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Abstract
We analyze and describe the weighted multifractal spectrum of V -statistics. The descrip-
tion will be possible when the condition of “weighted saturation” is fulfilled. This means
that the weighted topological entropy of the set of generic points of measure μ equals the
measure-theoretic entropy of μ. Zhao et al. (J Dyn Differ Equ 30:937–955, 2018) proved
that for any ergodic measure weighted saturation is verified, generalizing a result of Bowen.
Here we prove that under a property of “weighted specification” the saturation holds for any
measure. From this we obtain the description of the spectrum of V -statistics. This general-
izes the variational result that Fan, Schmeling and Wu obtained for the non-weighted case
(arXiv:1206.3214v1, 2012).

Keywords V -statistics · Weighted multifractal spectrum · Weighted saturation · Weighted
specification

Mathematics Subject Classification 37B40, 37C45

1 Introduction

The multiple ergodic averages can be seen as a dynamical version of the Szemeredi theorem
in combinatorial number theory. This kind of interplay was studied by Furstenberg [9]. He
analyzed ergodic averages in a measure-preserving probability space (X ,B, μ, f ) of the
form
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N − M

N−1�

n=M

μ
�
A ∩ f n A ∩ · · · ∩ f kn A

�
, (1.1)

where A ∈ B and j ∈ N. Furstenberg proved that if μ (A) > 0 then

lim inf
N→∞

1

N − M

N−1�

n=M

μ
�
A ∩ f n A ∩ · · · ∩ f jn A

�
> 0.

From this can be proved, by arguments of Ergodic Theory, the Szemeredi theorem which in
short says that if S is a set of integers with positive upper density then S contains arithmetic
progressions of arbitrary length.

The V -statistics, thus called after the article by Fan et al. [5], are multiergodic averages of
the following form: let (X , f ) be a topological dynamical system with X a compact metric
space and f a continuous map, let Xr = X × · · · × X be the product of r -copies of X with
r ≥ 1. If � : Xr → R is a continuous map, then we can define

V� (n, x) = 1

nr
�

1≤i1,...,ir≤n

�
�
f i1 (x) , . . . , f ir (x)

�
. (1.2)

These averages are called the V -statistics of order r with kernel �.

Ergodic limits of the form

lim
n→∞

1

nr
�

1≤i1,...,ir≤n

�
�
f i1 (x) , . . . , f ir (x)

�
,

were studied among others by Furstenberg [9], Bergelson [2] and Bourgain [3].
The multifractal decomposition for the spectra of V -statistics is

E� (α) =
�
x : lim

n→∞ V� (n, x) = α
�

.

Hereafter (Xi , di , fi ) , i = 1, 2, . . . , k, with k ≥ 2, will denote a finite family of dynamical
systems with each (Xi , di ) a compact metric space and fi : Xi → Xi a continuous map.
The family of dynamical systems are considered such that each (Xi+1, fi+1) is a factor of
(Xi , fi ) . The factor map is defined πi : Xi → Xi+1 so fi+1 ◦ πi = πi ◦ fi , i = 1, 2, . . . , k
and allows to define composition maps τi : X1 → Xi+1, by τi = πi ◦ · · · ◦ π1.

Leta = (a1, . . . , ak) ∈ Rk and let�1,�2 . . . ,�k ∈ C
�
Xr
1

�
,Thea-weighted V -statistics

of order r with kernel �1, �2 . . . , �k are defined as

V a{�1,�2...,�k } (n, x) =
k�

j=1

1
�
s j (n)

�r V� j

�
s j (n), x

�
. (1.3)

with s j (n) = 	�
a1 + · · · + a j

�
n


where 	z
 denotes the largest integer ≤ z (floor function).

The a-weighted multifractal decomposition can be defined as

K a{�1,�2...,�k },α =
�
x ∈ X1 : lim

n→∞ V a{�k } (n, x) = α
�

. (1.4)

Now we recall the definition of a-weighted measure-theoretic entropy and a-weighted topo-
logical entropy. Let (Xi , di , fi ) be a finite family of dynamical systems like above. If
μ ∈ M(X1, f1) (whereM(X1, f1) is the set of all f1-invariantmeasures) then let (τi−1)∗ (μ)

be the push-forward of the measure μ, i.e. (τi−1)∗ (μ) (E) = μ
�
τ−1
i−1 (E)

�
for any E ⊂ Xi .
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Definition 1 The a-weighted measure-theoretic entropy of μ with respect to (X1, f1) is

haμ ( f1) =
k�

i=1

ai h(τi−1)∗(μ) ( fi ) , (1.5)

where h(τi−1)∗(μ) ( fi ) is the usual measure-theoretic entropy of (τi−1)∗ (μ) with respect to
(Xi , fi ).

In X1 we consider, for ε > 0, n ∈ N, the following a-metric:

dan (x, y) = max
i=1,2,..,k

�
di,ti (n) (τi−1 (x) , τi−1 (y))

�
,

where di,ti (n) is the metric in Xi given by

di,ti (n) (τi−1 (x) , τi−1 (y)) = max
j=0,1,,...,ti (n)−1

�
di
�
f j
i (τi−1 (x)) , f j

i (τi−1 (y))
��

.

with t j (n) = 
�
a1 + · · · + a j

�
n
�
; here 
z� denotes the smallest integer ≥ z (ceiling func-

tion).
The ball Ba

n,ε (x) , with centre x and radius ε in the dan -metric is called the a-weighted
Bowen ball.

Definition 2 For ε > 0 and n j ∈ N let

T a
n j ,ε

=
�
A j ⊂ X1 : A j ⊂ Ba

n j ,ε
(x) , for some x ∈ X1

�

and define

�a (Z , ε, s, N ) = inf

⎧
⎨

⎩
�

j

exp(−sn j )

⎫
⎬

⎭

where Z ⊂ X1, N ∈ N, s ≥ 0 and the infimum is taken over the whole collection of sets
��
n j , A j

� : n j ≥ N , A j ∈ T a
n j ,ε

�

for which
�
j
A j ⊃ Z .

The limit

�a (Z , s, ε) = lim
N→∞ �a (Z , s, N , ε) ,

does exist since �a (Z , s, N , ε) is not increasing with respect to N .

There is a number s such that �a (Z , s, ε) jumps from +∞ to 0. Define

ha(Z , ε) = s = sup
�
s : �a (Z , s, ε) = +∞� = inf

�
s : �a (Z , s, ε) = 0

�
.

The value

ha(Z) = lim
ε→0

ha(Z , ε),

which exists since ha(Z , ε) is not decreasing with respect to ε, is the a-Bowen weighted
topological entropy of Z .
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Definition 3 Let (Xi , di , fi ) , i = 1, 2, . . . , k, be dynamical systems. By En (x) , x ∈ X1we
denote the sequence of measures

En (x) = 1

n

n−1�

i=0

δ f i1 (x) ∈ M(X1, f1),

where δ is the point mass measure. If V (x) denotes the set of weak limits measures of the
sequence {En (x)} then the set of generic points of a measure μ ∈ M(X1, f1) is the set

G (μ) = {x ∈ X1 : V (x) = {μ}}
Since X1 is compact then V (x) �= ∅ and if μ is ergodic then μ (G (μ)) = 1.

Definition 4 A finite family of dynamical systems (Xi , di , fi ) is a-saturated if haμ ( f ) =
ha (G (μ)) for any μ ∈ M(X1, f1).

In [17] Zhao, Chen, Zhou and Yin proved that if (Xi , di , fi ) is a finite family of dynam-
ical system, then haμ ( f1) = ha (G (μ)) for any ergodic measure μ ∈ M(X1, f1). This
generalizes a Bowen theorem in [4] for the non-weighted case.

