frame { f j }n

1 for a subspace K is

e({ f j }n
1) = max{ |I | : I ⊆ In, span{ f j } j∈In\I = K } = n − dimK.

It describes the greatest number of vectors which can be removed from { f j }n
1 with

the property that the remaining vectors still generate the same subspace. It is easily
verified that e({ f j }n

1) = dim ker(F), where F is the synthesis matrix of { f j }n
1. Recall



J Fourier Anal Appl (2018) 24:1098–1118 1109

that F is thematrixwhose columns are the vectors f1, . . . , fn . In particular, this implies
n = e({ f j }n

1)+rank(F), and consequently, n−q ≤ e({ f j }n
1) ≤ n−1, q = min{m, n}.

We introduce the following sets of n-Parseval frames: for k = 1, . . . , q,

Jn−k = { {w j }n
1 : {w j }n

1 is a Parseval frame, e({w j }n
1) = n − k }.

Theorems 3.1, 3.3 and 3.5 can be rephrased as results providing all the symmetric
approximations in Jn−k . For the uniqueness part, we recall that the Frobenious norm
is given by a strictly convex symmetric gauge function.

Corollary 4.3 Let { f j }n
1 be a frame for a subspace K ⊆ C

m. Suppose that this frame
has synthesis matrix F of rank r . Then every symmetric approximation of { f j }n

1 in
Jn−k , k = 1, . . . , q, is given by

u j = V

[
Ik 0
0 0m−k,n−k

]
W ∗e j , j = 1, . . . , n,

where V and W are any pair of unitary matrices such that F = V �W ∗ is an SVD. In
particular, there is a unique symmetric approximation if and only if sk(F) �= sk+1(F)

when k < r; the canonical Parseval frame is the unique symmetric approximation
when k = r; and there are infinitely many symmetric approximations when r < k ≤ q.

Remark 4.4 Let { f j }n
1 and {g j }n

1 be frames for subspaces of Cm whose synthesis
matrices are F and G, respectively. Notice that these frames are weakly equivalent
if and only if ker(F) = ker(G). Then any pair of weakly equivalent frames have the
same excess. This means that we have the inclusion Jw ⊆ Jn−r . Thus, Corollary 4.3
generalizes [12, Theorem 1.3]. The fact that the canonical Parseval frame is the unique
symmetric approximation in the family Jn−r was also proved in [16, Corollary 3.7]
and [21, Theorem 2.2].

We give below a somewhat simplified version of Theorem 3.7 for frames. The
approximation of a matrix by a partial isometry without rank constraints corresponds
to the symmetric approximation of a frame in the family of all n-Parseval frames. We
will only exhibit one symmetric approximation from each connected component of
the partial isometries.

Corollary 4.5 Let { f j }n
1 be a frame for a subspace K ⊆ C

m with synthesis matrix F.
Set k = #{ j : s j (F) ≥ 1/2 }, and put k = 1 if s j (F) < 1/2 for all j ≥ 1. Then a
symmetric approximation of { f j }n

1 in the family of all n-Parseval frames is given by

u j = V

[
Ik 0
0 0m−k,n−k

]
W ∗e j , j = 1, . . . , n,

where V and W are any pair of unitary matrices such that F = V �W ∗ is an SVD.
This is the unique symmetric approximation in the following two cases: (i) there is at
least one singular value satisfying s j (F) ≥ 1/2 and #{ j : s j (F) = 1/2 } ≤ 1; or
(i i) s j (F) < 1/2 for all j ≥ 1 and s1(F) �= s2(F).
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Note that the above symmetric approximation is the canonical Parseval frame asso-
ciated to { f j }n

1 when k = rank(F), and thus, it spans the subspace K. In general,
a symmetric approximation in the family of all n-Parseval frames spans a subspace
contained inK. Using this observation we can now find a symmetric approximation in
the family JS of all the n-Parseval frames whose vectors belong to a fixed subspace
S ⊆ C

m . In the following result, we denote by PS the orthogonal projection onto S.
Theorem 4.6 Let { f j }n

1 be a frame for a subspace K ⊆ C
m with synthesis matrix F.

