
ar
X

iv
:h

ep
-p

h/
03

04
07

0v
1 

 7
 A

pr
 2

00
3

Annihilation amplitudes and factorization in B± → φK∗±
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We study the decay B± → φK∗±, followed by the decay of the outgoing vector mesons into
two pseudoscalars. The analysis of angular distributions of the decay products is shown to provide
useful information about the annihilation contributions and possible tests of factorization.
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I. INTRODUCTION

The analysis of B meson physics offers an attractive opportunity to get a deep insight into the flavor structure of
the Standard Model (SM) and the origin of CP violation. In view of the wide variety of decay channels, one can
look for many different observables, providing stringent test for the consistency of the model. However, the potential
power of the analysis is severely limited by our present theoretical capability of dealing with strong interactions in the
intermediate and low energy regimes. In fact, only a limited number of observables are free of theoretical uncertainties
within the SM. The main sources of theoretical errors arise from the evaluation of weak transition amplitudes (matrix
elements of quark current-current operators between hadron states) and from the estimation of final state interaction
(FSI) effects. Thus, the theoretical control of these uncertainties turns out to be a crucial goal.
For nonleptonic B meson decays, the usual procedure to calculate the weak transition amplitudes is based on the

effective Hamiltonian approach and the use of Wilson operator product expansion. The Wilson coefficients contain the
information from short-distance physics and can be computed perturbatively. This program has been fully carried out
already up to next-to-leading order [1], and the main theoretical problem to be addressed in this sense is the analysis
of long-distance physics, i.e., the computation of matrix elements of the effective four-quark operators between hadron
states. To deal with this, a simple and widely used approach is the so-called factorization approximation (FA) [2].
The extent of the validity of this approximation is however controversial. In the last years, new approaches, such as
the so-called QCD factorization (QCDF) [3] and perturbative QCD (PQCD) [4] schemes, have been proposed with
the aim of improving the factorization assumption on QCD grounds [5].
In the framework of FA, an extensive analysis of the phenomenology of B decays has been presented by Ali,

Kramer and Lü [6], where the authors calculate the branching fractions for charmless non-leptonic two-body B decays
and propose a number of tests for the approach. In particular, the authors in [6] take into account the effects of
annihilation amplitudes, which are neglected by a priori arguments in most works on the subject. In contrast to the
general custom, it is pointed out that the contribution of annihilation diagrams could play a significant and even
dominant role, especially in some cases where the non-annihilation amplitudes are suppressed. It is worth to notice
that the theoretical control of annihilation amplitudes is very important for the analysis of CP-violating observables,
since in many cases the annihilation contribution carries a weak phase different from that provided by the tree or
penguin amplitudes. This is e.g. the case of the decays B+ → K+π0, π+K0, which have been largely analyzed
in connection with the experimental determination of the weak phase angle γ [7]. Moreover, even if in most cases
annihilation amplitudes appear to be Cabibbo-suppressed, their presence can be important since they can compete
with possible manifestations of new physics, which could be revealed through the analysis of CP-violating observables.
On the other hand, the measurement of annihilation contributions is interesting by itself from the point of view of
the understanding of low energy dynamics and the viability of the theoretical approaches. For example, annihilation
amplitudes are assumed to be suppressed by powers of ΛQCD/mb in the framework of QCDF, while this is not the
case in PQCD.
In this paper, we focus our attention in the annihilation contributions to the process B → φK∗, which is the first

observed [8] charmless B decay into two vector mesons and has been recently analyzed within both QCDF [9] and
PQCD [10]. While annihilation contributions are expected to be highly suppressed in the case of B → PP decays, an
equivalent suppression mechanism is not obvious for B → PV and B → V V processes [6]. For example, in the case of
the decay B+ → K∗+K̄0, it has been noticed that once the annihilation part of the amplitude is taken into account, the
branching ratio could reach —under reasonable assumptions on form factors— an order of magnitude higher than the
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value obtanied from the penguin contribution alone [6]. Owing to the large theoretical uncertainties, however, the role
of annihilation contributions is in general quite difficult to estimate from the sole measurement of branching ratios. In
this sense, B decays into two vector mesons (which subsequently decay into two particles each) present an important
feature: the analysis of angular distributions of the final outgoing particles allows to measure both total decay rates
and strong and weak phases of the contributing amplitudes. This can be exploited e.g. to get different observables for
CP violating parameters [11–13] and solve the so-called discrete ambiguities [14], or to analyze the significance of the
contribution of electroweak penguins [15]. We show here that, in the framework of the Standard Model, the analysis of
angular distributions in the decay B± → φK∗± can be used to estimate the annihilation contributions to the process
and to test the viability of the factorization assumptions. The process B± → φK∗± is particularly interesting, since
on one hand it is expected to be dominated by penguin-like contributions —thus annihilation amplitudes could be
relatively significant— and on the other hand penguin and annihilation contributions carry different weak phases,
hence they can be disentangled by looking at CP-odd terms in the angular distribution of final states.
Section II includes a general description of angular distributions and observables in B → V V decays, while in