The main result to be proved is

Theorem 1.1 Let (Xi , di , fi ) , i = 1, 2, . . . , k, with k ≥ 2, be a finite family of dynamical
systems like above, let �1, �2 . . . , �k ∈ C

�
Xr
1

�
, r ≥ 1. If the a-saturation property is

verified then

ha(K a{ �1,�2...,�k },α) = sup

⎧
⎨

⎩h
a
μ ( f1) : μ ∈ M(X1, f1) and

k�

j=1

�

Xr
1

� j dμ⊗r = α

⎫
⎬

⎭ ,

where μ⊗r means μ × . . . × μ, r-times.

Fan et al. [5] have obtained this variational principle for saturated dynamical systems in the
non-weighted case i.e. a = (1, 0, . . . , 0) . This generalizes in turn the variational principle
established by Takens and Verbitski for r = 1 [14]. Fan et al. [6] proved that saturatedness is
verified for dynamical systems with the specification property. Thus, to have a condition for
fulfilling the hypothesis of the theorem 1.1, we consider a notion of weighted specification.
The definition of weighted specification will be given in the next section. Finally we point
out that a weighed variational principle for r = 1, was presented in [1], the description is for
the dimension spectrum and for shift spaces with specification, the saturatedness is not used
in that article, in which besides is developed a weighted thermodynamic formalism. In [8] is
established a variational principle for a = (a1, a2) ∈ R2.

Theorem 1.2 Let (Xi , di , fi ) , i = 1, 2, . . . , k, with k ≥ 2, be a finite family of dynamical
systems satisfying a-specification then haμ ( f1) = ha (G (μ)).

In fact in [17] was proved that haμ ( f1) ≥ ha (G (μ)) for any invariant measure, and that
the reverse is valid for any ergodic measure μ. Therefore we must prove that haμ ( f1) ≤
ha (G (μ)) for any μ ∈ M(X1, f1).

For non-weighted V -statistics we studied [12] the irregular part of the spectrum, or his-
toric set, say the set of points x for which limn→∞ V� (n, x) does not exist. We also have
analyzed the saturatedness, and consequently the validity of the variational principle, under a
weak form of the specification property, known as non-uniform specification condition. This
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concept was introduced by Varandas [15] and is satisfied, for instance, by non-uniformly
quadratic maps and for the so called Viana maps, which are a robust class of multidimen-
sional non-uniformly hyperbolic functions [15]. So we think that the condition of weighted
specification may be awakened to obtain the weighted versions of saturatedness and of the
variational principle.

2 Proof of the Theorem 1.2

To prove theorem 1.2 we follow a similar scheme that [6], we begin by extending a result of
Katok [10] which gives a formula for the entropy of ergodic measures by mean of a counting
of dynamical balls needed to covering the space. Next we use an argument of box-counting
for the set of generic point like in [6] which is based on ideas of [14].

We have a weighted version of the Shannon-Mcmillan theorem [8]. Before stating it recall
some notation. Let A = {A1, A2, . . . , Am} be a measurable partition of a measure space
X , by An = An (X , f ) is denoted the partition by ”names” of length n, the name of a point
x is the string (	0, . . . , 	n−1) such that x ∈ A	0 , f (x) ∈ A	1,..., f n−1 (x) ∈ A	n−1 . The
members of the partitionAn is formed are the sets with the same name. ByAn (x) is denoted
the member of An containing x . The quantity of information of the partition A with respect
to the measure μ is Hμ (A) = −�m

j=1 μ
�
A j
�
logμ

�
A j
�
. Finally ifA,B are elements in a

σ -algebra of X then A�B ={A ∩ B : A ∈ A, B ∈ B} .

Theorem 2.1 (Weighed Shannon-Mcmillan theorem) [8] Let (X , f ) be a dynamical system,
and μ an ergodic element of M(X , f ). Let A1,A2, . . . ,Ak be measurable partition of X
such that Hμ (Ai ) < ∞ is finite for each i = 1, 2, . . . , k. If a = (a1, . . . , ak) ∈ Rk then

lim
n→∞ −1

n
logμ

�
k�

i=1

A
(a1,...,ai )n�−1
i (x)

�
=

k�

i=1

ai hμ

⎛

⎝ f ,
k�

j=i

A j

⎞

⎠ . (2.1)

Proposition 2.2 Let (Xi , di , fi ) , i = 1, 2, . . . , k, with k ≥ 2, be a finite family of dynam-
ical systems, let μ be a probability ergodic f1-invariant measure on X1. For ε, δ > 0, let
ran (μ, ε, δ) be the minimal number of balls Ba

n,ε whose union has μ-measure > 1− δ. Then,
for each δ > 0, is valid

haμ ( f1) = lim
ε→0

lim
n→∞

1

n
log ran (μ, ε, δ) . (2.2)

The case a = (1, 0, . . . , 0) is a result due to Katok [10].

Proof Let A1,A2, . . . ,Ak be measurable partitions of X1, X2, . . . , Xk respectively, with
H(τi−1)∗(μ) (Ai ) < ∞, i = 1, 2, . . . , k.For ε > 0, let us choose partitionwithdiamAi < ε/2

and such that any
�k

i=1 A
(a1,...,ai )n�−1
i be contained in a ball in the metric di,
(a1,...,ai )n�. For

ε, δ > 0 let us consider the set

Ca
n,ε,δ =

 
x : μ

�
k�

i=1

τ−1
i−1

�
A
(a1,...,ai )n�−1

i

�
(x)

�

≥ exp

⎡

⎣−n

⎛

⎝
k�

i=1

ai hμ

⎛

⎝ f1,
k�

j=i

τ−1
j−1

�A j
�
⎞

⎠

⎞

⎠+ δ

⎤

⎦

⎫
⎬

⎭ . (2.3)
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By the weighted Shannon-Mcmillan theorem (recall that μ is ergodic) holds μ
�
Ca
n,ε,δ

�
→

1, as n → ∞ and for any δ > 0. So that for enough large n we have μ
�
Ca
n,ε,δ

�
>

1− δ. By the election of the partitions, the set Ca
n,ε,δ contains at most exp

%
−n

��k
i=1 ai hμ�

f1,
�k

j=i τ
−1
j−1

�A j
��+ δ

�&
elements of the partition

�k
i=1 τ−1

j−1

�
A
(a1,...,ai )n�−1

i

�
and can

be covered by this number of balls in the metric di,
(a1,...,ai )n�. Therefore

lim
ε→0

lim
n→∞

1

n
log ran (μ, ε, δ) ≤

k�

i=1

ai hμ

⎛

⎝ f1,
k�

j=i

τ−1
j−1

�A j
�
⎞

⎠+ δ

≤
k�

i=1

h(τi−1)∗(μ) ( fi ,Ai ) + δ ≤
k�

i=1

h(τi−1)∗(μ) ( fi ) + δ = haμ ( f1) + δ.

Since δ is arbitrary small we have

lim
ε→0

lim
n→∞

1

n
log ran (μ, ε, δ) ≤ haμ ( f1) .

To prove the opposite inequality we begin considering the symbolic spaces

�N = �
x = (xi )i∈N , xi ∈ {1, . . . , N }�

and

�n,N = �
x = (xi )i∈{1,...,n} , xi ∈ {1, . . . , N }� .

Recall the definition of the Hamming metric in �n,N ,

ρH
n,N

(x, x) = 1

n

n−1�

i=0

�
1 − δxii ,xi

�
. (2.4)

For x ∈ �n,N denote by BH
r (x) the ball of radius r centered in x in the Hamming metric.