Fix a subspace S ⊆ H such that K is not included in S⊥. Set k = #{ j : s j (PS F) ≥
1/2 }, and put k = 1 if s j (PS F) < 1/2 for all j ≥ 1. Then a symmetric approximation
of { f j }n

1 in JS is given by

u j = V

[
Ik 0
0 0m−k,n−k

]
W ∗e j , j = 1, . . . , n,

where V and W are any pair of unitary matrices such that PS F = V �W ∗ is an SVD.

Remark 4.7 (i) Clearly, the same uniqueness statement of Corollary 4.5 holds replac-
ing F by PS F .

(ii) If we have K ⊆ S⊥, then PS F = 0. Then the above formula does not give a
symmetric approximation in JS . However, in this case, it is easily seen that every
n-Parseval frame in S is a symmetric approximation.

5 Proofs

5.1 Proof of Theorem 3.1

We are going to use the following version of the Lidskii–Mirsky–Wielandt theorem
stated for singular values (see [27], [1, Theorem IV.3.4] and for a proof for rectangular
matrices [19, Theorem 3.4.5]).

Theorem 5.1 Let F, G ∈ Mm,n and q = min{m, n}, then

(|s1(F) − s1(G)|, . . . , |sq(F) − sq(G)|) ≺w s(F − G).

Now we prove Theorem 3.1. Let X be a partial isometry of rank k. Note that
s j (X) = 1 for j ≤ k and s j (X) = 0 for j > k. Using Theorem 5.1, we have the
submajorization

(|s1(F) − 1|, . . . , |sk(F) − 1|, sk+1(F), . . . , sq(F)
) ≺w s(F − X).

According to the Ky-Fan dominance principle (Theorem 2.3), this implies that

�
(|s1(F) − 1|, . . . , |sk(F) − 1|, sk+1(F), . . . , sq(F)

) ≤ ‖F − X‖� (6)

for every symmetric gauge function �.
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On the other hand, the partial isometry Uk clearly satisfies rank(Uk) = k. From its
definition, we see that

F − Uk = V

(
� −

[
Ik 0
0 0m−k,n−k

])
W ∗.

Therefore,

s(F − Uk) = (|s1(F) − 1|, . . . , |sk(F) − 1|, sk+1(F), . . . , sq(F))↓. (7)

This fact along with the inequality (6) gives

‖F − Uk‖� ≤ ‖F − X‖�.

Hence the partial isometry Uk is a minimizer.

5.2 Proof of Theorem 3.3

The proof is divided into four steps. The first step contains a uniqueness property of
strictly convex symmetric gauge functions. In the second step, we give a lemma on
the equality case in the Lidskii–Mirsky–Wielandt theorem stated for singular values.
In the third step, we prove an optimization lemma for numbers. These results are
combined in the fourth step to prove Theorem 3.3.

Step 1 Strictly convex symmetric gauge functions have the following property.

Lemma 5.2 Let x, y ∈ R
q , x ≥ 0, y ≥ 0. Suppose that � is a strictly convex

symmetric norm, �(x) = �(y) and x≺w y. Then x = y.

Proof For vectors x ≥ 0, y ≥ 0, we have x≺w y if and only if x is in the convex hull
of the 2qq! vectors given by

y j := (ε j,1xσ j (1), . . . , ε j,q xσ j (q)),

where (ε j,1, . . . , ε j,q) ∈ {−1, 1}q and σ j is a permutation of {1, . . . , q} for every j
(see [1, Ex. II.2.10]). Thus, we can write x = ∑

λ j y j , where
∑

λ j = 1 and λ j ≥ 0.
Now note that �(y j ) = �(y) = �(x) and

�(x) = �
(∑

λ j y j

)
≤

∑
λ j �(y j ) =

∑
λ j �(x) = �(x).

This implies that �
(∑

λ j y j
) = ∑

λ j �(y j ). Since the norm � is strictly convex
and �(y j ) = �(y) for all j , we get that y j = y whenever λ j > 0. Hence x = y. �

Step 2 Let A ∈ Mn be a Hermitian matrix. The vector of eigenvalues of A arranged
in nonincreasing order is denoted by λ(A) = (λ1(A), . . . , λn(A)). The Lidskii–
Mirsky–Wielandt theorem states:
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Theorem 5.3 Let A, B ∈ Mn be Hermitian matrices. Then

λ(A + B) − λ(A)≺ λ(B).