Sect. III we analyze the particular case of B± → φK∗±. The expected results within the factorization approach are
discussed in Sect. IV, and in Sect. V we present some concluding remarks.

II. OBSERVABLES AND ANGULAR DISTRIBUTIONS IN B → V V

Let us consider the decay of a B meson into two vector mesons, B → V1V2, followed by the decay of both V1 and
V2 into two pseudoscalars P1P

′
1 and P2P

′
2 respectively. Following the notation in Ref. [16], the normalized differential

angular distribution can be written as

1

Γ0

d3Γ

d cos θ1 d cos θ2 dψ
=

9

8πK

{

K1 cos2 θ1 cos2 θ2 +
K2

2
sin2 θ1 sin2 θ2 cos2 ψ

+
K3

2
sin2 θ1 sin2 θ2 sin2 ψ +

K4

2
√
2
sin 2θ1 sin 2θ2 cosψ

− K5

2
√
2
sin 2θ1 sin 2θ2 sinψ − K6

2
sin2 θ1 sin2 θ2 sin 2ψ

}

, (1)

where θ1 (θ2) is the angle between the three-momentum of P1 (P2) in the V1 (V2) rest frame and the three-momentum
of V1 (V2) in the B rest frame, and ψ is the angle between the planes defined by the P1P

′
1 and P2P

′
2 three-momenta

in the B rest frame. The coefficients Ki can be written in terms of three independent amplitudes, A0, A‖ and A⊥,
which correspond to the different polarization states of the vector mesons V1 and V2 [17]. One has

K1 = |A0|2 , K4 = Re[A‖A
∗
0] ,

K2 = |A‖|2 , K5 = Im[A⊥A
∗
0] ,

K3 = |A⊥|2 , K6 = Im[A⊥A
∗
‖] , (2)

and K ≡ K1 +K2 +K3. Notice that only six from the nine possible observables given by the squared amplitude A∗A
can be measured independently. This is due to the fact that both V mesons are assumed to decay into two spin zero
particles.
In the literature, B → V V decays are also frequently described using the helicity basis. According to their Lorentz

structure, the amplitudes can be parameterized in general as [11]

Hλ = ε∗1µ(λ) ε
∗
2ν(λ)

[

agµν +
b

m1m2
pµpν +

ic

m1m2
ǫµναβp1αpβ

]

, (3)

where p is the B meson momentum, λ is the helicity of both vector mesons, and mi, pi and εi stand for their masses,
momenta and polarization vectors respectively. In this way, for λ = 0,±1 the helicity amplitudes are given by

H±1 = a± c
√

x2 − 1 , H0 = −ax− b (x2 − 1) , (4)

2



where x ≡ (m2
B −m2

1 −m2
2)/(2m1m2). The relation between the amplitudes in both schemes is

A⊥ =
H+1 −H−1√

2
, A‖ =

H+1 +H−1√
2

, A0 = H0 (5)

and the coefficients Ki can be written in terms of the parameters a, b, c as

K1 = |xa+ (x2 − 1) b|2 K4 = −
√
2
[

x |a|2 + (x2 − 1)Re(a∗b)
]

K2 = 2 |a|2 K5 =
√

2 (x2 − 1)
[

x Im(ac∗) + (x2 − 1) Im(bc∗)
]

K3 = 2 (x2 − 1)|c|2 K6 = 2
√

x2 − 1 Im(ca∗) (6)

Relative decay rates into V meson states with longitudinal and transverse polarizations are thus given by

