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Abstract

We give an exact information-theory treatment of the n-dimensional black-body radiation
process in a non-extensive scenario. We develop a q-generalization of the laws of
(i) Stefan–Boltzmann, (ii) Planck, and (iii) Wien, and show that conventional, canonical
results are obtained at temperatures above 1 K. Classical relationships between radiation, pres-
sure, and internal energy are recovered (independently of the q value). Analyzing the particles’
density for q ≈ 1, we see that the non-extensive parameter q introduces a 9ctitious chemi-
cal potential. We apply our results to experimental data on the cosmic microwave background
and reproduce it with acceptable accuracy for di:erent temperatures (each one associated to a
particular q value). c© 2002 Elsevier Science B.V. All rights reserved.

PACS: 05.30.−d; 05.30.Jp
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1. Introduction

Black-body radiation studies constitute a milestone in the history of physics. Planck’s
law is satisfactorily accounted for by recourse to Bose–Einstein statistics and has been
experimentally re-con9rmed over and over for almost a century. However, in the last
decade small deviations from this law have been detected in the cosmic microwave
radiation [1]. In Ref. [2], its authors advance the hypothesis that these deviations could
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have arisen at the time of the matter–radiation de-coupling, and associate them to a
non-extensive statistics environment. They argue in favor of such an hypothesis on the
basis of the close relation that exists between long-range interactions and non-extensive
scenarios [3,4]. The concomitant non-extensive thermostatistical treatment [3–12] is
by now recognized as a new paradigm for statistical mechanical considerations. It
revolves around the concept of Tsallis’ information measure Sq [5], a generalization
of the logarithmic Shannon’s one. Sq is parameterized by a real index q and becomes
identical to Shannon’s measure when q = 1.
The study reported in Ref. [2] employs the so-called Curado–Tsallis unnormalized

expectation values [10] in the limit q → 1. Nowadays, it is believed that the Curado–
Tsallis (CT) framework has been superseded by the so-called normalized or Tsallis–
Mendes–Plastino (TMP) one [13,14], which seems to exhibit important advantages [7].
This normalized treatment, in turn, has been considerably improved by the so-called
“optimal Lagrange multipliers” (OLM) approach [15]. It is, then, natural to revisit the
problem from such a new viewpoint.
The OLM treatment can be recommended in view of the 9ndings of [16–18]

regarding the particular nature of the Lagrange multiplier associated to the temperature.
Within an OLM context, non-extensivity is restricted just to the entropy. The internal
energy remains extensive and the Lagrange multipliers conserve their traditional inten-
sive character (allowing one to identify them with their thermodynamic counterpart).
Moreover, the OLM approach uni9es Tsallis and R&enyi variational formalisms under a
q-thermostatistics umbrella. The solutions to the concomitant OLM-Tsallis variational
problem are also solutions for its R&enyi-counterpart [19]. Since R&enyi’s entropy is ex-
tensive, one easily understands thereby the OLM formalism’s success in reproducing
classical thermodynamic results in a simple and clean fashion [20,21].
We shall study here, from an OLM viewpoint, black-body radiation in equilib-

rium within an enclosure of volume V , with the goal of ascertaining the possible
q-dependence of (i) the Planck spectrum, (ii) the Stefan–Boltzmann law,
and (iii) Wien’s one. We will compare the ensuing results with those found in the
literature [2,22–24] (all of them under Curado–Tsallis treatment) and with experimen-
tal data [1]. Due to the fact that most previous non-extensive treatments of quantal
gases employ the so-called factorization approach (FA), and that this approximation
underlies some of the preceding treatments of the black-body radiation problem, we
will translate the FA into the language of a normalized-OLM factorization approach
(OLM–FA). This in turn provides one with a q-normalized generalization of the par-
ticle’s density expression for quantum gases.
The paper is organized as follows: In Section 2, we present a brief OLM primer.

In Section 3, we obtain the OLM partition function. Some preliminary results in this
respect have been reported in Ref. [25], that are superseded by the ones presented in
this communication. Section 4 is devoted to the Stefan–Boltzmann law. We obtain the
exact expression for the internal energy (IV A) and 9nd that the Stefan–Boltzmann law
holds for all temperatures except a small interval (T ∈ [10−2 K, 1 K]). We also revisit
pertinent antecedents in the literature of the non-extensive approach to the black-body
problem (IV B). In Section 5, we perform an exact calculation of the energy density.
Planck’s law (V A) seems to be valid everywhere, with just slight variations in the
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shape of the associated curves. Following Ref. [2], the formalism is applied to the
cosmic microwave radiation (V C) in order to search for deviations from Planck’s
law. Using the maxima of the energy density curves, we search for the q-generalization
of Wien’s law (V B) and 9nd good agreement, save for a small temperature interval
(T ∈ [10−4 K, 10−2 K]). Some conclusions are drawn in Section 6. In Appendix A, we
review the FA, introduce our new OLM–FA technique and apply it to the black-body
radiation problem.