Let B(r , N , n) = card BH
r (x), this value depends only on r , n and N , and holds [10]

B(r , N , n) =
[nr ]�

m=0

(N − 1)m
'
m
n

(
,

so by the Stirling formula

lim
n→∞

1

n
log B(r , N , n) = r log(N − 1) − r log r − (1 − r) log(1 − r). (2.5)

Let A1,A2, . . . ,Ak be finite partitions of X1, X2, . . . , Xk respectively, with the notation

Ai = �
Ai
1, A

i
2, . . . , A

i
N

�
,with μ

�
τ−1
i−1 (∂Ai )

�
= 0, i = 1, 2, . . . , k. Let x ∈ X1, so

τi−1 (x) ∈ Xi , the name of τi−1 (x) with respect to the partition Ai and the map fi of
length ti (n ) := 
(a1, . . . , ai ) n� will be the string La,i (τi−1 (x)) = �

	0, . . . , 	ti (n)−1
�
such

that f j
i (τi−1 (x)) ∈ Ai

	 j
, j = 0, 1, . . . , ti (n) − 1. Thus we can define an application

x �→ La,i (τi−1 (x)) and consider the semi-metric in each Xi given by

Da
n,N ,i (τi−1 (x) , τi−1 (y)) = ρH

n,N
La,i (τi−1 (x)) , La,i (τi−1 (y))), (2.6)
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and for x, y ∈ X1 set

Da
n,N = Da

n,N ,{Ai } (x, y) = max
i=1,2,...,k

�
Da
n,N ,i (τi−1 (x) , τi−1 (y))

�
. (2.7)

For any μ ∈ M(X1, f1), it may be assumed that (τi−1)∗ (μ) is such that (τi−1)∗ (μ) (E) =
μ
�
τ−1
i−1 (E)

�
> 0 for any non-empty E ⊂ Xi . For each partition Ai its boundary is defined

as ∂Ai = �
j

∂Ai
j . Let γ > 0 and let, for i = 1, 2, . . . , k and j = 1, 2, . . . , N , be

Uγ,i

�
Ai
j

�
=
�
x ∈ τ−1

i−1

�
Ai
j

�
: there is a y ∈ X1 − τ−1

i−1

�
Ai
j

�
: di (τi−1 (x) , τi−1 (y)) < γ

�

and

Uγ,i (Ai ) =
N)

j=1

Uγ,i

�
Ai
j

�
. (2.8)

It holds
*

γ>0

Uγ,i (Ai ) = ∂Ai

and

lim
γ→0

μ
��
Uγ,i

�� = μ (∂Ai ) .

Let ε > 0, there is a γ ∈ (0, ε) such that μ
�
Uγ.i ((Ai )

�
< ε2/4. Define

V a
n,,ε =

⎧
⎨

⎩x ∈ X1 : 1

si (n)

ti (n)−1�

j=0

IUγ,i (Ai )

�
f j
i (τi−1 (x))

�
< ε/2, i = 1, 2, . . . , k.

⎫
⎬

⎭ ,

with IE the characteristic function of the set E .

We have μ
�
X1 − V a

n,,ε

�
< ε/2. If x, y ∈ X1 with di,ti (n) (τi−1 (x) , τi−1 (y)) < γ ,

i = 1, 2, . . . , k then for any j = 0, 1, .., ti (n)−1 the points f j
i (τi−1 (x)) and f j

i (τi−1 (y))
belong to the same member of Ai or are in Uγ.i ((Ai ) . If x ∈ V a

n,,ε and y is such that
di,ti (n) (τi−1 (x) , τi−1 (y)) < γ , i = 1, 2, . . . , k then Da

n,N ,i (τi−1 (x) , τi−1 (y)) <

ε/2, i = 1, 2, . . . , k. So that if Ba
n,,ε is a ball of radius γ in the metric dan, then Ba

n,,ε

∩V a
n,,ε is contained in some ball �Ba

n,,ε/2 of radius ε/2 in the metric Da
n ,

Let En be a subset of X1 such that it is covered by a system B of balls of radius γ in
the metric dan,ε and with μ (En) > 1 − δ so μ

�
En ∩ Ba

n,,ε

�
> 1 − ε/2 − δ. Let us consider

a system B containing a number of ran (μ, γ, δ) balls, If we consider partitions Ai with

diam < ε/2 then each element of
�k

i=1 τ−1
j−1

�
A
(a1,...,ai )n�−1

i

�
is contained is some ball

Ba
n,,ε. Thus since Ba

n,,ε ∩V a
n,,ε ⊂ �Ba

n,,ε for some balls Ba
n,,ε , �Ba

n,,ε we can consider a set

Fn ⊂ En ∩ Ba
n,,εwith μ (Fn) >

1 − δ

4
, and for n enough a big a part of Fn can be covered

by elements U ∈�k
i=1 τ−1

j−1

�
A
(a1,...,ai )n�−1

i

�
. Therefore by the Shannon-Mcmillan theorem

(weighted version) we have

μ (U) < exp

⎡

⎣−n

⎛

⎝
k�

i=1

ai hμ

⎛

⎝ f1,
k�

j=i

τ−1
j−1

�A j
�
⎞

⎠− ε

⎞

⎠

⎤

⎦ .
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Besides the number of such an elements is equal or greater than

'
1 − δ

4

(
exp

⎡

⎣n

⎛

⎝
k�

i=1

ai hμ

⎛

⎝ f1,
k�

j=i

τ−1
j−1

�A j
�
⎞

⎠− ε

⎞

⎠

⎤

⎦ ,

so

ran (μ, γ, δ) >

'
1 − δ

4

(
exp

+
n

�
�k

i=1 ai hμ

�
f1,

k�
j=i

τ−1
j−1

�A j
�
�

− ε

�,

maxi=1,2,...,k B(ε/2, N , si (n ))
.

We also know that by the Stirling formula

B(ε/2, N , ti (n )) =
[(ε/2)ti (n )]�

m=0

(N − 1)m
'
ti (n )

m

(

then,

lim
n→∞

1

ti (n )
log B(ε/2, N , ti (n )) = ε/2 log(N − 1) − ε/2 log ε/2 − (1 − ε/2) log(1 − ε/2).

Recall that γ ∈ (0, ε), hence

lim
n→∞

1

n
log ran (μ, ε, δ) ≥

k�

i=1

ai hμ

⎛

⎝ f1,
k�

j=i

τ−1
j−1

�A j
�
⎞

⎠ =
k�

i=1

h(τi−1)∗(μ) ( fi ,Ai ) .

We are considering partitions with the property μ
�
τ−1
i−1 (∂Ai )

�
= 0, and enough small

diameter, therefore the entropies h(τi−1)∗(μ) ( fi ,Ai ) and h(τi−1)∗(μ) ( fi ) are arbitrary closed
for any i = 1, 2, . . . , k and so we have

haμ ( f1) ≤ lim
ε→0

lim
n→∞

1

n
log ran (μ, ε, δ) .

��
According to [7] an alternative definition of the set of generic points it can be presented:

let
�
p j
�
be a sequence of numbers with

�∞
i=1 p j = 1 and let {ri } be a sequence in 	∞. The

sequence
�
r j = rn, j

�
i converges to α = (α j ) ∈ 	∞ in the weak ∗- topology if and only if

limn→∞
--rn, j − α j

-- = 0. Let {�1,�2, . . .} be a fixed dense subset in unit ball of C(X ) and
� : X1 → 	∞, with � = {�1,�2, . . .}. For a fixed μ ∈ M(X , f ), let α = (α1, α2, . . .),
with αi = .

�i dμ. Thus

G (μ) =
⎧
⎨

⎩x ∈ X1 : lim
n→∞

∞�

j=1

p j,i

-----
Sn
�
� j (x)

�

n
− αi

----- = 0

⎫
⎬

⎭ =not X�(α), (2.9)

with Sn (�i (x)) = �n−1
j=0

�
�i

�
f j
1 (x)

��
.

The following metric in M(X1, f1) is compatible with the star weak topology in this
space:

D (μ, ν) =
∞�

j=1

p j

----
�

� j dμ −
�

� j dν

---- .
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By a theorem of Young [16], we have the following approximation property, for any μ ∈
M(X1, f1), 0 < δ < 1, 0 < γ < 1, there is a measure ν such that ν = �t

j=1 λiνi , where

each ν j is ergodic and
�t

j=1 λ j = 1, and such that
�∞

j=1 pi
--. ϕi dμ − .

ϕi dν
-- < δ.