ΓL

Γ0
=

|H0|2
|H0|2 + |H+1|2 + |H−1|2

=
K1

K ,

ΓT

Γ0
=

|H+1|2 + |H−1|2
|H0|2 + |H+1|2 + |H−1|2

=
K2 +K3

K . (7)

In general, the parameters a, b and c are complex numbers. If it is assumed that the total decay amplitude arises
as the sum of several interfering contributions (e.g. different isospin channels), one has

a =
∑

i

|ai| ei (δ
a

i
+ϕa

i
) , (8)

where δ and ϕ stand for “strong” (CP-conserving) and “weak” (CP-violating) phases respectively. Within the Standard
Model, the latter arise from the CKM matrix coefficients entering the amplitude, while strong phases receive both
contributions from short- and long-distance physics. Similar relations as that in (8) can be written for parameters b
and c.
In our analysis we will take into account both the decay B+ → φK∗+ and its CP-conjugated process, B− → φK∗−.

Following standard notation, CP-conjugated amplitudes are denoted as Āη and H̄λ, with η = 0, ‖,⊥ and λ = 0,±1.
Accordingly, in the differential decay amplitude (1), one should replace Ki → K̄i for i = 1, . . . 4 and Ki → −K̄i for
i = 5, 6, which corresponds to replace a → ā, b → b̄ and c → −c̄ in (3). Since only weak phases change sign after a
CP conjugation, one has

ā =
∑

i

|ai| ei (δ
a

i
−ϕa

i
) , (9)

while similar relations hold for b̄ and c̄.

III. PENGUIN AND ANNIHILATION AMPLITUDES IN B± → φK∗±

Let us now focus on the decay B− → φK∗−. In the Standard Model, this process is driven by both penguin
and annihilation contributions, with the salient feature that they carry different weak phases. Up to small O(λ2)
corrections (λ = |Vud| ≃ 0.22), the penguin amplitude is proportional to the VCKM elements VtbV

∗
ts, while the

annihilation contribution carries the factor VubV
∗
us. The relative phase between both terms, up to O(λ2) corrections,

is

arg

(

VubV
∗
us

VtbV ∗
ts

)

≃ arg

(

−VudV
∗
ub

VcdV ∗
cb

)

≡ γ (10)

which is one of the angles of the so-called unitarity triangle. Though the annihilation contribution is doubly Cabibbo
suppressed with respect to the penguin one, this is compensated by the relation between the corresponding Wilson
coefficients. We come back to this in the next Section.
As stated in the Introduction, there is a strong theoretical motivation to know the magnitude of annihilation

amplitudes. While the penguin contributions can be (at least, roughly) estimated with the aid of the factorization
approach, the annihilation contributions in B → V V decays are much more uncertain, since the corresponding
form factors cannot be related to semileptonic decay amplitudes. Since there are no tree amplitudes contributing
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to B± → φK∗±, this process is a promising one, in the sense that penguin and annihilation contributions can be
comparable in size [6] and their relative magnitude can be measured. Moreover, in view of the different weak phase
structure, both contributions can be disentangled by looking at CP-odd observables.
According to the general analysis in Section II, the coefficients a, b and c for the case of B− → φK∗− can be written

as

a = (aP e
iδ′

a + aA e
iγ) eiδa

b = (bP e
iδ′

b + bA e
iγ) eiδb

c = (cP e
iδ′

c + cA e
iγ) eiδc (11)

where the subindices P and A correspond to penguin and annihilation contributions respectively. Without loss of
generality, strong phases accompanying both terms have been separated into a global phase δi and a relative phase δ′i,
while aP,A, bP,A and cP,A are real numbers. For the CP-conjugated decay B+ → φK∗+ the corresponding coefficients
ā, b̄ and c̄ are similar to those in (11), just changing γ → −γ.
Now, in principle, from the angular analysis of B± → φK∗± decays one can measure 12 observables, Ki and K̄i

with i = 1 to 6. Let us first concentrate in the observables given by the transverse modes of the vector mesons φ and
K∗, that means i = 2, 3 and 6. With the above definitions, one has

K2 = 2
[

a2P + a2A + 2 aP aA cos(δ′a − γ)
]

