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Exact and approximate results of non-extensive quantum statistics
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We develop an analytical technique to derive explicit forms of thermodynamical quantities within
the asymptotic approach to non-extensive quantum distribution functions. Using it, we find an
expression for the number of particles in a boson system which we compare with other approximate
scheme (i.e. factorization approach), and with the recently obtained exact result. To do this, we
investigate the predictions on Bose-Einstein condensation and the blackbody radiation. We find that
both approximation techniques give results similar to (up to O(q− 1)) the exact ones, making them
a useful tool for computations. Because of the simplicity of the factorization approach formulae,
it appears that this is the easiest way to handle with physical systems which might exhibit slight
deviations from extensivity.
PACS Number(s): 05.20.-y, 05.30. Jp, 05.30.Fk

I. INTRODUCTION

Since the papers by Tsallis [1,2], non-extensive statistical formalism has been shown to be not only robust –it allows
generalizations of all necessary fundamental concepts of thermostatistics [3]–, but also useful –it provides a suitable
theoretical tool to explain some of the experimental situations where standard thermostatistics has shortcomings, due
to the presence of long-range interactions, or long-range memory effects, or (multi)-fractal space-time constraints–.
See Ref. [4] for a periodically updated bibliography.

The core of this generalized formalism is defined through a generalized entropy

Sq = k
1−∑W

i=1 p
q
i

q − 1
, (q ∈ ℜ), (1)

where k is a positive constant, {pi} is a set of probabilities andW is the total number of microscopic configurations. It
is easy to verify that the q → 1 limit immediately recovers the usual (extensive) Boltzmann-Gibbs entropy. Moreover,
if a composed system A + B has probabilities which factorize into those corresponding to the subsystems A and B,
then Sq(A + B)/k = Sq(A)/k + Sq(B)/k + (1 − q)Sq(A)Sq(B)/k2. This property clearly exhibits the fact that the
parameter q characterizes the degree of non-extensivity of any physical system.

The generalization of quantum statistics for non-extensive systems was only accomplished, up to recent days, in an
approximate fashion, by using two different schemes. One of them is the Asymptotic Approach (AA), of Tsallis et al.
[5], the other one is the Factorization Approach (FA), of Büyükkılıç et al. [6]. The physical applications studied so
far within these two approximations include the blackbody radiation [5,7,8], the Stefan-Boltzmann constant [9–11],
and some aspects of the early universe physics [12,13]. Moreover, the AA has also been used in some other works
such as the Bose-Einstein condensation [14], the specific heat of 4He [15], thermalization of an electron-phonon system
[16] and cosmology [17,18]. Although some detailed analysis on these approximate schemes [19] suggest that both
schemes could be helpful in physical applications –at least, for (1 − q)-order corrections–, this was still doubtful. A
complete verification needed a comparison between the results of these approximate schemes and the exact ones. But
an exact treatment of non-extensive quantum distributions was not available up to the recent papers of Rajagopal
et al. [20,21]. Just after this work, Lenzi and Mendes have also given an exact treatment of blackbody radiation
[22]. All these recent efforts enable us to make a comparison between the approximate and exact schemes, which will
ultimately show whether the AA and the FA are useful or not. This will be the main purpose of this paper.
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In Section II, we review the approximate and exact results and develop an analytical method to derive the explicit
form of any measurable quantity within the AA. We compare the approximate and exact results in Section III using
(i) the predictions of one of the experimental tests suggested in [20] and (ii) the blackbody radiation. Finally, we give
our final comments in Section IV.

II. NON-EXTENSIVE QUANTUM STATISTICS

A. Asymptotic approach

Within the AA, namely in the β(1 − q) → 1 limit, the generalized partition function is given by [5]

Zq ≃ Z1

{

1− 1

2
(1− q)β2

〈

Ĥ2
〉

1

}

, (2)

from where the generalized distribution function of non-interacting bosons can be found, up to (1 − q)-order, as

〈n〉q = 〈n〉1 + (1− q) 〈n〉1

{

ln(1/Z1) + (x− ψ)

[

〈

n2
〉

1

〈n〉1
+ (x− ψ)

(

〈

n2
〉

1
−
〈

n3
〉

1

〈n〉1

)]}

, (3)

where x ≡ βǫ , ψ ≡ βµ, and

〈n〉1 =
1

ex−ψ − 1
,
〈

n2
〉

1
=
e−(x−ψ) + e−2(x−ψ)

[

1− e−(x−ψ)
]2 ,

〈

n3
〉

1
=
e−(x−ψ) + 4e−2(x−ψ) + e−3(x−ψ)

[

1− e−(x−ψ)
]3 . (4)

The standard (q = 1) partition function is given by

Z1 =
1

1− e−(x−ψ)
. (5)

This approximation has found a wide range of applications up to now, however, no attempt has been made for deriving
some of the thermodynamical quantities within this approach, directly using Eq. (3).