2. Main results of the OLM formalism

For a most general quantal treatment, in a basis-independent way, consideration is
required of the density operator �̂ that maximizes Tsallis’ entropy

Sq

k
=

1− Tr(�̂q)
q − 1

(1)

subject to the M generalized expectation values 〈Ôj〉q, where Ôj (j=1; : : : ; M) denote
the relevant observables.
Tsallis’ normalized probability distribution [13] is obtained by following the well-

known MaxEnt route [26]. Instead of performing the variational treatment of
Tsallis–Mendes–Plastino (TMP) [13], we will pursue the alternative path developed in
Ref. [15]. One maximizes Tsallis’ generalized entropy given by Eq. (1) [5,6,8]
subject to the constraints [5,15]

Tr(�̂) = 1 ; (2)

Tr[�̂q(Ôj − 〈Ôj〉q)] = 0 ; (3)

whose generalized expectation values [13]

〈Ôj〉q = Tr(�̂qÔj)
Tr(�̂q)

(4)

are (assumedly) a priori known. In contrast with the TMP-instance [13], the resulting
density operator

�̂ =
f̂

1=(1−q)
q

PZq
(5)

is not self referential [15]. In Eq. (5), {�j} (j = 1; : : : ; M) stands for the so-called
“OLM’s set”. The quantity f̂q is known as the con9gurational characteristic and takes
the form

f̂q = 1− (1− q)
M∑
j

�j(Ôj − 〈Ôj〉q) ; (6)
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if its argument is positive, while otherwise f̂q = 0 (cut-o: condition [13]). Of course,
PZq is the partition function

PZq = Trf̂
1=(1−q)
q : (7)

It is shown in Ref. [15] that, as a consequence of the normalization condition, one
has

Rq ≡ Trf̂
q=(1−q)
q = PZq ; (8)

which allows one to write Tsallis’s entropy as

Sq = k lnq PZq (9)

with lnq x = (1− x1−q)=(q− 1). These results coincide with those of TMP [13]. Using
Eq. (8), the connection between the OLM’s set and the TMP’s Lagrange multipliers
set can be written as [15]

�TMP
j = PZ

1−q
q �j : (10)

The TMP’s Lagrange multipliers are not intensive quantities [16,18]. They do not,
as a consequence, have a simple physical interpretation. To the contrary, the OLM
multipliers are intensive [16,18], a fact that can be easily explained noticing that they
are the natural Lagrange multipliers of a R&enyi’s variational approach [19].
If we de9ne now

ln Zq = ln PZq −
∑

j

�j 〈Ôj〉q ; (11)

we are straightforwardly led to [16]
@

@〈Ôj〉q
(ln PZq) = �j ; (12)

@
@�j

(ln Zq) =−〈Ôj〉q : (13)

Eqs. (12) and (13) are fundamental information theory (IT) relations for formulating
Jaynes’ version of statistical mechanics [26]. Due to Eqs. (9) and (10), the IT relation
(12) leads straightforwardly to the well-known expression [13]

@

@〈Ôj〉q

(
Sq

k

)
= �TMP

j : (14)

3. Partition function and radiation pressure

We will introduce now the exact (OLM) black-body radiation treatment. The
chemical potential is taken, of course, equal to zero (grand canonical ensemble with
� = 0) and, in looking for the equilibrium properties we consider that the appropriate
thermodynamical variables are, as customary, the volume V , and the temperature T
[27]. Consider 9rst the standard situation q = 1.
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The Hamiltonian of the electromagnetic 9eld, in which there are nk; � photons of
momentum k and polarization �, is given by

Ĥ=
∑
k; �

˝!n̂k;� ; (15)

where the frequency is ! = c|k| and nk;� = 0; 1; 2; : : : ; with no restrictions on {nk; �}.
For a macroscopic volume V the density of states g in an n-dimensional space is

gn(!) = An!n−1, with

An =
2�nV

(4�c2)n=2�(n=2)
; (16)

where �n = n − 1 is the number of linearly independent polarizations.
The partition function

Z1 = Tr(e−�Ĥ) (17)

can be written as

Z1 = exp
{∫ ∞

0
d!gn(!) ln[1− exp (−�˝!)]