Definition 5 A sequence of systems (X1, d1, f1) , . . . , (Xk, dk, fk) satisfy a-specification
or weighted specification for a = (a1, . . . , ak) if for any ε > 0 there exists an integer
m = m (ε) such that, for any sequence of integer intervals I1 = [a1, b1] , . . . , Is = [as, bs]
with dist

�
Ii , I j

�
> m (ε) (i �= j) and any points sequence x1, x2, . . . , xk ∈ X1, there is a

point z ∈ X1 for which

max
i=1,,...,k

�
di
�
f
a	+ j

i (τi (z) , f j
i (τi (xr ))

��
< ε

for any 	 = 1, . . . , s; r = 1, . . . , t and j = 0, 1, . . . ,

�
a1 + · · · + a j

� |I	|
�
.

Examples of systems with a-specification are the full shift systems. More general shifts
satisfy weighted specification if a condition on the dynamics is imposed. In some cases it is
implied by the topological mixing condition. Other examples are Manneville-Pomeau maps
systems [13] and families of logistic maps with an adequate choice of the parameters. The
β-shift maps are also examples. We discuss with more detail these examples later on.

Let δ > 0, α j = .
� j dμ and set

X�(α, δ, n) :=
⎧
⎨

⎩x ∈ X1 :
∞�

j=1

p j

-----
Sn
�
� j (x)

�

n
− α j

----- < δ

⎫
⎬

⎭ ,

let N a
n (α, ε, δ) be the, minimal, number of balls Ba

n,,ε needed to cover X�(α, δ, n), then
define

�a
�(α) := lim sup

n→∞
lim
ε→0

lim
δ→0

1

n
log N a

n (α, ε, δ) (2.10)

Proposition 2.3 (Weighted entropy distribution principle) Let (Xi , di , fi ) , i = 1, 2, . . . , k,
be a finite sequence of dynamical systems, letμ ∈ M(X1, f1) and Z ⊂ X1, withμ(Z) > 0.
If for any ε > 0 . for any ball Ba

n,ε (x) with Ba
n,ε (x) ∩ Z �= ∅ and for a constant s holds

μ
�
Ba
n,ε (x)

� ≤ C(ε) exp(−ns), for some constant C(ε) > 0, then ha(Z) ≥ s.

Proof Let T a
n,ε = �

A ⊂ X1 : A ⊂ Ba
n,ε (x) , for some x ∈ X1

�
and

� =
⎧
⎨

⎩
�
n j , A j

� : A j ∈ T a
n j ,ε

, Z ⊂
)

(n j ,A j)∈�

A j

⎫
⎬

⎭ .

We may assume that the balls of the covering satisfy Ba
n,ε (x) ∩ Z �= ∅ . If

�
n j , A j

� ∈ �

then

�

j

exp(−ns) ≥ 1

Cε)

�

j

μ
�
Ba
n j ,ε

(x)
�

≥ 1

Cε)
μ
�
∪Ba

n j ,ε
(x)
�

≥ 1

Cε)
μ(Z) > 0.

Hence for an integer N and n j ≥ N we have �a (Z , s, N , ε) and so ha(Z) ≥ s. ��

Proposition 2.4 �a
�() ≤ ha (G (μ)) .
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Proof As we mentioned earlier we use the constructions of [6] based on techniques from
[14]. Let {W	}	≥1 be a sequence of finite sets contains in X1, let us consider sequence of
integers {n	} such that for a fixed ε > 0 holds

di,ti (n	) (τi−1 (x) , τi−1 (y)) > 5ε, i = 1, 2, . . . , k and for any x, y ∈ W	, x �= y.

For ε > 0 sufficiently small can be found a sequence {δ	} , with δ	 � 0 such that W	 ⊂
X�(α, δ	, n	). besides, by the definition of �a

�(α), we can choose the sets W	 such that
M	 = cardW	 ≥ exp

/
n	

�
�a

�(α) − γ
�0

, for any γ > 0.
Let us consider a sequence of integers {N	} , with N1 = 1. Then, for fixed 	, select N	

points x1, x2, . . . , xN	
∈ W	. so by the weighted specification property we can choose a point

y = y(x1, x2, . . . , xN	
) such that

di,ti (n	)

�
τi−1

�
f as1 (y)

�
, τi−1 (xs)

�
< ε/2	. s = 1, 2, . . . , N	, i = 1, 2, . . . , k,

and where as = (s − 1) (n	 + m	) , with m	 = m	

�
ε/2	

�
given by the definition

of a-specification. The if
�
x1, x2, . . . , xN	

� ∈ WN	

	 ,
�
x1, x2, . . . , xN	

� ∈ WN	

	 with�
x1, x2, . . . , xN	

� �= �
x1, x2, . . . , xN	

�
then

di,ti (t	)
�
τi−1

�
y(x1, x2, . . . , xN	

)
�
, τi−1

�
y
��
x1, x2, . . . , xN	

����
> 4ε,

with b	 = aN	
+n	 = N	n	 + (N	 − 1)m	. This is seen in the following way: take xs �= xs,

for some s, we have

5ε ≤ di,ti (n	) (τi−1 (xs) , τi−1 (xs)) ≤ di,ti (n	)

�
τi−1 (xs) , τi−1

�
f as1 (y)

��

+ di,ti (n	)

�
τi−1

�
f as1 (y)

�
, τi−1

�
f as1 (y)

��+ di,ti (n	)

�
, τi−1

�
f as1 (y)

�
, τi−1 (xs)

�

<
ε

2
+ ε

2
+ di,ti (b	)(τi−1 (y) , τi−1 (y)).

Then are defined the sets D1 = W	,

D	 =
�
y(x1, x2, . . . , xN	

) : �x1, x2, . . . , xN	

� ∈ WN	

	 , i = 1, 2, . . . , k
�

.

Let H1 = D1, h1 = n1, and recursively define sets H	+1 and numbers h
	+1 . 	 ≥ 2, as

follows:
For each x ∈ H	, y ∈ D	+1 can be choose, by the weighted specification property a point

z = z(x, y) ∈ X1, such that

di,ti (h1)(τi−1 (z) , τi−1 (x) < ε/2	+1,

for any i = 1, 2, . . . , k and

di,ti (b	+1)(τi−1

�
f h	+m	+1
1 (z)

�
, τi−1 (y)) < ε/2	+1, i = 1, 2, . . . , k.

Then set
H	+1 = {z(x, y) : x ∈ H	, y ∈ D	+1} , (2.11)

and
h	+1 = h	 + m	+1 + b	+1. (2.12)

Thus if y, y ∈ D	+1 with y �= y then

di,ti (h	)(τi−1 (z(x, y)) , τi−1 (z(x, y))) > 3ε, 	 ≥ 1.
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Besides

di,ti (b	)(τi−1 (z(x, y)) , τi−1 (z(x, y))) < ε/2	.di,ti (b	)(τi−1 (z(x, y)) , τi−1 (z(x, y))) < ε/2	.

Now define

F	 =
)

x∈H	

�
y : di,ti (h	)(τi−1 (x) , τi−1 (y)) < ε/2	+1, i = 1, 2, . . . , k

�
. (2.13)

and
F =

*

	≥1

F	. (2.14)

There are two facts about F :
(i) It can be constructed a measure m concentrated on F, i.e. m(F) = 1.
(ii) ha (F) ≥ �a

�(α)

The proof of he fact i) his is done following [14]. Let

m	 = 1

cardH	

�

x∈H	

δx .

The sequence {m	} weakly converges to a limit m, concentrated on F, i.e. m(F) = 1. To
prove this we must see that for any γ > 0, there is a L(γ ) such that for any 	1, 	2 > L

----
�

ϕdm	1 −
�

ϕdm	1

---- < ε for any ϕ ∈ C(X1).

