Convolution of Lorentz Invariant

Ultradistributions and Field Theory *

C.G.Bollini and M.C.Rocca
Departamento de Fisica, Fac. de Ciencias Exactas,
Universidad Nacional de La Plata.

C.C. 67 (1900) La Plata. Argentina.

September 1, 2003

arXiy:hep-th/0312214v1, 17 Dec 2003

Abstract

In this work, a general definition of convolution between two arbi-
trary four dimensional Lorentz invariant (fdLi) Tempered Ultradistri-
butions is given, in both: Minkowskian and Euclidean Space (Spheri-

cally symmetric tempered ultradistributions).
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The product of two arbitrary fdLi distributions of exponential type
is defined via the convolution of its corresponding Fourier Transforms.

Several examples of convolution of two fdLi Tempered Ultradistri-
butions are given. In particular we calculate exactly the convolution
of two Feynman’s massless propagators.

An expression for the Fourier Transform of a Lorentz invariant
Tempered Ultradistribution in terms of modified Bessel distributions is
obtained in this work (Generalization of Bochner’s formula to Minkowskian
space).

At the same time, and in a previous step used for the deduc-
tion of the convolution formula, we obtain the generalization to the
Minkowskian space, of the dimensional regularization of the perturba-
tion theory of Green Functions in the Euclidean configuration space
given in ref.[12]. As an example we evaluate the convolution of two
n-dimensional complex-mass Wheeler’s propagators.

PACS: 03.65.-w, 03.65.Bz, 03.65.Ca, 03.65.Db.



1 Introduction

The question of the product of distributions with coincident point singular-
ities is related in Field Theory, to the asymptotic behavior of loop integrals
of propagators.

From a mathematical point of view, practically all definitions lead to
limitations on the set of distributions that can be multiplied together to give
another distribution of the same kind.

The properties of ultradistributions (ref.[ ) are well adapted for their
use in Field Theory. In this respect we have shown (ref.[]) that it is possible
to define in one dimensional space, the convolution of any pair of tempered
ultradistributions, giving as a result another tempered ultradistribution. The
next step is to consider the convolution of any pair of tempered ultradistri-
bution in n-dimensional space. This follows from the formula obtained in
ref. B for one dimensional space (See ref.[H].)

However, the resultant formula is rather complex to be used in practical
applications and calculus. Then, for applications, it is convenient to consider
the convolution of any two tempered ultradistributions which are even in the
variables k° y p (See ref.H].).

A further step is to consider the convolution of two Lorentz invariant



tempered ultradistributions (See Section 7)

Ultradistributions also have the advantage of being representable by means
of analytic functions. So that, in general, they are easier to work with them
and, as we shall see, have interesting properties. One of those properties is
that Schwartz tempered distributions are canonical and continuously injected
into tempered ultradistributions and as a consequence the Rigged Hilbert
Space with tempered distributions is canonical and continuously included in
the Rigged Hilbert Space with tempered ultradistributions.

This paper is organized as follow: in sections 2 and 3 we define the Distri-
butions of Exponential Type and the Fourier transformed Tempered Ultra-
distributions. Each of them is part of a Guelfand’s Triplet ( or Rigged Hilbert
Space @ ) together with their respective duals and a “middle term” Hilbert
space. In section 4 we give a general expression for the Fourier transform of
a spherically symmetric tempered ultradistributions and some examples of
it. In section 5 we obtain the expression for the Fourier transform of Lorentz
invariant tempered ultradistributions and we give some examples of its use.
In section 6, we give the general formula for the convolution of two spheri-
cally symmetric tempered ultradistributions and followed by some examples.

In particular we evaluate exactly the convolution of two Feynman’s massless



propagators. In section 7 we treat the convolution of two Lorentz invariant
tempered ultradistributions in Minkowskian space. In subsection 1, we give
the generalization to Minkowskian space of the “dimensional regularization
in configuration space” obtained in ref.[[3]. As an example of its use we eval-
uate convolution of two complex mass Wheeler’s propagators. In subsection
2 we treat the central topic of this paper: the formula for the convolution
of two Lorentz invariant tempered ultradistributions. Finally, section 8 is

reserved for a discussion of the principal results.

2 Distributions of Exponential Type

For the sake of the reader we shall present a brief description of the principal
properties of Tempered Ultradistributions.