}
= e�n ; (18)

where

�n =
InAn

(˝�)n (19)

and

In =−
∫ ∞

0
dx xn−1 ln(1− e−x) = �(n)!(n + 1) (20)

with ! standing for the Riemann function and � for the Gamma function.
The OLM-Tsallis generalized con9gurational characteristic will be (cf. Eq. (6))

f̂q = 1− (1− q)�(Ĥ − Uq) ; (21)

where Ĥ is the Hamiltonian given by Eq. (15), Uq is the mean energy introduced in
Eq. (4), and � = 1=kT .
With the aim of calculating PZq as de9ned by Eq. (7), we follow the steps of

Ref. [22] and use the integral (Gamma) de9nition given by the relation [30]

bz−1 =




�(z)
2�

∫ ∞

−∞
dt e(1+it)b

(1+it)z for b ¿ 0 ;

0 for b6 0
(22)

with Re(z)¿ 0, and −�=2¡ arg(a + it)¡ �=2.
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If we set b=fq (the cut-o: condition is naturally ful9lled [7]) and z=1=(1−q)+1
(Re(z)¿ 0, so that either q ¿ 2 or q ¡ 1), the generalized partition function adopts
the appearance

PZq(Uq) =
∫ ∞

−∞
dt Kq(t)Z1(�̃) (23)

with Z1 given by Eq. (18),

Kq(t) =
�[(2− q)=(1− q)] exp (1 + it)e�̃Uq

2�(1 + it)(2−q)=(1−q) (24)

and

�̃ = (1 + it)(1− q)� : (25)

In order to evaluate the integral in Eq. (23), we expand the exponential and obtain

PZq(Uq) =
�[(2− q)=(1− q)]

2�

∞∑
m=0

�m
n

m!
(1− q)−nm

×
∫ ∞

−∞
dt

e(1+(1−q)�Uq)(1+it)

(1 + it)(2−q)=(1−q)+nm ; (26)

where �n is given by Eq. (19).
Using again Eq. (22), with b = 1 + (1 − q)�Uq and z = (2 − q)=(1 − q) + nm, we

arrive at

PZq(Uq) =�[(2− q)=(1− q)][1 + (1− q)�Uq]1=(1−q)

×
∞∑

m=0

Bm�−1[(2− q)=(1− q) + nm] ; (27)

where

Bm =
�m

n

m!
[1 + (1− q)�Uq]nm

(1− q)mn : (28)

Notice that an additional, cut-o:-like condition must be considered, namely,

1 + (1− q)�Uq ¿ 0; otherwise PZq(Uq) = 0:

A similar path can be followed in order to obtain the quantity Rq (introduced in
Eq. (8)), which will read

Rq(Uq) = �[1=(1− q)][1 + (1− q)�Uq]q=(1−q)
∞∑

m=0

Bm�−1[1=(1− q) + nm] ;

(29)

although in this case the allowed interval of q-values is reduced to 0¡ q ¡ 1. Note
that this permissible interval of q-values respects the new cut-o: condition introduced
above.
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Once we have PZq, the radiation pressure is easily obtained by applying Eq. (12) to
(�P; V ) [27], i.e.,

�P =
@

@V
ln PZq =

1
V

∑
m mBm�−1((2− q)=(1− q) + nm)∑
m Bm�−1((2− q)=(1− q) + nm)

: (30)

Due to the fact that we have set �=0, the quantity PZq of Eq. (27) does not depend
on the mean number of particles Nq. One has

� = �−1 @
@Nq

ln PZq = 0 : (31)

4. Stefan–Boltzmann’s law

4.1. Exact OLM treatment

As in the previous section, the generalized internal energy of the black-body radiation
is obtained from Eq. (4) by specializing the problem to the grand canonical ensemble
with � = 0,

Uq =R−1
q Tr(f̂

q=(1−q)
q Ĥ) (32)

with f̂q given by Eq. (21).
Consider now the trace’s content. Using (22) we can 9nd

Uq =R−1
q

�[1=(1− q)]
2�

∫ ∞

−∞
dt

e(1+it)[1+(1−q)�Uq]

(1 + it)1=(1−q) Tr(Z1(�̃)Ĥ) ; (33)

where �̃ is given by Eq. (25). The permissible q-interval is 0¡ q ¡ 1, due to
restrictions posed by the gamma integral representation. Taking advantage of the
fact that

Tr[Z1(�̃)Ĥ ] =−@Z1(�̃)

@�̃
=

n

�̃

∑
m

�m+1
n (�̃)
m!

; (34)

we obtain

Uq =R−1
q

n
2�

�
(

1
1− q

)
�n

(1− q)n+1�

∞∑
m=0

�m
n

m!
1

(1− q)nm

×
∫ ∞

−∞
dt

e(1+it)[1+(1−q)�Uq]

(1 + it)1=(1−q)+n(1+m)+1 ; (35)

and, using again Eq. (22), we obtain the mean energy expression

Uq =
n�n

(1− q)n+1�
[1 + (1− q)�Uq]n+1

×
∑∞

m=0 Bm�−1[1=(1− q) + n(m + 1) + 1]∑∞
m=0 Bm�−1[1=(1− q) + nm]

: (36)



92 S. Mart��nez et al. / Physica A 309 (2002) 85–105

Notice that Tsallis’ cut-o: condition 1 + (1 − q)�Uq ¿ 0 is always satis9ed. The
series in Eq. (36) rapidly converges on account of the exponential-like factors Bm

(cf. Eq. (28)), weighted by inverse gamma functions.
Lenzi et al. solved the q-black-body radiation problem in exact fashion in its Curado–