We may assume that 	1 > 	2, so we have

----
�

ϕdm	1 −
�

ϕdm	2

---- ≤
------

1

cardH	1

�

x∈H	1

ϕ (x) − 1

cardH	2

�

z∈H	2

ϕ (z)

------

≤ 1

cardH	1

�

x∈H	1

|ϕ (x) − ϕ(z)| ,

with z = z(x) ∈ H	2 , chosen like in the construction of such a space, i.e.
di,si

�
h	1

�(τi−1 (z) , τi−1 (x) < ε/2	1+1, for any i = 1, 2, . . . , k. Thus by choosing a L and
	1, 	2 > L, we get
----
�

ϕdm	1 −
�

ϕdm	2

---- < sup
�
|ϕ (x) − ϕ(z)| : di,ti �h	1

�(τi−1 (z) , τi−1 (x) < ε/2	1+1
�

,

therefore for a given γ > 0, 	1, 	2 > L can be made
--. ϕdm	1 − .

ϕdm	2

-- < γ.

The uniqueness of the measure m is given by the Riesz theorem, in fact if we consider
the positive functional I (ϕ) = limn→∞

.
ϕdm	, by the mentioned theorem there exist an

unique measure m such that I (ϕ) = .
ϕdm.

By construction of the fractal set F has m	+p(F	+p) = 1, for any p ≥ 0. The F	 are
closed, so by the property of the weak convergence we have

m(F	) ≥ lim supp→∞ m	+p(F	+p) = 1 and therefore m(F	) = 1. Since F = 1
	≥1 F	

we get m(F) = 1.
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For proving the fact i i) is used the weighted entropy distribution principle to obtain a
bound for ha (F) . To do this it may be estimated the m-measure of any ball Ba

n j ,ε
such that

Ba
n j ,ε

∩ F �= ∅.
Let n be enough large and x ∈ X1 with Ba

n j ,ε
(x) ∩ F �= ∅. By the definition of the

sequence of measures {m	} with weak limit m, we have

m
�
Ba
n j ,ε

(x)
�

≤ lim inf
	→∞ m	

�
Ba
n j ,ε

(x)
�

= lim inf
	→∞

1

cardH	

�

z∈H	Ban j ,ε (x)

δx

= lim inf
	→∞

1

cardH	

card
�
z ∈ H	 ∩ Ba

n j ,ε
(x)
�

.

Once constructed the sets H	 and the measure m, like in [14], can be proved that

card
�
H	 ∩ Ba

n j ,ε
(x)
�

≤ 1,

and so m	

�
Ba
n j ,ε

(x)
�

≤ 1

cardH	

.

Let 	 = 	(n) and 0 ≤ p = p(n) ≤ N	+1 such that

h	 + p (m	+1 + n	+1) < n ≤ h	 + (p + 1) (m	+1 + n	+1) ,

if z1, z2 ∈ H	+1 ∩ Ba
n j ,ε

(x) then

z1 = z
�
x, y(x1, x2, . . . , xN	+1)

�
, z1 = z

�
x, y

��
x1, x2, . . . , xN	+1

���
,

with
�
x1, x2, . . . , xN	

�
,
�
x1, x2, . . . , xN	+1

� ∈ WN	+1
	+1 . Like in [14], can be proved that x1 =

x2 and xi = xi , i = 1, 2, . . . , p. Thus for all the points in H	+1 ∩ Ba
n j ,ε

(x) the x and the
�
x, y(x1, x2, . . . , xp)

�
are the same, and hence there are at most MN	+1−p

	+1 of these points.
Therefore

m	+1

�
Ba
n j ,ε

(x)
�

≤ 1

cardH	

MN	+1−p
	+1

MN	+1
	+1

= 1

(cardH	) M
p
	+1

. (2.15)

Thus, for p ≥ 1

m	+p

�
Ba
n j ,ε/2 (x)

�
≤ 1

(cardH	) M
p
	+1

. (2.16)

Recall that we chosen the sets W	, such that M	 = cardW	 ≥ exp
/
n	

�
�a

�(α) − γ
�0

, for
any γ > 0 and for the sequence of numbers {n	} given earlier. Let s = �a

�(α) − γ , so

(cardH	) M
p
	+1 = MN1

1 MN21
2 . . . MN	

	 Mp
	+1 ≥ exp

+
	�

i=1

Nini p + pn	+1

,

≥ exp
/
(s − γ /2) (N1n1 + · · · + N	 (n	 + m	) + p (n	+1 + m	+1))

0

≥ exp
/
(s − γ ) n

0
.

Thus, for n large enough, 	 → ∞ get

m
�
Ba
n j ,ε/2 (x)

�
≤ exp

/
(s − γ ) n

0
,

therefore, because the estimation of the ball intersecting F, with m(F) = 1, and since γ is
arbitrary small, by the weighted entropy distribution principle we obtain

ha (F) ≥ s = �a
�(α).
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Now the proof will be completed by proving that F ⊂ G (μ) = X�(α). So it should be
shown that

lim
n→∞

∞�

i=1

pi

----
Sn (�i (x))

n
− αi

---- = 0,

for any x ∈ F and αi = .
�i dμ. To establish this fact is used a technique similar to [6],

which consists in splitting the interval [0, n) in small subintervals to bound the statistical

sums Sn (�i (x)) = �n−1
j=0

�
�i

�
f j
1 (x)

��
,

For � ∈ C(X1) set

Var (�, �. a) := max
j=1,2,...k

sup
di(τ j−1(x),τ j−1(y))<ε

{|�(x) − �(y)|}

.

Let us consider the sequences {n	} . {h	} and {b	} used for the constructions of the sets
D	 and H	. Let n, 	 ≥ 1 and 0 ≤ p ≤ N	+1, such that

h	 + p(n	+1 + m	+1) < n < h	 + (p + 1) (n	+1 + m	+1). Then the interval [0, n) can
be partitioned as

[0, h	)∪
/
h	, h	 + p(n	+1 + m	+1))∪

/
h	, h	 + p(n	+1 + m	+1))∪

/
h	 + p(n	+1 + m	+1), n) .

and in turn the intervals
/
h	, h	 + p(n	+1 + m	+1)) are decomposed into intervals alterna-

tively of lengths n	+1 and m	+1. Let x ∈ F, by [6], the statistical sums Sn (�i (x)) are
partitioned in sums over small intervals and is obtained the bound for the “error”

--Sn
�
� j (x)

�− nα j
-- ≤ I1 ( j) + I2 ( j) + I3 ( j) + I4 ( j) ,

with

I1 ( j) = --Sh	

�
� j (x)

�− h	α j
--

and

I3 (i) =
p�

s=1

---Sn	+1

�
� j

�
f h	+cs+m	+1
1 (x)

��
− n	+1α j

--- ,

where cs = (s − 1) (n	+1 + m	+1) , and the intervals I2 ( j) , I4 ( j) satisfying

lim
n→∞

1

n

∞�

j=1

p j I2 ( j) = 0 and lim
n→∞

1

n

∞�

j=1

p j I4 ( j) = 0.

Then to prove that x ∈ X�(α), should be justify that limn→∞
1

n

�∞
j=1 p j Ik ( j) = 0,

k = 1, 2, 3, 4.
For any x ∈ F, there is a x ∈ H	 such that

di,ti (t1)(τi−1 (x) , τi−1 (x) < ε/2	+1, i = 1, 2, . . . , k

and if 1 ≤ s ≤ p then there is a point xs ∈ W	+1 ⊂ X�(α, δ	+1, n	+1) such that

di,ti (n1+1)(τi−1 (xs) , τi−1
�
f vs
1 (x)

�
< ε/2	+1, i = 1, 2, . . . , k, with vs = h	 + cs + n	+1.
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From this, by [6], I3 (i) can be bounded

I3 ( j) ≤
p�

s=1

--Sn	+1
�
� j

�
f vs
1 (x)

��− Sn	+1
�
� j (xs)

�--+
p�

s=1

--Sn	+1
�
� j

�
f vs
1 (x)

��− n	+1α j
--

≤ n	+1Var
�
� j , ε/2	+1,

�
+ n	+1δ	+1,

since xs ∈ W	+1 ⊂ X�(α, δ	+1, n	+1). Therefore

1

n

∞�

j=1

p j I3 ( j) ≤
∞�

j=1

pi V ar
�
� j , ε/2	+1, a

�
+ δ	+1

and so, since 	 → ∞ as n → ∞, we have limn→∞
1

n

�∞
j=1 p j I3 ( j) = 0.