Notations. The notations are almost textually taken from reff]. Let
R™ (res. C™) be the real (resp. complex) n-dimensional space whose points
are denoted by x = (X1,X2y ..., Xn) (resp z = (21,22, ..., zp)). We shall use the
notations:

1) x+y=(x1+YnxX2+Yzy ey Xn+Yn) ; &xX = (&XX7, XX2y .0y XXp)

(ii)x = 0 means x7 = 0,%2 = 0,..., Xy = 0



(ii)x -y = Z1 XY
]:

(V) x =2 [ %1

j=1
Let N™ be the set of n-tuples of natural numbers. If p € N™ then

P = (p1,P2y .-, Pn), and pj is a natural number, 1 < j < n. p + q denote
(P1+91, P2+ g2y ooy Pntqn) and p = g means p1 = q1,P2 = g2y -y P = qn-
xP means x}'x52...xEr. We shall denote by | p |= ipi and by DP we denote
j=
the differential operator 0P TP2+-FPn /9xP10x,P2 ... 0%, P"
For any natural k we define x* = xkxk...xX and 9%/0x* = am*/oxkoxk...oxk

The space H of test functions such that eP*|D9¢p(x)| is bounded for any

p and q is defined ( ref.J ) by means of the countably set of norms:

1), = sup eP™|DI(x)| , p=0,1,2,... (2.1)

0<q<p,x

According to referenced H is a KK{My} space with:
Mp(x) =e®P 0 p =12/ (2.2)

IC{e P~} satisfies condition (A) of Guelfand ( ref. [ ). It is a countable
Hilbert and nuclear space:

K{eP D — 3¢ = ﬁ H, (2.3)

p=1

where H ,, is obtained by completing ‘H with the norm induced by the scalar
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0 P o
<o, P >, = J e2(P— 1K Z DIG(x)DNP(x) dx r=12,... (24)
0 q=0

where dx = dx; dx;...dx,

If we take the usual scalar product:
<db>= | B ax (25)

then H, completed with (2.5), is the Hilbert space H of square integrable
functions.

The space of continuous linear functionals defined on H is the space Ay
of the distributions of the exponential type ( ref.J ).

The “nested space”

B = (1, H,AL) (2.6)

is a Guelfand’s triplet ( or a Rigged Hilbert space H ).

In addition we have: H C S C HC 8’ C A, where S is the Schwartz
space of rapidly decreasing test functions (ref[d).

Any Guelfand’s triplet B = (®,H, @) has the fundamental property
that a linear and symmetric operator on @, admitting an extension to a
self-adjoint operator in H, has a complete set of generalized eigen-functions

in @ with real eigenvalues.



3 Tempered Ultradistributions

The Fourier transform of a function ¢ € H is

d(z) = %T J g(x) eF* dx (3.1)

®(z) is entire analytic and rapidly decreasing on straight lines parallel to the

real axis. We shall call £ the set of all such functions.
H=F{H} (3-2)
It is a Z{My} space ( ref. @ ), countably normed and complete, with:
Mp(z) = (T +[z])P (3.3)
$ is also a nuclear space with norms:
[l = sup (1+1zD)Pld(2)] (3.4)

where Vi ={z = (21,22, ...y Zn) € C™ | Imz; [S k,1 S j S n}

We can define the usual scalar product:

< §l2),¥(z) >= J (2)¥1(2) dz = j&x)@(x) ax (35)

where:

Ii(z) = J Dix) e dx



and dz = dzq dz,...dz,

By completing $) with the norm induced by (3.5) we get the Hilbert space
of square integrable functions.

The dual of $ is the space U of tempered ultradistributions ( ref. ). In
other words, a tempered ultradistribution is a continuous linear functional
defined on the space § of entire functions rapidly decreasing on straight lines
parallel to the real axis.

The set @ = (9, H,U) is also a Guelfand’s triplet.

Moreover, we have: H CSCHC S CcU.

U can also be characterized in the following way ( ref.|P ): let A, be
the space of all functions F(z) such that:

I- F(z) is analytic for {z € C™: [Im(z1)| > p,|Im(z2)| > p, ..., [IM(2,1)| >
ph

I1- F(z)/zP is bounded continuous in {z € C™: [Im(z;)| 2 p,|Im(z;)| 2
Py eeey IM(z4)| = p}, where p =0, 1,2, ... depends on F(z).

Let TT be the set of all z-dependent pseudo-polynomials, z € C™. Then
U is the quotient space:

IHI-u=A,/m

By a pseudo-polynomial we understand a function of z of the form



2«2 G(21, ey Zj-1y Zj11y vy Zn) With G(21, o0y Zj-1, Zji 1y vy Z0) € Aw
Due to these properties it is possible to represent any ultradistribution
as (ref.[d ):
Fig) =< F(z), 0(2) >= $F(2)(z) iz (36)

r
I'=T7UT,U...I, where the path T} runs parallel to the real axis from —oo

to oo for Im(z;) > ¢, ¢ > p and back from co to —oo for Im(z;) < —,
—( < —p. ( T surrounds all the singularities of F(z) ).