One aim of this paper is to provide a technique for computing, in a closed form, the kind of integrals needed to find
the average number of particles within the AA. To do this, let us start by writing down the definition of the average
number of particles:

〈N〉q =
2πV (2mk)3/2T 3/2

h3

∫ ∞

0

ǫ1/2 〈n〉q dǫ, (6)

where all variables have the usual meaning. Using Eq. (3) and the definitions of x and ψ, this expression turns out
to be

〈N〉q =
2πV (2mk)3/2T 3/2

h3
[Ist + (1− q)(I2 + I3)] , (7)

where

Ist =

∫ ∞

0

x1/2dx

ex−ψ − 1
, I2 =

∫ ∞

0

(x− ψ)x1/2dx

ex−ψ − 1
, (8)

and

I3 =

∫ ∞

0

(x− ψ)x1/2dx

ex−ψ − 1

[

〈

n2
〉

1

〈n〉1
+ (x − ψ)

(

〈

n2
〉

1
−
〈

n3
〉

1

〈n〉1

)]

. (9)

I2 and I3 are the (q − 1) order correction to the standard (q = 1) result and here Ist stands for the standard integral
appearing in the solution of the extensive case [23]. Ist and I2 have standard forms, and could easily be solved as:
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Ist = Γ(3/2)g3/2(z), (10)

I2 =

∫ ∞

0

x5/2−1dx

ex−ψ − 1
− ψ

∫ ∞

0

x3/2−1dx

ex−ψ − 1
= Γ(5/2)g3/2(z)− ψΓ(3/2)g3/2(z), (11)

where z is the fugacity and is defined as z ≡ eβµ. On the other hand, I3 is more involved, and it takes the form:

I3 = a+ b− 3c− d, (12)

where

a =

∫ ∞

0

(x− ψ)x1/2dx

[ex−ψ − 1]
2 , b =

∫ ∞

0

(x− ψ)x1/2ex−ψdx

[ex−ψ − 1]
2 , (13)

c =

∫ ∞

0

(x − ψ)2x1/2ex−ψdx

[ex−ψ − 1]
3 , d =

∫ ∞

0

(x − ψ)2x1/2e2(x−ψ)dx

[ex−ψ − 1]
3 . (14)

In an Appendix, we provide an analytical technique (maybe there are others) to compute each one of these integrals.
Using this technique, we obtain the average number of particles as:

〈Ne〉q
h3

2πV (2mkT )3/2
= Γ(3/2)g3/2(z) + (q − 1)

√
π ×

×
[

3

2
g3/2(z)−

9

8
g5/2(z) +

7

4
ψg3/2(z)− 2ψg1/2(z)−

1

2
ψ2g1/2(z) +

9

8
ψ2g−1/2(z)

]

. (15)

Here, 〈Ne〉q stands for the number of particles in the excited states (ǫ 6= 0). As in the standard case, we have separated
the contribution of the state given by ǫ = 0, which has zero weight in the integrals. For this level of energy, we found,

〈N〉q (ǫ = 0) =
z

1− z

{

1 + (q − 1)

[

ln z +
z ln z

1− z
− ln z

1− z
+ 3

z(ln z)2

(1 − z)2
+

(ln z)2

(1− z)2

]}

. (16)

When z ≪ 1, all the correction terms go to zero. When z → 1, some of the terms are divergent but the usual shape
is unchanged. This can be seen in Fig. 1.