The idea to bound I1 ( j) is similar, we have

I1 ( j) ≤ --Sh	

�
� j (x)

�− Sh	

�
� j (x)

�--+ -- Sh	 (�i (x)) − h	α j
--

≤ h	Var
�
� j , ε/2	+1,

�
+ max

y∈H	

-- Sh	 (�i (y)) − h	α j
-- .

That limn→∞
1

n
maxy∈H	

-- Sh	

�
� j (y)

�− h	α j
-- = 0, can be proved like in [6] and

Var
�
� j , ε/2	+1,

� → 0 as 	 → ∞ by the continuity of the maps �i , we have that

limn→∞
1

n

�∞
j=1 p j I1 ( j) = 0.

With this F ⊂ G (μ) = X�(α) and so

�a
�(α) ≤ ha ( F) ≤ ha (G (μ)) .

��
Proposition 2.5 �a

�() ≥ haμ ( f1) .

Proof For a given γ > 0, , can be consider ε > 0 and δ > 0 such that �a
�(α) + γ >

lim supn→∞
1

n
log N a

n (α, ε, 5δ) . Recall that by the approximation theorem of Young, for

any measure μ ∈ M(X1, f1), here is an invariant measure ν such that ν = �t
	=1 λ	ν	, with

ν j ergodic,
�t

j=1 λ j = 1 and D (μ, ν) < δ. Let 1 ≤ 	 ≤ t, N ≥ 1, set

Y	(N ) =
⎧
⎨

⎩x ∈ X1 :
∞�

j=1

p j

-----
Sn
�
� j (x)

�

n
− α j

----- < δ, for n ≥ N

⎫
⎬

⎭ ,with α j =
�

� j dμ.

We have ν	 (Y	(N )) > 1 − γ, 	 = 1, . . . , t . By the proposition 2.2, for any ε > 0, there is
an integer N	 such that, for n ≥ N	

ran (ν	, 4ε, γ ) > exp
�
n
�
haν	

( f1) − γ
��

.

Since ν	 (Y	(N )) > 1 − γ, the quantity ran (ν	, 4ε, γ ) series to count the minimal num-
ber of balls Ba

n,ε needed to cover Y	(N ), and so this number is equal of greater than
exp

�
n
�
haν	

( f1) − γ
��

,

A set E ⊂ X1 is a,n, ε-separated if for any x �= y ∈ E holds dan (x, y) =
maxi=1,2,...,k

�
di, (τi−1 (x) , τi−1 (y))

�
> ε. By Ea

n,ε is denoted a a,n, ε-separated set con-
tained in Y	(N ) and with maximal cardinality . Let n	 = [λ	n] , 	 = 1, . . . , t, and such that
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n	 ≥ max
�
N , N1,...,N	

�
for N sufficiently large, For x	 ∈ Ea

ni ,4ε
⊂ Y	/N ), 	 = 1, 2, . . . , t,

there exists, by the a-specification property, a m = m (ε) and a point y = y(x1, x2, . . . , xt )
such that:

di,ti (n	)

�
τi−1

�
f as1 (x	)

�
, τi−1 (y)

�
< ε,

where a1 = 0, as = (s − 1)m +
t−1�
r=1

ns . By the other hand cardEa
n,4ε ≥

exp
�
n
�
haν	

( f1) − γ
��

, for any n ≥ N	.

Let n = at + nt . the following fact are valid:

(1) For each x	 ∈ Ea
ni ,4ε

, i = 1, 2, . . . , t the corresponding y = y(x1, x2, . . . , xt ) belongs
to X�(α, 5δ, n) for n sufficiently large.

(2) If (x1, x2, . . . , xt ) �= (x1, x2, . . . , xt ) ∈ Ea
ni ,4ε

, 	 = 1, 2, . . . , t then

di,ti (n) (τi−1 (y) , τi−1 (y)) > 2ε.

The proofs of these claims are similar, with slight differences, to that presented in [6], we
display here the main aspects of the proofs.

To prove (1) it must be seen that

∞�

j=1

p j

-----
Sn
�
� j (y)

�

n
−
�

� j dμ

----- < 5δ,

for n sufficiently large. Let ν = �t
	=1 λ	ν	, with ν	 ergodic,

�t
	=1 λ	 = 1 and D (μ, ν) < δ.

Then
-----
Sn
�
� j (y)

�

n
−
�

� j dμ

----- ≤
-----
Sn
�
� j (y)

�

n
−

t�

	=1

�
� j dν	

-----+
-----

t�

	=1

�
�i dν	 −

�
�i dμ

-----

=
-----
Sn (�i (y))

n
−

t�

	=1

�
�i dν	

-----+
----
�

�i dν −
�

�i dμ

---- .

Since D (μ, ν) < δ we have that

∞�

j=1

p j

-----
Sn
�
� j (y)

�

n
−
�

�i dμ

----- ≤
∞�

j=1

p j

-----
Sn (�i (y))

n
−

t�

	=1

�
� j dν	

-----+ δ,

and so is needed to prove that

∞�

j=1

p j

-----
Sn
�
� j (y)

�

n
−

t�

	=1

�
� j dν	

----- < 4δ. (2.17)

In [6] this is proved by doing
-----
Sn
�
� j (y)

�

n
−

t�

	=1

�
�i dν	

----- ≤ S1 ( j) + S2 ( j) + S3 ( j) + S4 ( j) ,

where

S1 ( j) =
t�

	=1

[λ	n]

n

-----
S [λ	n]

�
�i
�
f a	

1 y
��

n
− S [λ	n]

�
� j (x	)

�

n

----- ,
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S2 ( j) =
t�

	=1

[λ	n]

n

-----
S [λ	n]

�
� j (x	)

�

n
−
�

� j dν	

----- ,

S3 ( j) =
-----

t�

	=1

[λ	n]

n
− λ	

� --� j
-- dν	

----- ,

and

S4 ( j) = 1

n

t�

	=2

a	−1�

s=a	−m

--� j
�
f s1 y

�-- .

Thus it must be proved that
�∞

j=1 p j Sk ( j) < δ, for k = 1, 2, 3, 4.

We have that n → ∞ as n → ∞ and
[λ	n]

n
→ λ	, as n → ∞ .

By the continuity of the each map � j we have that Var
�
� j , �. a

� → 0 as ε → 0 and
can be done

�∞
j=1 p j V ar

�
� j , �. a

�
< δ. Hence

∞�

j=1

p j

t�

	=1

[λ	n]

n

-----
S [λ	n]

�
� j

�
f a	

1 y
��

n
− S [λ	n] (�i (x	))

n

-----

≤
∞�

j=1

p j

t�

	=1

Var
�
� j , �. a

�
λ	 < δ.

This is due to
�∞

j=1 p j =1 and that each x	 satisfies di,ti (n)

�
τi−1

��
f as1 (x	)

��
, τi−1 (y)

�
<ε.

For the second sum

∞�

j=1

p j

t�

	=1

[λ	n]

n

----
S [λ	n] (�i (x	))

n
−
�

�i dν	

---- ≤ δ

t�

	=1

λ	 = δ,

because x	 ∈ Ea
ni ,4ε

⊂ Y	/N ).

Using
22 � j

22 ≤ 1 is proved, like in [6] that
�∞

j=1 p j S3 ( j) < δ and
�∞

j=1 p j S4 ( j) < δ.

For the proof of 2) let xt �= xt , we have, for i = 1, 2, . . . , k,

di,ti (n1)(τi−1 (x	) , τi−1 (xt )

≤ di,ti (n1)(τi−1 (x	) , τi−1
�
f va	

1 (y)
�+ di,ti (n1)

�
τi−1

�
f va	

1 (y)
�
, τi−1

�
f va	

1 (y)
��

+ di,ti (n1)(τi−1
�
f va	

1 (y)
�
, τi−1 (xt )).