We refer the reader to the book by Bhatia [1] for three different proofs and historical
information. However, the simplest proof was given later in [22]. Recently, the same
ideas of this last proof were used in [26] to investigate the equality case in the Lidskii–
Mirsky–Wielandt theorem. In particular, the following was proved:

Proposition 5.4 Let A, B ∈ Mn be Hermitian matrices. Then

(λ(B + A) − λ(A))↓ = λ(B)

implies AB = B A.

Note that Theorem 5.1 can be deduced from Theorem 5.3. The trick is to consider
the Hermitian matrices

F̂ =
[
0 F

F∗ 0

]
, Ĝ =

[
0 G

G∗ 0

]
.

Using the same trick we get the following result.

Lemma 5.5 Let F, G ∈ Mm,n. Then

s(F − G) = |s(F) − s(G)|↓

implies that G F∗ = FG∗ and G∗F = F∗G.

Proof Let F̂, Ĝ ∈ Mm+n be the matrices defined above. Note that B = F̂ − Ĝ and
A = Ĝ are Hermitian matrices satisfying

λ(A) = (s(G),−s(G)↑) and λ(B) = (s(F − G),−s(F − G)↑),

where s(G)↑ and S(F − G)↑ are the vectors of singular values of G and F − G
arranged in nondecreasing order. From the assumed equality of the singular values we
obtain

(λ(B + A) − λ(A))↓ = λ(B).

Proposition 5.4 implies that AB = B A. This is equivalent to F̂ Ĝ = Ĝ F̂ , whichmeans
that G F∗ = FG∗ and G∗F = F∗G. �

Step 3 Now we prove the following optimization result.
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Lemma 5.6 Given s ∈ R
q such that s1 ≥ · · · ≥ sq ≥ 0, let f : {−1, 0, 1}q → R be

the function defined by

f (x1, . . . , xq) =
q∑

j=1

(s j − x j )
2.

Set

r = max{ j : s j �= 0 }.

For every 1 ≤ k ≤ q, the minimizers of f subject to the restriction #{ j : x j �= 0 } = k
have the following structure:

(i) If 1 ≤ k < r and sk �= sk+1, then there is a unique minimizer given by

x1 = · · · = xk = 1, xk+1 = · · · = xq = 0.

If sk = sk+1, set �k = #{ j : s j < sk } and ek = #{ j : s j = sk }. Then there are( ek
k−�k

)
minimizers given by

x1 = · · · = x�k = 1, x�k+1 = σ1, . . . , x�k+ek = σek , x�k+ek+1 = · · · = xq = 0,

where each σi ∈ { 0, 1 }, and #{ i : σi = 1 } = k − �k .
(ii) If k = r , then there is a unique minimizer given by

x1 = · · · = xr = 1, xr+1 = · · · xq = 0.

(iii) If r < k ≤ q, then there are 2k−r
(q−r

k−r

)
minimizers given by

x1 = · · · = xr = 1, xr+1 = σ1, . . . , xq = σq−r ,

where each σi ∈ { −1, 0, 1 }, and #{ i : σi �= 0 } = k − r .

Proof To prove (i) we first note that any minimizer must satisfy xi = 0, i = r +
1, . . . , q. This follows immediately using the inequality (a − 1)2 < a2 + 1 for a > 0.
From the inequality (a − 1)2 < (a + 1)2 for a > 0, we deduce that any minimizer
satisfies xi �= −1, i = 1, . . . , r . Given two numbers a ≥ b, then

(a − 1)2 + b2 ≤ a2 + (b − 1)2,

and equality holds if and only if a = b. Using this elementary inequality recursively,
it is easy to see that a minimizer is obtained by taking x1 = · · · = xk = 1 when
sk �= sk+1. On the other hand, it is clear that if sk = sk+1, the minimizer is not
unique. Indeed, as before, any minimizer must have x1 = · · · = x�k = 1. But now
s�k+1 = · · · = s�k+ek = sk , which implies that there are