K3 = 2 (x2 − 1)
[

c2P + c2A + 2 cP cA cos(δ′c − γ)
]

(12)

and similar relations hold for K̄2 and K̄3, changing the sign in front of γ. The relative magnitude of the annihilation
contributions can be measured from the combined observables

K2 − K̄2 = 8 aP aA sin δ′a sin γ

K3 − K̄3 = 8 (x2 − 1) cP cA sin δ′c sin γ (13)

which are odd under CP. A significant asymmetry provided by any of the quantities in (13) would signal the presence
of an important annihilation contribution. This would be e.g. in agreement with the prediction given by PQCD,
where annihilation amplitudes are found to enhance the decay width ΓT by about a factor 2 [10].
Notice that, in order to be different from zero, the quantities defined in (13) require the presence of nonzero

relative strong phases δ′a,c. The latter are expected to be nonvanishing even in the absence of final state interaction
effects, since in general the penguin amplitudes include absorptive contributions [18]. However, it is possible that
these absorptive parts turn out to be suppressed, hence the asymmetries in (13) could be too small to be observed
experimentally. This happens e.g. in the framework of factorization, where absorptive contributions entering the
effective Wilson coefficients appear to be <∼ 20% of the dispersive parts [6,19]. If this is the case, the significance
of annihilation contributions can be still estimated by considering the observables K6 and K̄6, which arise from the
interference between the amplitudes A‖ and A⊥. In general, the CP-odd observable K6 − K̄6 is given by

K6 − K̄6 = 4
√

x2 − 1 [ aP cA cos(δc − δa − δ′a)− aA cP cos(δc − δa + δ′c)] sin γ , (14)

which is still nonzero in the limit of vanishing strong phases. Moreover, in that case both K6 and K̄6 provide separate
measurements of CP violation, obeying

K6 = −K̄6 = 2
√

x2 − 1 [ aP cA − aA cP ] sin γ . (15)

The validity of this relation would imply the presence of a significant annihilation contribution and support the
assumption that strong phases are negligibly small.
The remaining observables Ki and K̄i with i = 1, 4 and 5 can also be analyzed, and once again the measurement of

any significant asymmetry Ki− K̄i would signal the presence of annihilation contributions within the SM. Here we do
not enter in the detailed analysis of these observables since the expressions in terms of Lorentz invariant parameters
a, b and c, as well as the theoretical analysis of form factors, turn out to be more complicated and do not provide
new physical insights.
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IV. FACTORIZATION

In the framework of factorization, the measurement of the observables Ki and K̄i in the decay B± → φK∗± can
be used not only to estimate the values of form factors related with annihilation amplitudes, but also to test the
consistency of the approach itself. As before, we concentrate here in the observables related to the transverse modes
of the φ and K∗, that means to i = 2, 3 and 6.
The penguin amplitudes can be computed within generalized factorization making use of the effective Hamiltonian

approach. Once the matrix elements of four-quark operators are factorized, the amplitudes can be written in general
in terms of form factors fV , V

B→V (q2), AB→V
i (q2), i = 0, 1, 2, as

〈V (ε, p′)|Vµ|0〉 = fV mV ε
∗
µ

〈V (ε, p′)|Vµ|B(p)〉 = − 2

mV +mB

ǫµναβ ε
∗ ν pαp′

β
V B→V (q2)

〈V (ε, p′)|Aµ|B(p)〉 = i
2mV (ε

∗ · q)
q2

qµ A
B→V
0 (q2) + i (mV +mB)

[

ε∗µ − (ε∗ · q)
q2

qµ

]

AB→V
1 (q2)

− i

[

(p+ p′)µ − (m2
B −m2

V )

q2
qµ

]

(ε∗ · q)
mV +mB

AB→V
2 (q2) , (16)

Here V (ε, p′) stands for the outgoing vector meson φ or K∗, Vµ and Aµ are the corresponding vector and axial-
vector quark currents and q = p − p′ is the momentum transfer. The vector and axial-vector form factors can be
estimated from the analysis of semileptonic B decays, using the ansatz of pole dominance to account for the momentum
dependences in the region of interest.
In this way the penguin amplitudes aP , bP and cP read

aP = −|C(P )
eff |mφ (mB +mK∗) fφA

B→K∗

1 (m2
φ)

bP = |C(P )
eff |mφ

(

2mK∗ mφ

mB +mK∗

)

fφA
B→K∗

2 (m2
φ)

cP = |C(P )
eff |mφ

(

2mK∗ mφ

mB +mK∗

)

fφ V
B→K∗

(m2
φ) (17)

where

C
(P )
eff =

GF√
2
V ∗
ts Vtb

[

a3 + a4 + a5 −
1

2
(a7 + a9 + a10)