Then, since xt , xt ∈ Ea
ni ,4ε

we get

di,ti (n1)
�
τi−1

�
f va	

1 (y)
�
, τi−1

�
f va	

1 (y)
��

≥ di,ti (n1)
�
τi−1

�
f va	

1 (y)
�
, τi−1 (xt )

�− 2ε > 4ε − 2ε = 2ε.

But

di,ti (n)( τi−1
�
f va	

1 (y)
�
, τi−1

�
f va	

1 (y)
�
) < di,ti (n)( τi−1 (y) , τi−1 (y)),

so that

di,ti (n)( τi−1 (y) , τi−1 (y)) > 2ε.
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Thus, by the fact (2) the number of points y = y(x1, x2, . . . , xt ), obtained from each
(x1, x2, . . . , xt ) ∈ Ea

n1i ,4ε
× · · · × Ea

nt ,4ε
does not exceed the minimal number of balls

Ba
n,ε needed to cover X�(α, 5δ, n) . Therefore

t3

	=1

cardEa
n	i ,4ε ≤ N a

n (α, ε, 5δ) ,

and so

N a
n (α, ε, 5δ) ≥

t3

	=1

exp
�
[λ	n]

�
haν	

( f1) − γ
�� = exp

�
t�

	=1

�
[λ	n]

�
haν	

( f1) − γ
��
�

,

for γ > 0. Recall that

n → ∞ and
[λ	n]

n
→ λ	, as n → ∞,

then, taking lim supn→∞ limε→0 limδ→0, get

�a
�(α) ≥ haμ ( f1) − γ.

Since γ is arbitrary proposition is proved. ��
Wehave, byPropositions 2.4 and 2.5 that haμ ( f1) ≤ ha (G (μ)) , for anyμ ∈ M(X1, f1),

and as we pointed out the opposite is valid by [17], therefore the proof theorem 1.2 is
completed.

3 Proof of the Theorem 1.1

Firstly we state the following weighted version of Bowen lemma:

Theorem 3.1 [17] Let (Xi , di , fi ) , i = 1, 2, . . . , k, dynamical systems, let Ba (t) =�
x ∈ X1 : there is a μ ∈ V (x) such that haμ ( f1) ≤ t

�
, recall that V (x) denotes the set of

weak limits of the sequence of measures

4
En (x) = 1

n

�n−1
i=0 δ f i1 (x)

5
.

Proof Recall the a-weighted multifractal decomposition, for a finite sequence of dynamical
systems (Xi , di , fi ) and maps �1, �2 . . . , �k ∈ C

�
Xr
1

�
, is defined as

K a{�1,�2...,�k },α =
�
x ∈ X1 : lim

n→∞ V a{�1,�2...,�k } (n, x) = α
�

.

where

V a{�1,�2...,�k } (n, x) =
k�

j=1

1
�
s j (n)

�r V� j

�
s j (n), x

�
.

with s j (n) = 	�
a1, . . . , a j

�
n



.

By the Stone–Weirstrass theorem, for any � j there exits a map 6� j of the form 6� j =�

	

ϕ
(1)
	, j ⊗ · · · ⊗ ϕ

(r)
	, j , j = 1, 2, . . . k, and such that for any ε > 0 holds

22� j − 6� j
22∞ < ε.
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Thus

V a{6� j ,6� j ...,6�k} (n, x) =
�

	

r3

i=1

k�

j=1

Ss j (n)

�
ϕ

(i)
	, j

�
(x)

s j (n)

and by [1] we have

lim
n→∞ V a{6� j ,6� j ...,6�k} (n, x) =

k�

j=1

�
6� j dμ⊗r ,

for any μ ∈ V (x) .

We shall see that

(i) K a{�1,�2...,�k },α ⊂ Ba
�
supμ∈M(α,{�1,�2...,�k }) h

a
μ ( f1)

�
, where

M(α, {�1,�2 . . . , �k)} =
⎧
⎨

⎩μ ∈ M(X1, f1) :
k�

j=1

�
� j dμ⊗r = α

⎫
⎬

⎭ .

.

(ii) G (μ) ⊂ K a{�1,�2...,�k },α., μ ∈ M(α, {�1,�2 . . . , �k)}
Once these claims be proved, we will have, by the weighted Bowen lemma

ha(K a{ �1,�2...,�k },α) ≤ sup
μ∈M(α,{�1,�2...,�k })

haμ ( f1) , (3.1)

and by the saturation property

ha( G (μ)) = haμ ( f1) ≤ ha(K a{ �1,�2...,�k },α).

Then the variational principle for weighted V -statistics would be established.
To prove (i) let x ∈ K a{�1,�2...,�k },α, let μ ∈ V (x) so that there is a sequence of integers

{nk} such that Enk (x) weakly converges to μ. We have

k�

j=1

�
� j dμ⊗r − α =

k�

j=1

�
� j dμ⊗r −

k�

j=1

�
6� j dμ⊗r +

k�

j=1

�
6� j dμ⊗r − V a�6� j ,6� j ...,6�k

� (nk , x)

+V a�6� j ,6� j ...,6�k
� (nk , x) − V a{�1,�2...,�k} (nk , x) + V a{�1,�2...,�k} (nk , x) − α,

hence
------

k�

j=1

�
� j dμ⊗r − α

------
≤

k�

j=1

----
�

� j dμ⊗r −
�
6� j dμ⊗r

----+
------

k�

j=1

�
6� j dμ⊗r − V a{6� j ,6� j ...,6�k} (nk , x)

------

+
---V a{6� j ,6� j ...,6�k} (nk , x) − V a{�1,�2 ...,�k } (nk , x)

---+
---V a{�1,�2 ...,�k } (nk , x) − α

--- .

thus, for ε > 0 and nk enough large and since x ∈ K a{�1,�2...,�k },α , we obtain
------

k�

j=1

�
� j dμ⊗r − α

------
≤ ki� + ε + ε + ε ,

and since ε is arbitrary this leads to μ ∈ M(α, {�1,�2 . . . , �k)} . From this we have that if
x ∈ K a{�1,�2...,�k },α then there is a μ ∈ V (x) and such that

haμ ( f1) ≤ sup
μ∈M(α,{�1,�2...,�k })

haμ ( f1) .
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Therefore

K a{�1,�2...,�k },α ⊂ Ba

�
sup

μ∈M(α,{�1,�2...,�k })
haμ ( f1)

�

and (i) is proved.
For (ii) let x ∈ G (μ) ,with μ ∈ M(α, {�1,�2 . . . , �k)} , as we have seen,

lim
n→∞ V a{6� j ,6� j ...,6�k} (n, x) =

k�

j=1

�

Xr
1

6� j dμ⊗r (3.2)

thus we have, for ε > 0,
------
lim
n→∞ V a{�1,�2...,�k } (n, x) −

k�

j=1

�

Xr
1

,� j dμ⊗r

------

≤
--- lim
n→∞ V a{6� j ,6� j ...,6�k} (n, x) − lim

n→∞ V a{�1,�2...,�k } (n, x)
---

+
------
lim
n→∞ V a{�1,�2...,�k } (n, x) −

k�

j=1

�

Xr
1

6� j dμ⊗r

------

+
------

k�

j=1

�

Xr
1

6� j dμ⊗r −
k�

j=1

�

Xr
1

� j dμ⊗r

------
< 2ε.

Thus

lim
n→∞ V a{�1,�2...,�k } (n, x) =

k�

j=1

�

Xr
1

,� j dμ⊗r = α,

because μ ∈ M(α, {�1,�2 . . . , �k)} .

With the proof of (i) and (ii) concludes the demonstration of the theorem 1.2. ��

Let us consider as an example the case of Bernoulli schemes, let (Xi , σi ,�i ), j =
1, 2, . . . k, be a finite family with Xi the set of infinite sequences in symbols of the alphabet

�i , i.e. Xi =
�
x (i) = �

x (i)
�
1

�
x (i)

�
2 . . . ,

�
x (i)

�
j ∈ �i , j = 1, 2, . . .