Numerical analysis, which we show in Fig. 2, illustrates that the maximum correction is attained for z = 1. Then,
the number of particles in all excited states is bounded by,

〈Ne〉q ≤
2πV (2mk)3/2T 3/2

h3
[2.315 + (q − 1)4.27] . (17)

It is worth noticing that the AA is such that not all terms in the (1−q) correction are positive (or negative, depending
on the choice of q) definite. Moreover, their maximum values are not always attained at middle points of the interval
of interest, and although they do have bounded expressions, the maximum correction is obtained only for z = 1. This
differs from what happened in the FA, where each term had a maximum value within the interval of interest [24].
The order of magnitude of the maximum correction is, however, the same in both approximations.

Any interested reader could easily apply the same technique, which we introduced in the Appendix, to compute
any other thermodynamical quantity, whenever it is needed.

B. Factorization approach

Within the FA [6], the generalized distribution function of bosons is given, at (1− q) order, by [24]

〈n〉q = 〈n〉1 + (q − 1)
(x− ψ)2ex−ψ

2 (ex−ψ − 1)
2 , (18)
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where 〈n〉1, x and ψ have the same definitions as before. At this point, the remarkably simpler form of this result,
when compared to the result of the AA [Eq. (3)], is worth emphasizing.

In this context, we have found general expressions for some thermodynamical quantities of bosons and fermions [24];
here we quote only the average number of particles for bosons, since it will be adequate for our proposed comparison1:

〈Ne〉q ≤
2πV (2mk)3/2T 3/2

h3
[2.315 + (q − 1)3.079] . (19)

C. The exact result

Although the results of the AA and the FA have been successfully used in a wide range of physical applications,
an exact treatment of non-extensive quantum statistics was lacking until the recent work of Rajagopal, Mendes and
Lenzi [20,21]. In their analysis, they have given the many-particle q-Green function in terms of a parametric contour
integral over a kernel, multiplied by the usual grand canonical one particle Green function which now depends on q.
They managed to obtain exact expressions for thermodynamical quantities, such as 〈N〉q.

To proceed further, let us quote here some of the results of [20,21]. Rajagopal et al. have used the general contour
integral of the form,

b1−z
i

2π

∫

C

du exp(−bu)(−u)−z = 1

Γ(z)
, (20)

with b > 0 and Re z > 0, and where the contour C starts from +∞ on the real axis, encircles the origin once
counterclockwise and returns to +∞. Using the q-Green functions, and after some cumbersome algebra, they finally
obtain (for bosons)

〈N〉q = V

∫

C

duK(2)
q (u)

∫ ∞

−∞

dω

2π

∫

dDp

(2π)D
Z1(−β(1 − q)u, µ)
[

e−β(1−q)u(ω−µ) − 1
]A(~p;ω), (21)

where D is the dimension of space, A(~p;ω) is the spectral weight function and

K(2)
q (u) = i

Γ(1/(1− q))

2π(Zq)q
exp(−u)(−u)−1/(1−q), (22)

and

Zq(β, µ) =

∫

C

duK(1)
q (u)Z1(−βu(1− q), µ). (23)

This exact expression for the average number of particles finally gives us the opportunity to make a comparison
between the exact and the approximate results.

III. EXACT AND APPROXIMATE RESULTS

A. Bose-Einstein condensate

One of possible experimental tests of the validity of the q-framework is based on a recent work on Bose-Einstein
condensation of a small number of atoms (of the order of 100 to 170), confined to a small region of space by magnetic
trapping [26]. By taking free particle spectral weight function, namely A(~p;ω) = 2πδ(ω − ~p2/2m), near the Bose-
Einstein condensation, they have found

1We take advantage here to signal out a mistake in the last equation of Ref. [24], where the correction appears to be proportional
to 0.886 (q − 1) and should have a minus sign in front of it [25].
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〈N〉q
〈N〉1

≃
[

(Tc)q
(Tc)1

]3/2 Γ
(

2−q
1−q

)

(1− q)1/2Γ
(

2−q
1−q +

1
2

)

{

1 +
〈N〉1

(1− q)3/2
ζ(5/2)

ζ(3/2)

[

(Tc)q
(Tc)1

]3/2

×

×





Γ
(

2−q
1−q +

1
2

)

Γ
(

2−q
1−q + 2

) − q
Γ
(

2−q
1−q

)

Γ
(

2−q
1−q +

3
2

)











. (24)

Here, the ≃ sign reflects that this equation is valid near the Bose-Einstein condensation, which does not change the
fact that it is an exact result. We may now expand this expression in powers of (q − 1). Up to first order,

〈N〉q
〈N〉1

≃
[

(Tc)q
(Tc)1

]3/2
{

1 + (q − 1)

(

0.456− 0.023 〈N〉1
[

(Tc)q
(Tc)1

]3/2
)}

. (25)

The two previous equations deviate from each other very soon when (q − 1)2 is not negligible.