]

. (18)

The coefficients ai can be calculated by means of renormalization group analysis [1], taking into account the experi-
mental values of the running coupling constants in the SM and the parameters entering the VCKM matrix. They are
complex numbers that include absorptive contributions from QCD and electromagnetic penguin diagrams. In general,
the theoretical results include some dependence on the renormalization scale (fixed at some value around the b quark
mass), which can be reduced through the inclusion of QCD corrections to the quark level matrix elements before the
factorization procedure [19]. In the so-called generalized FA, the coefficients are explicitly written as functions of the

number of colors NC , which is treated as a phenomenological parameter (Neff
C ) to be adjusted from the analysis of

the full pattern of charmless two-body B decays.
On the other hand, the annihilation contributions can be analyzed within FA taking into account form factors fP ,

V
(A)
1 (q2), V

(A)
2 (q2) and A(A)(q2) defined by

〈0 |Aµ|B(p)〉 = i fB pµ

pµ 〈K∗(ε1, p1)φ(ε2, p2) |Vµ| 0〉 =
[

(ε∗1 · ε∗2) p2 V
(A)
1 (p2)− (ε∗2 · p1) (ε∗1 · p2)V

(A)
2 (p2)

]

pµ 〈K∗(ε1, p1)φ(ε2, p2) |Aµ| 0〉 = i ǫµναβ ε
∗µ
1 ε∗ν2 pα1 p

β
2 A

(A)(p2) (19)

where p = p1+p2 is the B meson four-momentum, p2 = m2
B. In this case the magnitude of the form factors cannot be

estimated from semileptonic processes, and they are introduced as unknown parameters. From Eqs. (19), annihilation
amplitudes aA, bA and cA are given by
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aA = −|C(A)
eff | fB m2

B V
(A)
1 (m2

B)

bA = |C(A)
eff | fBmφmK∗ V

(A)
2 (m2

B)

cA = −|C(A)
eff | fB mφmK∗ A(A)(m2

B) (20)

where

C
(A)
eff =

GF√
2
V ∗
us Vub a1 . (21)

The annihilation diagram is dominated by a tree contribution, carrying the coefficient a1, which is close to one

[6,19–21]. In contrast, the ai coefficients in C
(P )
eff arise from QCD and electroweak penguin diagrams, and their order

of magnitude lies between 10−2 and 10−4 [6,19,20]. This suppression of penguin amplitudes is however compensated

by the ratio between VCKM coefficients in C
(A)
eff and C

(P )
eff , which is of the order of λ2 ≃ 0.05. In addition, annihilation

form factors are further suppressed due to the large momentum transfer at q2 = m2
B, where they have to be evaluated.

In view of the theoretical uncertainty on the values of these form factors at q2 = 0, it is not immediate to determine
if annihilation contributions are large enough to interfere with penguin ones. This analysis has to be done within a
definite model for the underlying QCD dynamics, and can be checked through the measurement of CP-odd observables
proposed here.
Let us come back to the observables Ki and K̄i. In the spirit of FA, strong phases originated by final state

interactions can be separated from short-distance physics, therefore they should be common to both penguin and
annihilation amplitudes. The only relative strong phase between them arises then from the absorptive contributions
in the ai coefficients, which can be estimated perturbatively. Moreover, this phase is the same for the amplitudes a,

b and c, since the combination of ai coefficients in all cases is that in C
(P )
eff . In this way, within FA we have

δ′a = δ′b = δ′c = arg

[

a3 + a4 + a5 −
1

2
(a7 + a9 + a10)

]

≡ δ′ . (22)

and the CP-even and CP-odd combinations of Ki and K̄i for i = 2, 3, 6 read

K2 + K̄2 = 4 (a2P + a2A + 2 aP aA cos δ′ cos γ) (23a)