Tsallis unnormalized version [22]. Since their resulting internal energy is not
self-referential (as it is in the TMP normalized instance) they were able to describe
the asymptotic behavior for � in quite simple terms. Here, we need to perform a more
detailed analysis by considering di:erent possibilities for the form that the product �Uq

may take as � → ∞. For instance, if we assume that (i) �Uq goes over to a constant or
(ii) it is not bounded, the limiting process leads to incoherencies, while if we assume
that, in Eq. (36), �Uq → 0 when � → ∞, Uq ˙ T 4, as one has the right to expect.
As a consequence of the normalization condition given by Eq. (3), we know that

Rq = PZq (see Eq. (8)). This relation allows us to look for alternative expressions for
the relevant mean value. If we evaluate Uq in terms of PZq we 9nd

Uq =
n
�

∑∞
m=0 mBm�−1((2− q)=(1− q) + nm)∑∞
m=0 Bm�−1((2− q)=(1− q) + nm)

: (37)

By inspection of Eq. (30) one realizes that the traditional relation between internal
energy and pressure still holds here

P =
1
n

Uq

V
: (38)

Eq. (36) or (37) are recursive expressions that give the OLM version of the Stefan–
Boltzmann law, which, for the q = 1 case, reads

U = n�n=� ˙ Tn+1 : (39)

The present equations are to be tackled numerically. Fig. 1 depicts Uq as a function of T
for di:erent values of q and n=3 in a log–log scale, where Uq has been evaluated from
Eq. (36). It is seen that the Stefan–Boltzmanns law is reproduced by our formalism
for a wide range of T -values. Violations are detected just for some special T -ranges
(that depend on q), within the interval 10−2 K¡ T ¡ 1 K.
With the present formalism the Stefan–Boltzmann constant becomes a function of

(i) q (namely, “.q”) and (ii) the relevant range of temperatures. Indeed, for tem-
peratures below 10−2 K results will be markedly di:erent from those obtained if we
consider T ¿ 1 K (see Fig. 2). It may be appreciated that, for these two temperature
ranges, the values of .q increase monotonically with q.

Looking for insights into the meaning of the “violation range” 10−2 K¡ T ¡ 1 K
we considered the speci9c heat

Cq =
dUq

dT
: (40)

The concomitant results are plotted in Fig. 3. One sees that the violation range coincides
with that of a constant speci9c heat, i.e., Uq ˙ T . The speci9c heat curves’ behavior is
quite di:erent from that associated with Gibbs’ predictions, even for q values close to
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Fig. 1. Internal energy, Uq, of a three-dimensional system as a function of temperature T =1=� for di:erent
values of the non-extensivity parameter q for a box whose volume is 1 m3.
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Fig. 2. Generalized Stefan constant .q as a function the index q. It is shown ln(.q=.) vs. q with
. = 5:67051× 10−8 W=(K4 m2) the Stefan constant for q = 1. See inline text for details.

unity. By recourse to detailed numerical analysis one notes that the peak one observes
is not a discontinuity but part of a smooth curve that reUects the typical behavior of a
9rst excited energy level when that level lies too close to the ground state. The typical
step-like form tends to disappear in the q → 1 limit, just as if 1 − q were a new
“degree of freedom” of the system.
For more details on the transition between Gibbs’ and Tsallis’s statistics let us

analyze the q → 1 limit in Eq. (36). Using the fact that the pertinent series are
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Fig. 3. Speci9c heat, Cq, of a three-dimensional box of volume 1 m3, as a function of temperature T , for
di:erent values of the non-extensivity parameter q. The plots show the arising results for (a) q = 0:98, (b)
q = 0:8, (c) q = 0, (b) q = 1.

highly convergent, we can try to recover analytically the above numerical results by
keeping only the 9rst-order term of the pertinent series,

Uq ≈ n0q�n

�
[1 + (1− q)�Uq]n+1 ; (41)

where 0q = �[1=(1− q)](1− q)−(n+1)�−1[1=(1− q) + n + 1]. For q → 1, 0q → 1 and
we see that the Stefan–Boltzmann’s law is recovered.
Now, to 9rst order in 1− q,

[1 + (1− q)�Uq]n+1 ≈ 1 + (n + 1)(1− q)�Uq ;

so that, rearranging terms, Eq. (41) can be cast as

Uq ≈ n0q�n�−1

1− (1− q)(n + 1)n0q�n
: (42)
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The change of behavior we are interested in is better observed with reference to
Eq. (37), by keeping only 9rst-order terms in the series expansion. We 9nd

Uq ≈ n
�

B1�−1[(2− q)=(1− q) + n]
�−1[(2− q)=(1− q)] + B1�−1[(2− q)=(1− q) + n]

; (43)

where

B1 = �n
[1 + (1− q)�Uq]n

(1− q)n
: (44)

It is clear that, for �Uq such that the 9rst term in the denominator of Eq. (43)
dominates, Uq ˙ Tn+1. When the second term is dominant, instead, then Uq ˙ T , in
agreement with our numerical results. Eq. (42) displays a similar behavior, although
its validity is restricted to the q → 1 limit. This prevents the second term in the de-
nominator from being dominant, a fact reUected in Fig. 1, where the linear dependence
is seen to fade away.