Let us now derive similar expressions for the AA and FA in order to compare them with Eqs. (24) and (25). The
condition for the appearance of Bose-Einstein condensation can be expressed as

〈N〉q > 〈Ne〉q . (26)

Alternatively, with constant 〈N〉q and V , using Eq. (17) for the AA and Eq. (19) for the FA, this condition can be
recast in the form

T < (Tc)q =
h2

(2π)3/22mk

{ 〈N〉q
V [2.315 + (q − 1)κ]

}2/3

, (27)

where κ = 4.27 for the AA and κ = 3.078 for the FA. Then, we can organize these expressions to give

〈N〉q
〈N〉1

=

[

(Tc)q
(Tc)1

]3/2
[2.315 + (q − 1)κ]

2.315
. (28)

Eq.(17) and (19) have corrections which are trivial (not depending on z) just because we have approximated them:
the actual complete results are Eqs.(15) and (16) for the AA, while those for the FA can be found in our previous
paper [24]. We managed the dependence on z in order to obtain an upper bound for the corrections and simplify the
analysis that follows. Differences between Eqs. (28) and (25) are worth noticing: the later depends on (Tc)q and 〈N〉1
in a much stronger way. However, as we shall see, for q close to 1 these differences are not important.

We would now like to choose physically suitable q values. An early Universe test based on the FA has shown [13]
to produce a bound |q − 1| ≤ 4.01 × 10−3, thus we have q = 0.996. The other q value which we use comes from
a very recent work on pion transverse-momentum correlations in Pb-Pb high-energy nuclear collisions [27]. In that
work, a deviation of |q − 1| = 0.015 from the standard statistics is found to be sufficient for eliminating the puzzling
discrepancy between theoretical calculations and experimental data [27]. Thus, we shall use q = 0.985 (in fact, in
[27], q = 1.015 has been used, but since the exact result is given for q < 1 values, we must take q = 0.985, which has
the same |q − 1| deviation). In Fig. 3 we plot 〈N〉q / 〈N〉1 versus (Tc)q / (Tc)1 for two representative values of 〈N〉1,
and the two quoted values of q. However, note again that in our approximated schemes, 〈N〉q / 〈N〉1 as a function
of (Tc)q / (Tc)1 is in fact independent of the particular value of 〈N〉1. From Fig. 3, the following conclusions can be
drawn: At the order of such q values, the AA and the FA are almost the same, and in (1 − q)-order correction, any
of them could be used with the same confidence (maybe the FA would be preferable due to its remarkably simpler
form). Only in those situations of extremely high experimental precision one could distinguish between the exact and
approximate results.

B. Blackbody radiation

Very recently, an exact analysis of the blackbody radiation within the q-framework has been given [22]. This exact
analysis gives the generalization of the Stefan-Boltzmann law as

5



Uq =
3kT ξ3
Zqq

∞
∑

m=0

ξm3
m!

Γ[(2− q)/(1− q)]

Γ[(2− q)/(1− q) + 3(m+ 1)]
, (29)

where

Zq =

∞
∑

m=0

ξm3
m!

Γ[(2 − q)/(1− q)]

Γ[(2 − q)/(1− q) + 3m]
, (30)

and

ξ3 =
4Γ(3)ζ(4)

[2π1/2(1− q)]3Γ(3/2)

(

2πV 1/3kT

hc

)3

. (31)

Let us now recall the Stefan-Boltzmann law derived by using the AA [9,10] and the FA [11]:

Uq =
8πk4T 4V

c3h3
[6.4939− (1− q) θ ] (32)

where θ = 40.018 for the AA and θ = 62.215 for the FA.