K2 − K̄2 = 8 aP aA sin δ′ sin γ (23b)

K3 + K̄3 = 4 (x2 − 1) (c2P + c2A + 2 cp cA cos δ′ cos γ) (23c)

K3 − K̄3 = 8 (x2 − 1) cP cA sin δ′ sin γ (23d)

K6 + K̄6 = 4
√

x2 − 1

{

[aP cP + aA cA + (cP aA + aP cA) cos δ
′] sin(δc − δa) +

(aA cP − aP cA) sin δ
′ cos(δc − δa)

}

cos γ (23e)

K6 − K̄6 = 4
√

x2 − 1

[

(aP cA + aA cP ) sin δ
′ sin(δc − δa) +

(aA cP − aP cA) cos δ
′ cos(δc − δa)

]

sin γ (23f)

This set of equations deserves some attention. First of all, as stated in the preceding Section, the observables in
Eqs. (23b), (23d) and (23f) are CP-odd, thus they vanish in the limit of vanishing annihilation amplitudes. Notice
that, in the framework of factorization, the annihilation coefficients aA, cA and the strong FSI phases δa, δc are the
only unknown parameters (the former, due to the uncertainty in the estimation of form factors), whereas there is
some allowed range for the values of δ′ and γ (the latter given by experimental measurements of CP violation in K
physics and the golden plate B → J/ΨKs). In this way, the six-equation system (23) is overdetermined, and the
experimental information on the observables Ki and K̄i can be used both to get a measurement of the magnitude
of annihilation contributions an to test the consistency of the approach. In particular, the expressions in Eqs. (23a)
to (23d) do not depend from strong phases δa,c. With the measurement of this four observables (which corresponds
to the measurement of |A‖| and |A⊥| for B− → φK∗− and B+ → φK∗+), and getting the estimation of penguin
amplitudes from Eqs. (17), it would be possible to extract the values of annihilation coefficients aA and cA as well as
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the phases δ′ and γ, and to check the consistency of the values of these phases with the theoretical and experimental
bounds. Then, Eqs. (23e) and (23f) provide a further check of the results with the additional possibility of getting
information on the strong phase difference δa − δc. From the values of the coefficients aA and cA it is immediate to

obtain estimations for the unknown annihilation form factors V
(A)
1 and A(A).

Within factorization one would also expect the strong FSI phases δa and δc to be relatively small. In this limit (or
in the case in which they are approximately equal) Eqs. (23e) and (23f) reduce to

K6 + K̄6 = 4
√

x2 − 1 (aA cP − aP cA) sin δ
′ cos γ

K6 − K̄6 = 4
√

x2 − 1 (aA cP − aP cA) cos δ
′ sin γ (24)

and the ratio between them is given by

K6 − K̄6

K6 + K̄6
=

tan γ

tan δ′
(25)

which does not depend on the assumptions on form factors. This relation allows a simple test of the significance of
strong FSI phases within FA, provided that the interference between penguin and annihilation amplitudes is strong
enough to give measurable values for the observables in (24).
The above equations include two approximations that are worth to be mentioned. In fact, penguin contributions

should also include the so-called annihilation penguin diagrams, which carry the same weak phase as in C
(P )
eff . It

can be seen that the corresponding combination of ai coefficients is different from that in Eq. (18), even if the order
of magnitude is not significantly modified [20]. Within FA, these amplitudes involve annihilation matrix elements,
therefore their contributions to aP , bP and cP are proportional to annihilation form factors. Although the inclusion
of these terms does not introduce more unknown parameters in Eqs. (23), the disentanglement of annihilation form
factors becomes more complicated. Here the contribution of annihilation penguins has been neglected for simplicity.
However, they should be incorporated into the set of equations (23) if the effect of annihilation amplitudes is found
to be relatively large. A second approximation has been done when assuming that penguin contributions carry a
global weak phase arising from the VCKM combination V ∗

tsVtb. Here we have neglected the contribution of a virtual
u quark in the penguin loop, which carries a factor V ∗

usVub and could lead to an observable signal of CP violation
due to the presence of absorptive strong phases [18]. This contribution is doubly-Cabibbo suppressed with respect
to the dominant one, and the final effect is expected to be below 1% [22]. Thus a clear evidence of the presence of
annihilation amplitudes would require a minimum signal of a few percent level.
Let us conclude this Section by presenting a brief numerical analysis of the expected results within the framework

of generalized FA. Theoretical estimations of effective coefficients for penguin amplitudes have been performed in
previous works [6,19,20], leading to the approximate values quoted in Table I for different choices of the parameter