Formula (3.6) will be our fundamental representation for a tempered ul-
tradistribution. Sometimes use will be made of “Dirac formula” for ultradis-

tributions ( ref.[0 ):

o T f(t)
6= s | e & 6D
where the “density” f(t) is such that
%F(z)d)(z) dz = J f(t)Pp(t) dt (3.8)
r —00

While F(z) is analytic on I', the density f(t) is in general singular, so that
the r.h.s. of (3.8) should be interpreted in the sense of distribution theory.
Another important property of the analytic representation is the fact that

on I, F(z) is bounded by a power of z ( ref.[J ):

[F(z)| < Clz[? (3.9)
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where C and p depend on F.
The representation (3.6) implies that the addition of a pseudo-polynomial
P(z) to F(z) do not alter the ultradistribution:

%{F(z) +P(z)}d(z) dz = %F(z)d)(z) dz + ng(z)d)(z) dz
r

r r

But:

ng(z)cb(z) dz=0
r
as P(z)d(z) is entire analytic in some of the variables z; ( and rapidly de-

creasing ),

j@{r—(z) +P(2)0(z) dz = %r—(z)cp(z) dz (3.10)

r r

4 The Fourier Transform in Euclidean Space

The Fourier transform of a spherically symmetric function feHis given,

according to Bochner’s formula by:

2 T4 s
f(k) = (k?_)zz Jf(r)ﬂjvzz(kr) dr (4.1)
0
where T =x§+x§+---+x2; ; k=kj+ki+ - +kZ, and J 'y is the

Bessel function of order v —2/2. By the use of the equality

M v 2(z) = ¢ VK2 (—i2) + €Kz (i2) (4.2)

11



where IC is the modified Bessel function, ([l) takes the form:

(4.3)

By performing the change of variables x = 12,p = k2 &), and E3)can be

re-written as:

2 v—2 OO/\ .
f(p) = 7'[( Ti)izz Jf(X)XTZJ (p]/2X1/2) dx (44)
pT
0
2 V;Z OO/\ v— -7
1(p) = PP [ [ vhena (- 2924
pT 2
0
1/2 .1/2 (45>

UV (1x P )] dx

Here we have taken p =y + i0 and

/ 2 _ /~/2 2

p

We can extend ([l to the complex plane and obtain the corresponding

ultradistribution. As a first step we calculate the Fourier antitrasfom of

pZTTVJvT—Z(X]/Z 172) " We have:
17 2 .
EJP T Ja2 (X291 dp =
0
12



int(v—4)

e v (t—10) T ix

T(XVZF(%) eﬁMélev,vz‘;Z (—H) (4.7)

We have used 6.631.(1) of ref.f] (M is the Whittaker function). Now we

can use 92.233, (1), (2) of ref. @ and write

ix M3 e ix
Mg o2 (‘H) et e (ﬂ) !

Y% in(v—=2) ix
r (§> e 2 W‘l?TV’vZZ <—H) t < 0. (48)

As a second step we calculate the complex Fourier transform of the second

term of () using [EX). We obtain:

(p) =

e (t—i0)F ix
- 4 ix
Fe [ /2T () est Moy v2 <_H>

_imv

p's* {Oa(p)le™ a2 (—ix! 20" — O[3 (p)]e T Ku 2 (ix"/20"72) +

4

2 Evl 1/2.1/2
@S%,VZ;Z(X pe) (4-9)
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where we have used 7.629,(1),(2) of ref.fl and S is the Lommel function
(ref.[], pag 349, formula 3). The corresponding ultradistribution is then

defined as:

Fip) = 2 [ s {ODa(plle ¥ K (—ix' 30121
0

O1-3(p)le ™ Kapa (X 20"/ } dx +

2 T
LH Jf(x)xTszz_z;)sz (x"2p'/2) dx (4.10)
0

When v = 2n, n an entire number, p 7 Sy_4 v_2 is equivalent to zero. In
2 0 2

fact

EN

v—

2—v Z (% — m)! v—2—4m 4m+2-v 2m+2-v
PT Svava=) ———4" 7 x 1 p (4.11)
772 m!

o

m=

[T is a polynomial in p~'. However when the volume element is taken
into account that expression is transformed into a polynomial in p which
according to (BIM) is a null ultradistribution. Thus in this case the second

integral in (EI0) vanishes and it becomes in:

207 (o ”
Fip) = 20 [ ™" [0latolle TR (—ix %'
p 4 5
—@[—J(p)]ei%vlc%z(ix‘/szz)] dx (4.12)
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Note that the complex Fourier transform (IZ) is not merely the Fourier
transform (EE3) in which the variable p is considered to be a complex number.
ETA) gives the ultradistribution associated to f(p). In the next section we
shall see that formulae ({LH), ([EI2) can be generalized to Minkowskian space.