�
, and σi ; Xi → Xi

the shift map. Let �1,�2 . . . , �k ∈ C
�
Xr
1

�
, we consider the special case of that any �i

depends on the first m coordinates of each variable. The case k = 1, was presented in [5]

Let μ ∈ M(α, {�1,�2 . . . , �k)}, so
�k

i=1

.
Xr
1
�i dμ⊗r depends on the values of μ on

cylinders Cm of length m. In a similar way to [5], can be seen that the supreme is attained on
a Markov measure, which for m = 1 is a Bernoulli measure μp, associated to a probability

vector p. Let x (i)
1 , x (i)

2 , . . . , x (i)
r ∈ X1, and consider the particular of any �i of the form

�i = �i

�
x (i)
1 , x (i)

2 , . . . , x (i)
r

�
= ϕ

(i)
1

� �
x (i)
1

�

1

�
ϕ

(i)
2

� �
x (i)
2

�

1

�
. . . ϕ

(i)
r

� �
x (i)
r

�

1

�
, =

1, 2, . . . k, therefore if μp is the maximizing Bernoulli measure, for probability vector p ,
then we have

μ⊗r
p

�
x (i)
1 , x (i)

2 , . . . , x (i)
r

�
= μp

� �
x (i)
1

�

1

�
μp

��
x (i)
2

�

1

�
. . . .μp

� �
x (i)
r

�

1

�
(3.3)
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and so, if

S (p) =
k�

i=1

�

Xr
1

�i

�
x (i)
1 , x (i)

2 , . . . , x (i)
r

�
dμ⊗r

p

�
x (i)
1 , x (i)

2 , . . . , x (i)
r

�

=
k�

i=1

�

Xr
1

�i

�
x (i)
1 , x (i)

2 , . . . , x (i)
r

�
dμp

� �
x (i)
1

�

1

�
μp

��
x (i)
2

�

1

�
. . . .μp

� �
x (i)
r

�

1

�

(3.4)

then for a probability vector p = (p0, p1, . . . , pt−1) , with t = card�1, is

S (p) =
k�

i=1

r3

h=1

t−1�

s=0

ϕ
(i)
h (s) , ps . (3.5)

Therefore, the entropy must be maximized with respect to probability vectors p and

ha(K a{ �1,�2...,�k },α) = max
p:S(p)=α

k�

i=1

h(τi−1)∗(μp) ( σi ) . (3.6)

For more general shifts, i.e. symbolic spaces of sequences with not all sequences allowed,
the condition of a-specification is expressed as follows (see for instance Ref. [1]):

Let (X1, σ1,�1) , . . . , (Xk, σk,�k) be shifts on alphabets �1, . . . , �k . The sequences of
length n on X1 (words) allowed by the system (admissible sequences) is denoted by Ln (X1)

so that the language on X1 is L (X1) = �
n≥1Ln (X1). The metric considered is

dan (x, y) = max
i=1,..,k

4 |τi (x) ∧ τi (y)|
a1 + · · · + ai

5
,

where

|u ∧ v| =
4
0, if u1 �= v1
max

�
n : u j = v j for 1 ≤ j ≤ n

�
if u1 = v1

We say that the shift X satisfies specification if there exists s ≤ M (for some integer M) such
that, for any two words x and y that are admissible in X , there is a word w of length s such
that

τi (x) τi (w) τi (y) ∈ L (Xi ) for any i = 1, . . . , k,

the maximizing measure being Markov.
Let si ∈ (0, 1), i = 1, . . . , k, the so-called Manneville–Pomeau maps, are interval maps

gsi : [0, 1] → [0, 1] : x → x + x1+si mod 1.

Let fi (x) = gsi (x) (i = 1, . . . , k) then following Takens and Verbitskiy [14] can be seen
that the sequence ([0, 1] , f1) , . . . , ([0, 1] , fk) is conjugate to a sequence of full shifts that
satisfy weighted specification. If f1 is expansive and

ϕ (x) = −log
-- f �

1 (x)
-- ,

then there exists a unique absolutely continous f1-invariant measure which is an equilibrium
state for the potential ϕ (x).

In a similar way the logistic sequence fi (x) = αi x(1− x) (i = 1, . . . , k) stisfy weighted
specification for parameters α1, . . . , αk within a set of positive Lebesgue measures.
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We finish these examples with the called β-shifts, say the sequence fi (x) = βi x − [βi x]
(i = 1, . . . , k)with [·] the integer part of ·,βi > 1 and the functions fi (x) defined from [0, 1)
into [0, 1). By the classification of Li and Wu [11], there exist adequate sets of parameters
β1, . . . , βk such that the sequences ([0, 1), fi ) (i = 1, . . . , k) satisfy weighted specification.
However, since the βi -shifts are not continuous in [0, 1), the variational theorem is not
applicable to this kind of sequences.

References

1. Barral, J., Feng, D.: Weighted thermodynamic formalism on subshifts and applications. Asian J. Math.
6, 319–352 (2012)

2. Bergelson, V.: Weakly mixing PET. Ergod. Theory Dyn. Syst. 7, 337–349 (2012)
3. Bourgain, J.: Double recurrence and almost sure convergence. J. Reine Angew. Math. 404, 140–161

(1990)
4. Bowen, R.: Topological entropy for non-compact sets. Trans. Am. Math. Soc. 184, 125–136 (1973)
5. Fan, A.H., Schmeling, J., Wu, J.: The multifractal spectra of V−statistics. In: Barral, J., Seuret, S. (eds.)

Further Developments in Fractals and Related Fields. Trends Math, pp. 135–141. Birkhäuser/Springer,
New York (2013)

6. Fan, A.H., Feng, D.J.,Wu, J.: Recurrence, dimension and entropy. J. Lond.Math. Soc. 64, 229–244 (2001)
7. Fan, A.H., Liao, I.M., Peyrière, J.: Generic points in systems of specification and Banach valued Birkhoff

averages. Discrete Contin. Dyn. Syst. 21, 1103–1128 (2008)
8. Feng, D.J., Huang, W.: Variational principle for the weighted topological pressure. J. Math. Pures Appl.

106, 411–452 (2016)
9. Furstenberg, H.: Ergodic behavior of diagonal measures and a theorem of Szmerédi on arithmetic pro-

gressions. J. d’Analyse Math. 31, 204–256 (1977)
10. Katok, A.: Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Publ. Math. I.H.E.S.

51, 137–173 (1980)
11. Li, B., Wu, J.: Beta-expansion and continued fraction expansion. J. Math. Anal. Appl. 339, 1322–1331

(2008)
12. Meson, A.M., Vericat, F.: On the topological entropy of the irregular part of V-statistics multifractal

spectra. J. Dyn. Syst. Geom. Theories 11, 1–12 (2013)
13. Pomeau, Y., Manneville, P.P.: Intermittent transition to turbulence in dissipative dynamica systems. Com-

mun. Math. Phys. 74, 189–197 (1980)
14. Takens, F., Verbitskiy, E.: On the variational principle for the topological entropy of certain non-compact

sets. Ergod. Theory Dyn. Syst. 23, 317–348 (2003)
15. Varandas, V.: Non-uniform specification and large deviations for weak Gibbs measures. J. Stat. Phys.

146, 330–358 (2012)
16. Young, L.S.: Large deviations in dynamical systems. Trans. Am. Math. Soc. 318, 525–543 (1990)
17. Zhao, C., Chen, E., Zhou, X., Yin, X.: Weighted topological entropy of the set of generic points in

topological dynamical systems. J. Dyn. Differ. Equ. 30, 937–955 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Weighted Multifractal Spectrum of V-Statistics
	Abstract
	1 Introduction
	2 Proof of the Theorem 1.2
	3 Proof of the Theorem 1.1
	References