4.2. Comparison with previous non-extensive results

The Stefan–Boltzmann law was 9rst discussed within the Tsallis’ non-extensive
framework in [2]. In this paper, the authors employ the so-called Curado–Tsallis unnor-
malized expectation values [5] and work in the limit q → 1: a 9rst-order approximation
in 1 − q is used for the partition function in order to study the cosmic microwaves’
background (in Section V C, we will apply the results of the present work to the same
data set). In a subsequent e:ort, Lenzi et al. [22] advanced an exact treatment for
the same problem, also within the Curado–Tsallis framework. A third relevant work is
that of Tirnakli et al. [24], that compared the exact non-extensive treatment of the
problem with the FA one, including the unnormalized asymptotic approach (AA)
already introduced in Ref. [2].
The di:erent ensuing expressions for the pertinent Va la Stefan–Boltzmann laws are

given in Table 1 for n = 3. The traditional Gibbs expression can be found in the 9rst
row, while the second and third are, respectively, the Curado–Tsallis and OLM (exact)
results. The TMP solution can be read o: the fourth row, where we have simply
used Eq. (10) for �. The last three rows are devoted to the q → 1 limit. The 9rst one
contains the factorization approach result, the second is the our new, OLM factorization
approach expression, and, 9nally, the last one gives the exact OLM treatment in this
limit.
Inspection of these expressions allows one to appreciate that the OLM–FA seems to

inherit characteristics of both the FA and the OLM treatments for q ≈ 1. The OLM–FA
numerator coincides with that of the FA approach, while the denominator resembles
the OLM one (except for the sign). Indeed, the concomitant integrals are identical here
to those of the unnormalized treatment.
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Table 1
The results of di:erent generalizations of Stefan–Boltzmann’s law

Formalism Result

Stefan–Boltzmann’
law U1 = .T 4 . = (�2k4V )=(15˝3c3)

C–T Solution UCT
q = 3�3kT�1−q[

2− q
1− q

] �3 =
4�(3)!(4)V

�(3=2)
(

√
�kT

hc(1− q)
)3

×
∑∞

m=0
�m
3

m!
�−1[(2− q=1− q) + 3m + 3]

[
∑∞

m=0
�m
3

m!
�−1[(2− q=1− q) + 3m]]q

OLM Solution UOLM;R
q = 3�3kT

[1 + (1− q)�Uq]4

(1− q)4
Bm =

�m
3

m!
[1 + (1− q)�Uq]nm

(1− q)3n

×
∑∞

m=0 Bm�−1[1=1− q + 3m + 4]∑∞
m=0 Bm�−1[1=1− q + 3m]

FA Approximation U (FA)
q ≈ .[1− (1− q)5]T 4 5 = !(5)�(6)=(2!(4)�(4))

OLM–FA

Approximation UNFA
q ≈ .

1− (1− q)5
1 + 4(1− q).T 3=k

T 4

OLM Approximation UOLM
q ≈ .

1
1− 4(1− q).T 3=k

T 4

5. Planck and Wien laws

5.1. Planck’s law: exact OLM treatment

The generalized spectral energy distribution of black-body radiation uq is de9ned by
the integral

Uq =
∫ ∞

0
d!uq : (45)

In order to obtain uq, we need to analyze, again, the trace’s argument in the expres-
sion for Uq. We will follow the path already pursued above, but without integrating
the q = 1-like term over frequencies. We obtain

Tr(Z1(�̃)Ĥ) = ˝Ane�n

∫ ∞

0
d!!n e−�̃˝!

1− e−�̃˝!
; (46)

that, by recourse to the identity

1

1− e−�̃˝!
=

∞∑
s=0

(e−�̃˝!)s ; (47)
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allows us to cast Uq in the fashion

Uq =R−1
q

�[1=(1− q)]
2�

˝An

∫ ∞

0
d!!n

∞∑
s=0

∞∑
m=0

�m
n

m!

×
∫ ∞

−∞
dt

e(1+it)[1−(1−q)�[˝!(1+s)−Uq]]

(1 + it)1=(1−q)+nm : (48)

With Eq. (22) the integral above is easily evaluated, and we obtain

Uq =R−1
q �[1=(1− q)]˝An

∫ ∞

0
d!!n

∞∑
s=0

∞∑
m=0

�m
n

m!