When f is a spherically symmetric distribution of exponential type, we
can use ([EI0) to define its Fourier transform. In addition we can follow the

treatment of ref.[[I] to define the Fourier transform. Thus we have

Jf(p)dﬂp)pvzz dp = (szJﬂx)c%(x)xvf ax (4.13)
0 0

The corresponding tempered ultradistribution in the one-dimensional com-

plex variable p is obtained in the following way: let §(t) be defined as:

f(p)e " dp (4.14)

{a)
=
I
~
:] —
=
oe——.9

Then:

0 0
F(p) = O[3(p)] J g(t)e'r* dt — e[-T(p)] J g(t)e™" at (4.15)
0 —00

T f(t)
Flp) == | —— dt (4.16)

The inversion formula (v = 2n) for F(p) is given by

A 7T v—
f(x) = W%F(p)p%Jsz (x'2p/%) dp (4.17)

(2m) 2 x77

15



Note that the factor multiplying F(p) is an entire function of p for v = 2n.

In this case the first term of [EIJ) takes the form:

v—

%F(pmp)pvf dp = (szJﬂx)&x)xzz ax (4.18)
r 0

We can now define a spherically symmetric tempered ultradistribution as
the complex Fourier transform of a spherically symmetric distribution of
exponential type. Note that a spherically symmetric ultradistribution is not
necessarily spherically symmetric in an explicit way.

We give now same examples of the use of Fourier transform.

Examples

As a first example we calculate the complex Fourier transform of e®" (where

a is a complex number) for v =2n. From [I2) we write:

_inmv

eax1/zx\/4;2 {@[J(p)]e T sz;z(—ixvzp]/z)—

O-3(p)e ™ ICVZ;z(iszp]/z) dx} (4.19)

Now:

o0

v ) in(v+2) (v 3
Je“"”szlesz(—leszz) 2 me As (v) p %
0

r(33) (p'2 —ia)

16



v—1 v+3 a—ip"?\ _
F() 2 ) 2 )a+ip]/2 J(p)>0

2

rv) p7
r(%3) (p'2+1ia)

o
J eaX1/ZXV4;ZIC (1X]/2p1/2 . 2\/_ 717‘[ v+2
0

v—1 v+3 a+ip'?
Flv 27 2 Ya—ip?

) J(p) <0 (4.20)
To obtain (E2T) we have used 6.621,(3) of ref.[@ (Here F is the hypergeo-

metric function). Then we have:

(v) [ ©D(p) ( v—1v+3 a—ip”
F(”){(p‘/Z—ia) (V’ 72 >a+ip1/z)

F(p) = (4m) ]

(4.21)

©—7(p)] . v—1 v+3 a+ip'?
(p?+1ia) 20 2 Ta—1ip'?

As a second example we evaluate the Fourier antitransform of [—27mi(p —

u?)] =" where p is a complex number and v = 2n. Using (EET7) we have:

v—2
Moy 7 p 4 1/2 172 _
f(x) = — dp =
0 = fm( T x) dp

X T (1x?) (4.22)

We can test the result (E2ZZ) by transforming it. Taking into account that

for v even jvaz = ewvzf : 2. Thus:
7 o2 T
irt(v—2 2—v _imv
Fio) = B ™50 | g (1”2) {@3(p)leF Ko (—ix'/2917) —
0



O1-3(p)le T Koz (ixVZp‘/Z)} dx (4.23)

Now:

JJZZV(HX‘/Z)’CVZZ(—WWP”Z) dx=c 5250050
0

in(6—v) 2—v p 4

szzv(ux]/z)lezz(ixVZp]/z) dx=e 7 uz . s J(p) <0 (4.24)
0

where we have used 6.576, (3) of ref.[l. Then we have:

1

Flp) = “Imite 1) (4.25)

As a third example we give the Fourier transform of 6(x — a) for all v. Using

(@I we obtain:

_inmv

Fp) = ““—a™s* {@l(p)le 'Ky 2 (—ia' 2p"/2)-

O1-3(p)le T2 (i)} +

v—2

2 .
T Sl (120

2
The reader can verify that the cut of ([Z20) along the negative real axis is

Zero.
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5 The Fourier Transform in Minkowskian Space

For the Minkowskian case we begin with the formula:

207 [ (4 . .
f(ko, k) = ( 7'?,32 J Jf(xo,r)rvaTs(kr)elkoxo dx° dr (5.1)
oo 0

etos” dt dx ds® ds (5.2)

Now:

J eitszsvz;]jvz;z(ks) ds =
0

J' e—itsé eikoso ds® = \/F((t — 10)*% ei<%_%> (54)

We have used 6.631, (4) and 3.462, (3) of ref.@]. Then we obtain for (B2):

With the results (B3),([&3d) we obtain for ([&2):

(k3 —k2)

flx) {eit"e T S g

2 72 i (v— T
f(ké o kZ) — ( 27-5/)12 \/77( e% J
2

o— .3

19



i(k3—k2)

e T ee T 3| dx dt (5.5)