( ek
k−�k

)
possible choices to

place the remaining k − �k ones.
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The proofs of (ii) and (iii) are similar. We only remark that in the last item, one also
has to take into account minimizers satisfying xi = ±1 for i > r . �

Step 4 Suppose that � is a strictly convex symmetric gauge function. Let X be a
partial isometry of rank k such that ‖F − X‖� = ‖F − Uk‖�. We have shown in
the proof of Theorem 3.1 that s(F − Uk)≺ws(F − X). According to Lemma 5.2, it
follows that s(F − Uk) = s(F − X). Then, using the equality (7) we get

s(F − X) = |s(F) − s(X)|↓. (8)

Now Lemma 5.5 gives X F∗ = F X∗ and X∗F = F∗ X . From these latter relations,
one can prove that there exist V0 ∈ Um and W0 ∈ Un such that F = V0DF W ∗

0 and
X = V0DX W ∗

0 , where DF , DX ∈ Mm,n are diagonal matrices with real coefficients.
Furthermore, DF can be taken to be with non negative coefficients (see [9, Theorem
II]).

Since |F | = W0|DF |W ∗
0 and (DF )i i ≥ 0, we see that s ji (F) = (DF )i i for some

permutation j1, . . . , jq of the integers 1, . . . , q. Thus, we can find two permutation
matrices P ∈ Mm and Q ∈ Mn satisfying � = P DF Q. Put V1 = V0P and
W1 = W0Q. Therefore F = V1�W ∗

1 is an SVD. We can also write X = V1D′
X W ∗

1 ,
where D′

X = P DX Q is diagonal. Further, note that X∗ X = W (D′
X )∗ D′

X W ∗ is a
projection, so its eigenvalues are 0 and 1, and thus, (D′

X )i i ∈ { −1, 0, 1 }.
Then, suppose that L ∈ Mm,n is a diagonal matrix such that Lii ∈ { −1, 0, 1 }

and #{ i : Lii �= 0} = k. So we have that Y = V1LW ∗
1 is a partial isometry of rank k.

Since s(F − X) = s(F −Uk), the partial isometry X is a minimizer for every unitarily
invariant norm. In particular, we can use the Frobenious norm:

q∑

i=1

(
si (F) − (D′

X )i i
)2 = ‖� − D′

X‖22 = ‖F − X‖22 ≤ ‖F − Y‖22

= ‖� − L‖22 =
q∑

i=1

(si (F) − Lii )
2 . (9)

We have to consider three cases according to Lemma 5.6. Note that r = rank(F). We
first assume that k < r and sk(F) �= sk+1(F) to obtain

(
D′

X

)
11 = · · · = (

D′
X

)
kk = 1,

(
D′

X

)
k+1 k+1 = · · · = (

D′
X

)
qq = 0.

Hence,

X = V1

[
Ik 0
0 0m−k,n−k

]
W ∗

1 .

If sk(F) = sk+1(F), then

(D′
X )11 = · · · = (D′

X )�k �k = 1,
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(D′
X )�k+1 �k+1 = σ1, . . . , (D′

X )�k+ek �k+ek = σek ,

(D′
X )�k+ek+1 �k+ek+1 = · · · = (D′

X )qq = 0,

where σi ∈ { 0, 1 }, i = 1 . . . , ek and #{ i : σi = 1 } = k − �k . We can get two
permutation matrices P ′ ∈ Mm and Q′ ∈ Mn such that

P ′ D′
X Q′ =

[
Ik 0
0 0m−k,n−k

]
.

Thus,

X = V1P ′
[

Ik 0
0 0m−k,n−k

]
Q′W ∗

1 ,

where V1P ′, W1Q′ are unitaries associated to some SVD of F by Remark 2.1. Indeed,
notice that P ′ and Q′ interchange rows and columns corresponding to the multiplicity
of the singular value sk(F).