For the comparison of the exact and approximate Stefan-Boltzmann laws, we again try to choose a value of q which
is in accordance with the blackbody radiation. The possible q-correction could be at the order of 10−4 or 10−5. Thus,
here we shall use again the largest deviation predicted for the q-correction [9], namely |q − 1| ≤ 5.3 × 10−4, which
gives q = 0.99947 . In Fig. 4 we present the behaviour of the exact [Eq. (29)] and the approximate results [Eq. (32)]
for q = 0.99947. It is seen from the figure that for such order of q-correction the approximate results are very close to
the standard (q = 1) case without exhibiting any curvature, contrary to the exact result.

IV. FINAL REMARKS

We have managed to develop an analytical technique to express thermodynamical quantities for the asymptotic
approach of quantum distribution functions. We have shown that, for simple boson systems, and for all q-values
admitted by the existing bounds, both approximate schemes (the AA and the FA) are in agreement with the exact
result (see figures). The magnitude of the deviation is quantified in previous formulae and could be seen if there is
enough experimental precision. Otherwise, the simpler form that the factorization approach exhibits makes a case for
its use as a standard and safe procedure for (1− q)-order corrections.
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FIGURE CAPTIONS

Figure 1 : Nq(ǫ = 0) of the AA as a function of z for different q values.

Figure 2 : (a) The contribution of the different terms that enter the (q − 1) correction to the average number of
bosons within the AA. On the right corner of the figure, the curves corresponds to the following order: first, fourth,
sixth, fifth, second and third term. (b) The total (q − 1) correction to the average number of bosons within the AA.
Its maximum possible value is attained at z = 1, and the correction goes as π1/2(3/2ζ(3/2)− 9/8ζ(5/2)) = 4.27 .

Figure 3 : Bose-Einstein condensation: Plot of 〈N〉q / 〈N〉1 as a function of (Tc)q / (Tc)1 for (a) q = 0.996 and (b)
q = 0.985 .

Figure 4 : Blackbody radiation: Internal energy versus (2πkT )/(hc) for q = 0.99947 .
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APPENDIX A:

The calculation of the integral a can be done as follows. Let us define, introducing an extra parameter m,

I =

∫ ∞

0

(x− ψ)x1/2dx

ex−ψ −m
. (A1)

Then, we could write,

a =

[

dI

dm

]

m=1

=

[

∫ ∞

0

(x− ψ)x1/2dx

(ex−ψ −m)
2

]

m=1

. (A2)

Defining m−1 ≡ eφ, it is easy to write,

am =
d

dm

∫ ∞

0

(x − ψ)x1/2dx

m (m−1ex−ψ − 1)
=

d

dm

{

1

m

[
∫ ∞

0

x3/2dx

ex−ψ′ − 1
− ψ

∫ ∞

0

x1/2dx

ex−ψ′ − 1

]}

, (A3)

where ψ′ ≡ ψ − φ. This let us to obtain,

am =
d

dm

[

1

m

(

Γ(5/2)g5/2(ψ
′)− ψΓ(3/2)g3/2(ψ

′)
)

]

. (A4)

Finally this gives us the solution of the integral a:

a = Γ(5/2)g3/2(z)− Γ(5/2)g5/2(z)− ψΓ(3/2)g1/2(z) + ψΓ(3/2)g3/2(z). (A5)

For the calculation of c, we may conveniently define al as,

al =

∫

(x− ψ)x1/2dx
[

el(x−ψ) − 1
]2 (A6)

and derive with respect to l to obtain

[

dal
dl

]

l=1

= −2

∫

(x− ψ)2x1/2ex−ψdx

(ex−ψ − 1)3
= −2c. (A7)

Now, to compute al, we may change variables as follows:

x̃ = lx, ψ̃ = lψ. (A8)

We then obtain,

al =
1

l5/2

∫

(x̃− ψ̃)x̃1/2dx̃

(e(x̃−ψ̃) − 1)2
=

1

l5/2

{

Γ(5/2)
[

g3/2(ψ̃)− g5/2(ψ̃)
]

+ ψ̃Γ(3/2)
[

g3/2(ψ̃)− g1/2(ψ̃)
]}

. (A9)

Deriving with respect to l, we get

dal
dl

= − 5

2l7/2

{

Γ(5/2)
[

g3/2(ψ̃)− g5/2(ψ̃)
]

+ ψ̃Γ(3/2)
[

g3/2(ψ̃)− g1/2(ψ̃)
]}

+

1

l5/2

{

Γ(5/2)
[

ψg1/2(ψ̃)− ψg3/2(ψ̃)
]