We can evaluate the integral in the variable t:

v—2
K2 [-i(x +10)%(p 4+ 10) /7]
(p+1i0)= 2

OO e k- 1020 —10) (5.0
(p—i0)

o0

i _ip _ v %
Je e att 2 dt =22
0

where p = k3 — k? (Here we have used 3.471,(9) of ref.[@). Thus ([E3)

transforms into:

v— T A im(v— O V%Z
f(p) = 2m)* 7 J f(x) { S E’H—TO;VZ Ky [—i(x +10)"%(p +10)"?] +
p+10) 4
a2 (x —10)*% N2 )12
+e 32 : .O)HIC%[l(x—lo) (p—10)"7] » dx (5.7)
p—w)+
The corresponding inversion formula is then given by:
~ 1 T in(v— + i0 VTJ . . .
2 X+1) 4
in2v) (p—10)"F 4\ 1/2 :))1/2
+e 14 ( .O)LZICv;z [i(x —10)"“(p —10)"“] » dp (5.8)
x —10) 73



Formula (&) is the generalization of Bochner’s formula ([E]) to the Minkowskian
Space.
In this case the extension as ultradistribution of f(p) to the complex

p-plane is immediate:

Hmzwwfjﬂm%mmm”4iiﬁﬁimipm+wwwﬂ—
@[—J(p)]e“‘(i’”%/@ 2 [i(x — O)pr]} dx (5.9
p 4

Here we have taken p =y + i0 and

0V/2 = \/Y+\/Y + 02

+iSgn(o

\/_y ks \ém (5.10)

Now we can define a Lorentz invariant tempered ultradistribution as the
Fourier transform of a Lorentz invariant distribution of exponential type.
Note that a Lorentz invariant tempered ultradistribution is not necessarily
explicitly Lorentz invariant. When f'is a Lorentz invariant distribution of ex-
ponential type, we can use (B3) or to adopt the following treatment: starting

from

J?(X)a\)(x, x%)d*x (5.11)

Jﬁﬁmwmx%&kzmmﬁﬁ

(0.]
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can be deduced the equality:

o0

” f(p)b(p, K (k3 —p) ;2 dp dk® =
” fx)P(x, xo)(x—x(z)):r%3 dx dx° (5.12)
Let g(t) defined as: )
- .
g(t) = 2 J f(p)e Pt dp (5.13)
Then:
0 0
F(p) =0O[J(p)] J g(t)e*t dt — O[-J(p)] J g(t)e™* dt (5.14)
0 —00
or if we use Dirac’s formula
1)
Flp) =5+ J o dt (5.15)

The inverse of the Fourier transform can also be evaluated in the following

way: we define:

GixA) = — (e ™ BN T i 100 2(p + ) 2+
(2m) 7 ) (x +10)7 2
Lo T T h(x—iOJ‘/Z(p—A)‘/Z]} dp (5.16)
(x —10) =
then
fix) = G(x,10™) (5.17)



Examples

As a first example we consider the Fourier transform of the function e“V beg =12

where a is a complex number. The Fourier transform is:

o 2

F(p) = (2n)*T J eh? {G[ﬁ(p)]e :

in(y—2) (x +10) 4
SAlEhe A

K2 [=ilx +10) %012 —

7

. v—=2
@[—z(pne”‘i”W/cvz_zmx—w)‘/zp%} o (6a)

Now:

it (v— 1 v—
e i J e (x +10) 7 Koz [Hil(x +10) /%02 =

r'(v) e's . v—1 v+3 a—ip"?
Vv, 2 ) 2 >a_|_ip1/2 o

I'(v) e’ . v—1 v+3 a+p'?
3 T2 T2 "a—p~

) I(p) >0 (5.19)

e (x iO)VT’Z/cVZ;zﬁ(x—w)‘/Zp‘/Z] —

o
5
Al
<
—

rv) e % v—1 v+3 a+ip'?
3 YW T Ca—ip2)

r'(v) e v—1 v+3 a+p'?
3 T2 T2 Pa_pi

) 3(p) <0 (5.20)
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To obtain (BI7) and (1Y) we have used 6.621, (3) of ref.[]. With these

results we have:

F(V v—1 v+3 a—ip1/2>
y 2

v T(v ~ iny 2 ) at+ip'/2
Flp) = (4m) 2 F) O[(p)le 2 (012 —ia) -

v—1 v+3 atp'/?
F <V> ) T2 ) a1 /2

(p1/2_|_ a)v

v—1 v+3 a+ip!/?
ity F(V) 2 2 )afip1/2

—Oplle (p'2+ia)Y

v—1 v+3 atp'/?
F<V) 2972 Y apl/?

(b2 +a)"

(5.21)

As a second example we evaluate the Fourier transform of the complex mass

Wheeler’s propagator.