× [1− (1− q)�[˝!(1 + s)− Uq]]q=(1−q)+nm

(1− q)mn�[1=(1− q) + nm]
: (49)

According to Eq. (29), the energy density de9ned by Eq. (45) is

uq(!) = ˝An!n

∑∞
m=0 BmSm�−1[1=(1− q) + nm]∑∞

m=0 Bm�−1[1=(1− q) + nm]
; (50)

where Bm is given by Eq. (28) while Sm reads

Sm =
sq∑

s=1

[1− (1− q)�q˝!s]q=(1−q)+nm ; (51)

where

sq =
[

1
(1− q)�q˝!

]
(52)

and

�q =
�

1 + (1− q)�Uq
: (53)

Notice that a new cut-o: condition has been introduced, namely, 1−(1−q)�q˝!s ¿ 0,
that transforms the original series into a 9nite sum.
Since one knows Uq from Eq. (36), an expression for uq is easily obtained. Notice

that it is not self-referential. The shape of the resulting curves is similar to those
arising from the traditional treatment, even for T values where one detects q-violations
to Planck’s law. Fig. 4 depicts uq vs. ! for di:erent q values. The maximum’s values
do not coincide with the ones of the canonical Gibb’s approach when q di:ers from
unity. In Fig. 4(a) it becomes apparent that results for q = 1 and 0.98 greatly di:er.
The di:erence seems to become less important between results for q=0:9 and those for
q=0, as can be seen in Fig. 4(b). Another point to be stressed is that the maximum’s
position will also depend on q, not just on T , as in the traditional Wien’s law.
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Fig. 4. Energy density uq as a function of the frequency !. All the curves were obtained for a temperature
T =0:1 K, and V =1 m3. Inset (a) shows the results for the limit q → 1, whereas in the inset (b) the results
for obtained otherwise are depicted.

We have seen from Fig. 4 that Eq. (50) yields results that quite resemble the ones
given by Planck’s law. It is then reasonable to look for a perturbative expansion in
1 − q. The series over the m factor in Eq. (50) rapidly converges. Only the 9rst
terms are important. In the limit q → 1, the exponent q=(1 − q) + nm ≈ q=(1 − q) in
Eq. (51), and the 9nite sum becomes a series expansion. We have

uq ≈ ˝An!nS ; (54)

where

S =
∞∑
s=1

[1− (1− q)�q˝!s]q=(1−q)

∣∣∣∣∣
q→1

≈
∞∑
s=0

exp [− q�q˝!(1 + s)] ; (55)

a power series in s of guaranteed convergence, i.e.,

S ≈ 1
eq�q˝! − 1

; (56)

so that replacement into Eq. (54) yields

uq ≈ ˝An!n

eq�q˝! − 1
; (57)

a 9rst-order correction to the Planck law. The classical result is attained for q → 1.
Eq. (57) provides one, then, with an approximate energy density.
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Following the standard text-book treatment [27,28], we can de9ne the particle-density
as

nq = (˝An!n)−1uq ; (58)

which, from Eq. (57) can be written, to 9rst order in 1− q as

nq =
1

eq�q� − 1
(59)

with � = ˝!.
We have encountered an alternative expression for the boson particle-density of the

black-body radiation, to be compared to the ones that result from either the FA or
OLM–FA (see Appendix A). The correct value for the q → 1 limit is obtained.
Consider now the speci9c heat curves of Section 4.1. From Eq. (53) we see that, to

9rst order in 1− q we have

�q ≈ �[1− (1− q)�Uq] ; (60)

that, replaced into Eq. (59) and using the fact that q = 1 − (1 − q) leads to (keeping
only terms of order 1− q)

nq ≈ 1

e�(�−�∗
q ) − 1

; (61)

where

�∗
q = (1− q)�(1 + �Uq) (62)

plays the role of a 9ctitious q-chemical potential, such that �∗
q → 0 for q → 1. Of

course, the “true” physical chemical potential vanishes identically (see Section 3).
A sort of 9ctitious q-Bose–Einstein condensation e:ect might seem to be implied by
the presence of this pseudo-chemical potential, a point that deserves further careful
exploration, to be addressed in a future work.

5.2. Wien law

A nice result of the traditional thermostatistics is the linear relation that exists be-
tween the frequency !∗ that maximizes the energy density spectrum, on the one hand,
and the temperature on the other,

!∗ ˙ T : (63)

This relation is known as Wien’s law.
According to the results depicted in Fig. 4 (see Section 5.1), deviations of the these

maximum values from what we expect from them according to the above relation will
depend on q. If we perform the pertinent derivatives in Eq. (50) we obtain

∞∑
m=0

Bm�−1[1=(1− q) + nm]
(

n
!

Sm +
dSm

d!

)∣∣∣∣∣
!∗

= 0 ; (64)

where Sm depends in a non-trivial manner on ! due to the cut-o: condition (see
Eq. (51): the cut-o: condition “cuts” the series at an sq that depends on !).
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Fig. 5. Frequency !∗ for which the energy density reaches its maximum, as a function of temperature T ,
for di:erent values of q. As in the previous 9gures, n = 3.