+ ψΓ(3/2)
[

g3/2(ψ̃)− g1/2(ψ̃)
]

+ ψ̃Γ(3/2)
[

ψg1/2(ψ̃)− ψg−1/2(ψ̃)
]}

(A10)

From this equation, the integral c can be obtained by making l = 1 and ψ̃ = ψ. Here, we should note that, in all
previous calculations, we have used (i) the result

gn−1(z) = z
∂

∂z
[gn(z)] =

∂

∂ ln(z)
[gn(z)] . (A11)
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and (ii) Robinson’s power series representation [28] (which is valid for all n values):

gn(α) = Γ(1− n)αn−1 +

∞
∑

l=0

(−)l

l!
ζ(n− l)αl, (A12)

for the gn functions, where α = − ln(z) and ζ is the Riemann zeta function. Using this result, one can recover the
relationship for the derivatives of gn functions, and use it to evaluate g−1/2. We finally obtain the result for the
integral c:

c =
5

4
Γ(5/2)g3/2(ψ)−

5

4
Γ(5/2)g5/2(ψ) +

5

4
Γ(3/2)ψg3/2(ψ)−

5

4
Γ(3/2)ψg1/2(ψ)

−1

2
Γ(5/2)ψg1/2(ψ) +

1

2
Γ(5/2)ψg3/2(ψ)−

1

2
Γ(3/2)ψg3/2(ψ) +

1

2
Γ(3/2)ψg1/2(ψ)

−1

2
Γ(3/2)ψ2g1/2(ψ) +

1

2
Γ(3/2)ψ2g−1/2(ψ). (A13)

We proceed further to compute integral b. To do so, we apply the following procedure. Let us define a new integral
with an extra parameter, such that

am =

∫ ∞

0

x1/2dx

em(x−ψ) − 1
=

1

m3/2

∫ ∞

0

x̃1/2dx̃

e(x̃−ψ̃) − 1
=

1

m3/2
Γ(3/2)g3/2(ψ̃), (A14)

where we have used the change of variable x̃ = mx and ψ̃ = mψ. If we now derive with respect to m, we obtain,
[

dam
dm

]

m=1

=

[

−
∫ ∞

0

(x− ψ)x1/2em(x−ψ)dx

(em(x−ψ) − 1)2

]

m=1

= −b. (A15)

Since we have,

dam
dm

= − 3

2m5/2
Γ(3/2)g3/2(ψ̃) +

1

m3/2
Γ(3/2)ψg1/2(ψ̃), (A16)

it is easy to write down the solution of the integral b:

b =
3

2
Γ(3/2)g3/2(ψ)− Γ(3/2)ψg1/2(ψ). (A17)

Once the integral b is calculated, the integral d can be obtained as follows. Let us define am as above. Deriving it
twice with respect to the parameter m, we obtain

[

d2am
dm2

]

= 2d− Inew , (A18)

where,

Inew =

∫ ∞

0

(x− ψ)2x1/2em(x−ψ)dx
[

em(x−ψ) − 1
]2 . (A19)

It is easy to compute this integral with a similar trick. We need to define, with usual notation,

Iext =

∫ ∞

0

(x − ψ)x1/2dx
[

el(x−ψ) − 1
] =

1

l5/2

[

Γ(5/2)g5/2(ψ̃)− ψ̃Γ(3/2)g3/2(ψ̃)
]

(A20)

and derive it with respect to l. Further evaluation in l = 1 reproduces Inew :

Inew =
5

2
Γ(5/2)g5/2(ψ)− ψ

3

2
Γ(3/2)g3/2(ψ)− ψΓ(5/2)g3/2(ψ) + ψ2Γ(3/2)g1/2(ψ). (A21)

Thus, we finally have the solution of the integral d:

d =
15

8
Γ(3/2)g3/2(ψ)−

3

2
ψΓ(3/2)g1/2(ψ) +

3

4
ψ2Γ(3/2)g−1/2(ψ) +

5

4
Γ(5/2)g5/2(ψ) −

ψ
3

4
Γ(3/2)g3/2(ψ)−

1

2
ψΓ(5/2)g3/2(ψ) +

1

2
ψΓ(3/2)g3/2(ψ) +

1

2
ψ2Γ(3/2)g1/2(ψ). (A22)
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