U R 12
wy(x) = 2—(271)%x+ T (px ) (5.22)
Then according to (E2H)
i) e
Wilp) =~ [ 7o (ux) [@03(0)) o (ix2p1)
7
5 p

eiﬂ(ifﬂ

or-3(0) /chz(ix‘/ZpVZ)] ax (52
pT

Taking into account that (See 6.576, (3), ref.[d):

7 v_2
[ e e 20 (i 2012 = 25 2 () > 0
0
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N y=2
nyuwﬂwgdmww@dx=mﬁkmﬁ“p4zmm<o (5.24)
i pP—uH
we obtain:
i Sgn[J(p)]
et L 2
Walp) = 5200 (5.25)

As a third example we evaluate the transform of §(x3 — 12). From (EIZ) we

obtain:

”mww&%wﬁﬁwwﬂmﬁwmww”m°mw

According to ([&]) we can write:

$x,x%) =27'2m) " 03— 01T JJ b, k)T, [0 —x) YA (kG — p) ] x

v=3 .
(k2 —p)," e dk° dp (5.27)

and consequently:

(0,x) =27 (2m) 7 U P(py k) Toos I3 (kG — ) /2] %

v=3 .
(k2 —p) " e™ ak® dp (5.28)
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Then

- v-3 -
(27" j (0,03 dx® = 271 (27) 7" j B(p, KO)(k2—p) 7 J KO
Toea (X0 (k3 — p) Vet dxo} dk° dp (5.29)

But

o0

y-3 1/27 ; 0
J X°| 2 jvT%”XO’]/Z(ké_p)ju/]elkox dx® =
—0Q

2_ —2 im(v— —v im(2—v —v
: r(V )[e T p+10)7 e T )(p—iO)ZT] (5.30)

(See 6.623, (1),refH])

from which we deduce that

AT [v=2 e e T
f(p) = 4m) F( ) — + — (5.31)
2 2 (p+1i0)2"  (p—10)"2

Using then [([3), EI)] or (BId), the corresponding ultradistribution is:

2—v

Flp) =2 '(4m) 7T (ng) SgnlEN(—p) T (532)

We proceed now to the calculation of the convolution of two spherically

symmetric tempered ultradistributions.
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6 The Convolution in Euclidean Space

The expression for the convolution of two spherically symmetric functions

was deduced in ref.[3 (h(k) = (f x g)(k)):

2T
h(k) = —————— || f(k1)g(ks) x
9= s [[ rterngtie)
0
Vs
[4k3Kk3 — (k* — k§ —k3)?.2 Kkik, dkq dk; (6.1)

and with the change of variables p = k?,p7 = k%, p, = k3 takes the form:

22—v =1
o) = oy [[to09te2)
2P
2 Y3
[4p1p2— (p— p1 — p2)7] % dpi dp: (6.2)
In particular when v =4 is:
h(p) = 2 f(p1)g(p2)[4p1p2 — (p — p1— p2)°15 dp1 dp2 (6.3)
0

h(p) can be extended to complex plane as ultradistribution thus generalizing
the procedure of ref.[I3. According to [LIZ) we can write:

A 7'(2

F030x) = e PPFENG(palp} 20} i (x 01 )7 (0} ) dpr dpa (6.

N
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and Fourier transforming:

N —7t?

FHXg)} (0) =

Zr)p 2 § %F(leG(pz)plﬂp;ﬁ Jx—‘% (2012 71 (x" 20y 2
0

N

(O[3 ()] (—ix"?p'?) — O[-3(p)IK1(ix'?p"*)] dx} dpr dp2  (6.5)
The x-integration can be performed with the result:

J Tix! 20y 2 (6 20y P (—ix 20 B dx =
0

—i(pp1p2) " [p —p1—p2—V(p—p1—p2)2—4p1p2| T(p) >0 (6.6)

(X201 1) 1 (x1 20y ) K (ix1/2p1/?) dx =

o——.3

i(pp1p2) [P —p1—p2—V(p—p1—p2)2—4p1p2| TJ(p)<0 (6.7

where we have used 6.578,2 of [ and (7) pag. 238 of [[@. Thus

H(p) = & 4 F(p1)Glo2) x
wls
[p—m —p2—/(p—p1—p2)2—4p1p2| dp1 dp2 (6.8)
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[3(p) > [3(p1)l + [3(p2)]
In ref.B] we have defined and shown the existence of the convolution product
between to arbitrary one dimensional tempered ultradistributions. Analo-

gously for spherically symmetric ultradistributions we now define:

im
Halp) = — ¢ F(p1)G(p2)pipl x
4p
nn
[p—m —p2—+/(p—p1—p2)*—4pip2| dp; dp; (6.9)

Let B be a vertical band contained in the complex A-plane 3. Integral (G
is an analytic function of A defined in the domain 3. Moreover, it is bounded
by a power of |p|. Then, according to the method of ref.B/], Hy can be
analytically continued to other parts of . In particular near the origin we

have the Laurent expansion:

Ha(p) = > HM(p)Am (6.10)

We now define the convolution product as the A-independent term of (GI0):

H(p) = H'%(p) (6.11)

The proof that H(p) is a Tempered Ultradistribution is similar to the one
given in ref.[f for the one-dimensional case. The Fourier antitransform of
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([EID) defines the product of two distributions of exponential type. Let Ay (x)

be the Fourier antitransform of Hy(p):

Ax(x) = i AT (x)A™
If we define:
falx) = F {p"F(p)}
ga(x) = F {p*G(p)}
then

Aa(x) = (271)*FA(x)Ga(x)

and taking into account the Laurent developments of f and §:

falx) = i (o)A

n=—ms

we can write:

i ﬂ(n)(xp\n: (27_()4 i ( Zg ]ﬁk)(x)g\(n—k)(x)> AT
k=—my¢

n—=——m n—m
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(6.13)

(6.14)

(6.15)

(6.16)



(m =m¢+my)

and as a consequence:

Mg
A9 = Y 909 () (6.17)

k:—mf

We will give now some examples of the use of ([EII) and ([EID).

Examples

As a first example we evaluate the convolution of two Dirac’s delta of complex

mass:

1
(8001 =355

According to (Ed),([@Id),[ETI) we have:

im
5p— i) *8(p—13) = 72 {p—u?—u%—\/(p—u%—u%)z—%%u%

As an ultradistribution only the term containing the square root is different

from zero (cf.@Id)). We then have:

i
d(p — i) * 8(p — pu3) =i (p — uf — ud)2 —4piu3 (6.18)

When py = py = m (m real) we obtain:
5(p —m2) % 5(p — m?) :—4;—?/2\/;)—41112 (6.19)
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As a second example we evaluate the convolution of two massless Feynman’s

propagators. We have:

2m

%) $§ (—LpH 1n(—p)) 0127 (x"2p1/2) dp —
r

22T(1+A) 22T(1+A) 5,

(1 _MX —e™ sin(70\)477tzr(] — 7\)X ' im+
2In(2) + (1 4+A) + (1T —A) —In(x)] (6.20)

where P (z) =T (2)/T'(z)
From (E20) we have

falx) = (210) 2% + Sa(x) (6.21)
with

;\i_I)I(l) Salx) =0

Then

2x) = 2m) % 2 + Ta(x) (6.22)
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with

}\1_% Ta(x) =0
As a consequence
2(x) = (2m) 2 (6.23)

Taking into account that
F{x?} = —m*1n(p)
we obtain

1.1 —7%1In(p) (6.24)
p P

7 The Convolution in Minkowskian space

In this section we deduce the formula for the convolution of two Lorentz
invariant functions and then we consider the central topic of this paper, i.e:

the convolution of two Lorentz invariant tempered ultradistributions.

33



7.1 The generalization of Dimensional Regularization
in Configuration Space to the Minkowskian Space
The convolution of two Lorentz invariant functions is given by:
[f+ gH(p2) = T T fl(pu — k) Fg(k2) d¥k (7.1)
and can be re-written as o
T e T fn1)gMm2)8m1 — (pu— k)82 — k) dny dna d¥k (7.2)

We select the axis of coordinates in a way that the spatial component of p,

P coincides with the first spatial coordinate (p; = p§ —p7). Then we have:

' JTJ' f(mi)g 7( M2) [(Pﬁ_m + M2+ 2p1ki)? _ k%—ﬂz] VZ(;“ dn> dky  (7.3)
2lpol J. (T) 4p3
Using:
N (VTZ)Z;’:”(%] J (t—i0)°T et~ dt (7.4)
with -

X = —4p2k3 +dpiki(p2 — i 1) + (PR —m M) —dpdn,  (7.5)

we can evaluate the integral in the variable k; using 2.462(1) of ref.[d. The

result is:

itp%(pﬁfnﬁnz)

V2nli(8tp2 —i0)] e v (7.6)
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We can now perform the t integration:

r(2) e T bl ena - ndny
[ = lim 2

lim 4 (t—ie)kTv(tpu—ie)’fe Pi dt

(7.7)
Formula () is defined for v = 2n. In this case ([7) is proportional to the

derivative of the same order of the Dirac’s formula for

itp%[(pﬁfm +nz)274pfmzl

(tp2 —i0) Ze v

with z = 1ie. Thus we have

(g e T :

~ 5 . itvo[(pﬁfmznz)zf%fmz]
I= (p5,—10)72t,% e P +
+
4/m z
—00
5 R — itp%[(pﬁfnﬁznz)zf%fmz]
(p,+10) 72t e P dt (7.8)