The case where k = r follows similarly. If r < k ≤ q, then we have that

(D′
X )11 = · · · = (D′

X )rr = 1, (D′
X )r+1 r+1 = σ1, . . . , (D′

X )qq = σq−r ,

where each σi ∈ { −1, 0, 1 }, and #{ i : σi �= 0 } = k −r . Consider the unitary matrix
defined by

R =
{
diag(sgn(σ1), . . . , sgn(σq−r )), if q = m,
diag(sgn(σ1), . . . , sgn(σq−r ), Im−q), if q = n.

Then, the partial isometry X can be expressed as

X = V1

[
Ir 0
0 R

] [
Ik 0
0 0m−k,n−k

]
W ∗

1 .

From Remark 2.1, the unitary V1 diag(Ir , R) is associated to some SVD of F . This
completes the proof.

5.3 Proof of Theorem 3.5

Let F = V �W ∗ be an SVD. In order to prove (i), we first note that by Theorem 3.3
and Remark 2.1 the minimizers have the form

Uk = V

[
D 0
0 R1

] [
Ik 0
0 0m−k,n−k

] [
D∗ 0
0 R2

]
W ∗, (10)

where D ∈ Ur is block diagonal with Di j = 0 if si (F) �= s j (F), and R1 ∈ Um−r ,
R2 ∈ Un−r are arbitrary. Recalling that

�k = #{ j : s j (F) < sk(F)}, ek = #{ j : s j = sk },
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we see that �k +ek = k when sk(F) �= sk+1(F). Therefore any matrix D as above can
be written as D = diag(D1, D2), where D1 ∈ Uk and D2 ∈ Ur−k . Then the expression
in (10) reduces to

Uk = V

[
Ik 0
0 0m−k,n−k

]
W ∗,

which is the unique minimizer.
Suppose now that sk(F) = sk+1(F). This gives 0 < k − �k < ek , and the matrices

D may be written as D = diag(D1, D2, D3), where D1 ∈ U�k , D2 ∈ Uek and D3 ∈
Ur−�k−ek . Hence Uk has the form

Uk = V

⎡

⎢⎢⎣

I�k 0 0

0 D2

[
Ik−�k 0
0 0

]
D∗
2 0

0 0 0

⎤

⎥⎥⎦ W ∗.

Since every orthogonal projection P ∈ Mek of rank k − �k can be expressed as

P = D2

[
Ik−�k 0
0 0

]
D∗
2

for some D2 ∈ Uek , this proves the desired parametrization of the minimizers.
We can proceed analogously in item (ii). It follows that

Ur = V

[
D 0
0 R1

] [
Ir 0
0 0m−k,n−k

] [
D∗ 0
0 R2

]
W ∗ = V

[
Ir 0
0 0m−k,n−k

]
W ∗ = U

turns out to be the unique minimizer.
To prove item (iii), we compute as above

Uk = V

[
D 0
0 R1

] [
Ik 0
0 0m−k,n−k

] [
D∗ 0
0 R2

]
W ∗ = V

⎡

⎣
Ir 0

0 R1

[
Ik−r 0
0 0

]
R∗
2

⎤

⎦ W ∗,

where R1 ∈ Um−r and R2 ∈ Un−r . Note that every partial isometry S of rank k − r

can be written as S = R1

[
Ik−r 0
0 0

]
R∗
2 for some unitary matrices R1 and R2.

5.4 Proof of Theorem 4.6

Set

Uk = V

[
Ik 0
0 0m−k,n−k

]
W ∗,
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where V and W are unitary matrices such that PS F = V �W ∗ is an SVD. Let X be
the synthesis matrix of a Parseval frame in JS . If {v j }n

1 is an orthonormal basis ofCn ,
then using Pythagoras’ theorem we get that

‖F − X‖22 =
n∑

j=1

‖(F − X)v j‖2

=
n∑

j=1

(‖(PS F − X)v j‖2 + ‖(PS⊥ F)v j‖2
)

= ‖PS F − X‖22 + ‖PS⊥ F‖22
≥ ‖PS F − Uk‖22 + ‖PS⊥ F‖22 = ‖F − Uk‖22 .

Note that the inequality follows by Theorem 3.7, and in the last equality we have used
that ran(Uk) ⊆ ran(PS F) ⊆ S. This finishes the proof.
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