Neff
C . The values for aP , bP and cP in the Table have been estimated following Ref. [6], where the relevant form factors

at q2 = 0 are calculated combining lattice QCD results at a high q2 scale with light-cone QCD sum rule analysis.
As it can be seen, aP turns out to be kinematically enhanced with respect to cP . However, in the expressions for
the observables in Eqs. (23) this enhancement is compensated by the factors (x2 − 1) and

√
x2 − 1, where x ≃ 14 for

the process under consideration. In Table I we have also included the estimations for the absorptive phases δ′, as
well as the results for the total branching ratio for B± → φK∗± arising from penguin contributions alone. In favor
of generalized FA, the latter appear to be in agreement with recent experimental measurements [8], which quote a
decay branching fraction of 10−5 with an error of about 50%. Nevertheless, the theoretical results in Table I should
be taken only as estimative, and even if the experimental error in the measurement of BR(B± → φK∗±) is expected
to be reduced in the future, it is unlikely that from the sole measurement of the branching ratio one could evaluate
the interference of penguin amplitudes with other possible contributions.
Concerning the theoretical predictions for the absorptive phase δ′, it can be seen that within the approach of

generalized FA its value lies in a range between 10 and 20 degrees. The remaining parameter to be taken into account
in Eqs. (23) is the CP-violating phase γ, which can be constrained by considering the present measurements of VCKM

matrix elements and the experimental results for CP-violating observables in K and B physics. We quote here the
recent estimation in Ref. [23],

γ = 63.5◦ ± 7.0◦ . (26)

These ranges for δ′ and γ can be used to constrain the expected result for the ratio in Eq. (25). Notice however that
this expression holds only in the limit in which penguin annihilation amplitudes are neglected.
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Finally, since we have concentrated here in observables related to B decays into transversely polarized vector mesons
φ and K∗, it is important to notice that the values in Table I lead to a relative decay fraction ΓT /Γ0 ≃ 0.14. Once

again this value corresponds to the penguin contribution alone, therefore it does not depend on the global factor |C(P )
eff |

which carries the dependence on Neff
C . If this ratio is not significantly reduced after the inclusion of annihilation

amplitudes, the analysis of B± → φK∗± decays would include enough statistics so as to allow the measurements of
the observables Ki and K̄i in Eqs. (23) in the near future.

V. CONCLUSIONS

We study the decay B± → φK∗±, showing that the analysis of angular distributions of the final outgoing particles
can be used to estimate the significance of annihilation contributions to the decay amplitude. The magnitude of
these contributions represents an interesting subject from the theoretical point of view, in view e.g. of the different
predictions obtained from QCD-based approaches such as PQCD or QCDF.
In general, due to the existing hadronic uncertainties in the estimation of amplitudes, annihilation contributions

are quite difficult to evaluate from the experimental information on total branching ratios. Here we point out that
the decay B± → φK∗± offers an interesting opportunity in this sense, since annihilation amplitudes may be relatively
large, and they can be disentangled by looking at certain CP-odd observables. In particular, in the framework of
factorization, the experimental information can be used to measure annihilation form factors and strong final state
interaction phases. The analysis also serves as a test of the consistency of the factorization approach, taking into
account the theoretical estimation of the coefficients in the effective ∆B = 1 Hamiltonian and the experimental
information on the angle γ of the unitarity triangle.
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Neff

C (GF /
√
2)−1|C(P )

eff | aP [GeV] bP [GeV] cP [GeV] δ′ BR

2 2.2× 10−3 −0.9× 10−8 4.2× 10−10 0.6× 10−9 10◦ 2.0× 10−5

3 1.6× 10−3 −0.7× 10−8 3.1× 10−10 4.3× 10−10 11◦ 1.1× 10−5

∞ 3.7× 10−4 −1.6× 10−9 0.7× 10−10 1.0× 10−10 18◦ 0.6× 10−6

TABLE I. Results for penguin effective coefficients and amplitudes within the generalized factorization approach.
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