Numerical calculations of Eq. (64) are depicted in Fig. 5. It can be seen that the
linear dependence is respected over temperatures above 10−2 K and below 10−4 K.
There is a “violation range” the T -zone (10−4 ¡ T ¡ 10−2). This implies lower values
of T than those that violate the Stefan–Boltzmann law. Departures from Wien’s law
are observed even for q-values as close to unity as q = 0:98. Using now Eq. (57) as
a starting point we also get 9rst-order corrections in 1 − q to the Wien law. We can
locate the maximum with respect to ! of Eq. (57) with the auxiliary de9nition

x =
!q�˝

1− (1− q)�Uq
; (65)

so that we immediately 9nd

e−x +
x
n
= 1 ; (66)

whose solution is a constant, b, for each 9xed value of n. For n=3 we 9nd, for instance,
b = 2:82. The maximum of uq(!) for di:erent T ’s is located at distinct frequencies
according to

!i =
bk
q˝ Ti − 1− q

q
Uq

˝ ; (67)

a 9rst-order correction to Wien’s law.

5.3. Microwave cosmic background radiation

The OLM formalism can be applied to the analysis of the cosmic microwave ra-
diation in order to search for putative deviations from Planck’s law. The best source
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Fig. 6. We show the di:erential radiation between for the FIRAS spectrographer onboard COBE satellite.
Superimposed with the experimental data the best 9ts for four di:erent q values are also shown.

of data on this topic comes from the COBE satellite (far-infrared absolute spectropho-
tometer (FIRAS)). The ensuing brightness, when compared to a Planck spectrum at
the temperature T =2:72584±0:0005 K shows signi9cant deviations from the expected
form (the 02 of the 9t to a Planck spectrum is rather large).

FIRAS measures the di<erential spectrum between the cosmic background and an
internal reference adjusted to approximately 2:7 K so as to (i) avoid problems with
imperfect emissivity and (ii) limit the dynamic range of the instrument. In addition,
an external black body is used to calibrate (according to Gibbs’ statistics) the gain of
the instrument with a temperature in the range of 2 K up to 25 K.
This is the kind of data that will be of interest in order to verify the predictions

of the OLM formalism. If we assume the cosmic background does not obey the usual
Planck’s law, but the OLM one, we can check the concomitant di:erences and contrast
the ensuing values with those obtained by FIRAS. The results are depicted in Fig. 6.
We plot the best 9ts for four di:erent values of q. The range of temperatures that
allow for the best 9tting is also given. In all the graphs it is apparent that deviations
are well predicted if we assume a statistics with q �=1 for the cosmic background. As
q deviates from unity higher temperatures are predicted, in agreement with the results
displayed in Fig. 4. We see there that the spectrum maximum’s value becomes smaller
for a given, 9xed temperature when q deviates from unity.
The experimental data depicted in Fig. 6 seems to imply that the statistics ruling

the cosmic microwave radiation is di:erent from that of the conventional black-body
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instance. This constitutes evidence for the existence of alternative statistics, and tells
us that the statistics behind these phenomena seems to possess an additional, q-degree
of freedom.

6. Conclusions

We have revisited here, from an OLM viewpoint, the problem of black-body radiation
in equilibrium within an enclosure of volume V , and determined the q-dependence
of (i) the Planck spectrum, (ii) the Stefan–Boltzmann law, and (iii) Wien’s one. A
comparison of the ensuing results with those found in the literature [2,22–24] (all of
them under Curado–Tsallis treatment) and with experimental data [1], has been e:ected.
Due to the fact that most previous non-extensive treatments of quantal gases employ
the so-called factorization approach (FA), and that this approximation underlies some
of the preceding treatments of the black-body radiation problem, we have translated
the FA into the languate of a normalized-OLM factorization approach (OLM–FA)
that, in turn, provides one with a q-normalized generalization of the particle’s density
expression for quantum gases.
With reference to the laws of the Stefan–Boltzmann, Planck’s, and Wien’s, we 9nd

the conventional behavior still obtains for temperatures above 1 K, although there is a q
dependence in the appropriate proportionally constants. We also recover the traditional
relationship between radiation pressure and internal energy using the OLM formalism.
We have applied the formalism to experimental data on the cosmic microwaves’

background and reproduced it with acceptable accuracy even for q-values that appre-
ciably di:er from unity. The larger |1 − q| is, the higher the predicted equilibrium
cosmic temperature.
Within the q-Thermostatistics framework we perform an exact analysis of the

n-dimensional black-body radiation process. We employ to such e:ect both Tsallis’
and R&enyi’s entropies, within the range 0¡ q ¡ 1. The new theoretical ingredient
here is the so-called OLM approach to non-extensive thermostatistics [1].
We develop a q generalization of several laws: Stefan Boltzmann’s, Planck’s, and

Wien’s. We 9nd the conventional behavior still obtains for temperatures above 1K ,
although there is a q dependence in the appropriate proportionally constants. We recover
the traditional relationship between radiation pressure and internal energy using the
OLM formalism.
We apply the formalism to experimental data on the cosmic microwaves’ background

and reproduce it with acceptable accuracy even for q-values that appreciably di:er from
unity. The larger |1− q| is, the higher the predicted equilibrium cosmic temperature.
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Appendix A. The OLM factorization approximation

A.1. Unnormalized factorization approximation (FA)

In order to facilitate the reader’s task we review now the factorization approach (FA)
treatment, due to BWuyWukkilic et al., who tackled in Ref. [23] the quantum ideal gas
problem in a grand canonical scenario using the CT-Tsallis formalism. Tsallis’ entropy
is thereby maximized subject to the unnormalized constraints

Tr �qĤ = Uq ; (A.1)

Tr �qN̂ = Nq : (A.2)

The pertinent partition function is

ZCT
q =

∑
i

[
1− (1− q)

∑
j

nijx′j

]1=(1−q)

; (A.3)

where nij are the occupation numbers of the level j (with single-particle energy �j) for
a given i-microscopic con9guration and

x′j = �CT (�j − �CT ) (A.4)

with �CT the inverse temperature and �CT the chemical potential.
According to Ref. [23], “there is no restriction on the summation and thus one

an factorise a product of factors, one for each one-particle state, since particle are
regarded statistically independent”. Therefore (the essential point of the FA approach),
the partition function ZCT

q given by Eq. (23) can be factorized. Each factor corresponds
to a single-particle state

ZCT
q ≈

∞∏
j=0

w∑
i=0

[1− (1− q)nijx′j]
1=(1−q) : (A.5)

The average occupation number 〈nj〉FA of the state j becomes then [23]

〈nj〉FA ≈ 1

[1− (1− q)x′j]
1=(1−q) ∓ 1

; (A.6)

which is a non-extensive, FA-Tsallis generalization of the Bose–Einstein (Fermi–Dirac)
distribution.

A.2. The normalized OLM treatment

An alternative treatment to the factorization approach using the TMP formalism
yields self-referential probabilities. The OLM procedure, instead, is not aXicted by
such a problem. One again maximizes Tsallis’ generalized entropy given by Eq. (1)
subject to the diagonal normalized constraints for the grand canonical ensemble, which
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results in a partition function of the form

PZq = exq
q

∑
i

[
1− (1− q)

∑
j

nijxj

]1=(1−q)

; (A.7)

where ex
q = [1 + (1− q)x]1=(1−q) and, instead of x′j (Eq. (A.4)), we have

xj =
�(�j − �)

1 + (1− q)xq
(A.8)

with

xq = �(Uq − �Nq) : (A.9)

Note that xj → x′j for q → 1. The conventional limit is the same for both treatments,
if one remembers that the unnormalized methodology uses a partition function ZCT

q ,
while the normalized treatment deals with a bar partition function PZq (see Eq. (11)).
The concomitant q = 1-limits are related according to Z1 = e−�(U−�N ) PZ1.
Proceeding once again as in Ref. [23], i.e., neglecting correlations between parti-

cles and regarding states of di:erent particles as statistically independent, the partition
function PZq can be factorized. Each factor corresponds to a single-particle state,

PZq ≈ exq
q

∏
j

∑
i

[1− (1− q)nijxj]1=(1−q) : (A.10)

The present expression for PZq is formally identical to that encountered in Ref. [23]
(see Eq. (A.5)), save for a multiplicative factor, which does not contribute to the ensu-
ing microscopic probabilities. Thus, according to Ref. [23], the average value 〈nj〉NFA

is now

〈nj〉NFA ≈ 1

[1− (1− q)xj]1=(1−q) ∓ 1
(A.11)

with xj given by Eq. (A.9).
We introduce here the normalized factorization approach (NFA) black-body’s treat-

ment. The mean occupation number is given by Eq. (A.11) with � = 0 (the chemi-
cal potential vanishes because we are working with photons). In the continuum limit
�(!) = ˝! (! is the frequency), and the particle-density will be given by

〈n(!)〉NFA ≈ 1

[1− (1− q)x′(!)]1=(1−q) − 1
(A.12)

with

x′(!) =
�˝!

1 + (1− q)�Uq
: (A.13)

In the three-dimensional case the mean occupation number is connected with the
energy density according to

uq(!) =
˝V
�2c3

!3〈n(!)〉q : (A.14)
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Keeping only 9rst-order terms in 1− q in Eq. (A.14), integrating over frequencies,
and re-arranging terms, the internal energy reads

UNFA
q = .T 4 1− (1− q)5

1 + (4=k)(1− q).T 3 ; (A.15)

where . = (�2k4V )=(15˝3c3) (with c, the light’s speed) is in closed connection with
the Stefan–Boltzmann constant (c.)=(4V ) [29].
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