The result of ([(J)is immediate (is a Fourier transform). We consider first

the case v # 2n + 1:

e 2 v—2 3—v v_3
= 4ﬁr< 2 )r( 2 )|p°| )
v—3
2 2 2 2
-1 + —4
(pﬁ—iO)*% (P—m nzz) P2 o
Pu
v—3
2 2 2 2
—m + —4
+eltv—2) (pﬁ+10)*7 [(p“ m ;22) Pun2 O] (7.9)
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With this result we have for (Z3])

h(p) = T2 e (3;V) ”f(m)g(pz) X

2\/—1
> 4 VE:’)
{(p—iO)% {(p_ P1— ppZ) —4P1P2 —|—i0} L2y
2 4 Vz;3

(p +1i0)"2 {(p il ppZ) — P2 —io} } doy dp» (7.10)
where p:pﬁ and h =fx*g.
When v =4 we have

us 1
h(p) = T ”f(pﬂg(pz) [(p—p1— p2)? —4p1p2] 2 dp1 dp2 (7.11)

When v =2n + 1 we obtain:

i (0— o1~ p2—dpupa]™ [,
h(p)z—mw(png(pz){p b1 =2 "“’2} {(p—10)} x

—00

. . . 2_
[xp(n)Jr%THn{(p & ppZ) 4p1p2+ioH—(p+iO)—§

{_(p —p1—p2)° —4pip2

; +10” } dpr dp,  (7.12)

{w(n) + %T +1In

As an example we will evaluate the convolution of §(p —m?) with §(p —m3)

for v # 2n 4+ 1. In this case we have:

Vo3 2 V2 fan2m2 153
h(p):ﬂ z ) {(p—iO)% {(P mj —mj) 4m1mz+w} ’ i

2'\/—] p
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v—3
. _ m2_m?2 2_4 2.2 7
e 2(p 1 i0)+ | L™ mpz) i —io} } (7.13)
When v =4, m; =0, m, = m we obtain:
5(p) #8(p —m?) = 5Jp —m’ (7.14)

If we use the dimension v as a regularizing parameter, we can define the

product of two tempered distributions as

Rix,v) = (27)"F(x, v)g(x, v) = (2m)"F H{f(p, v)IF Hg(p, v)} =

FUf(p,v) * g(p,v)} = F '{h(p,v)} (7.15)

where F 1 was defined in section 5 by means of (E8) and where (ZI) should

be re-interpreted as:

v—3
o - 2 2 i
{(p_w)_; {(p P1—P2)" —4p1p2 +iO] L einlv-2)
P
v—3
! o _ 2_4 2
(p +1i0)"2 {(p il ppZ) P1p2 —io} }dm do; (7.16)
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The same procedure is valid when f(x,v) and g(x,v) are distributions of

exponential type. Here f(p,v) and g(p,v) are defined by:

1T (V)
1 T t,v
G(p>V) = 2—7'(1 gt(—, p) dt

where F and G are the tempered ultradistributions given by
F(p,\/) :]:{f\(x,v)} G(p,V) Z}—{ﬁ(X)V)}

This procedure generalize to the Minkowskian space the dimensional regu-
larization in configuration space defined in ref.[[d for the Euclidean space.
As an example of the use of this method we give the evaluation of the con-

volution product of two complex mass Wheeler’s propagators. From (22

and () we have:

v—2

7 (Hapta) 2 J 4y
0

Fiwy, (5, vIwy, (%, v)} = v | X 7 T (mX)Tas (2x) X

20 2n)F

irt(v im(2

472)](:%2(—17(()1/2)—6[—3(())]6 47V)K%z(ixp1/2)}dx (7.17)

{en(p)e

To evaluate ([ZId) we use

J ijv(H1X)JpTv(uzx)le%z(xz) dx =
0
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1 r ﬂ ZFTV v—3
N 2(“226) ()2 [(224' u? + H§)2—4uﬁi§] z (7.18)
112

and to deduce (LIY) we have used:

1 u T v ZZXZ
st =1 ()7 e a

0
(See 8.432(6) of ref.[@). Thus from ([CIX) we have:

2 o - i (v—
Fiwy, (6 vIwy, (X, v)} = (27312 r (3 2V> e x
2

v—3

o7 Sgnl3(p)] [(p — uf —n3)? —4ufn3] 2 (7.19)

and consequently:

(ZTE)VZL] 3—v in(v—2)
{Wm(pvv)*wuz(p)v)}: 2% r 7 e 2 X

v—3

" Sgnl3(p)] [(p — i — pd)? — 4pdu3] 2 (7.20)

7.2 The Convolution of two Lorentz Invariant Tem-
pered Ultradistributions

To obtain a expression for the convolution of two tempered ultradistributions
we consider the formula ([ZITl). As a first step we extend h(p) as tempered
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ultradistribution. For this pourpose we consider the function:

1

p, p1,P2) = [(p — p1 — p2)* —4pip2) 2 (7.21)

The Fourier antitransform of ([CZI) is:

N e ter+p2)x o o
L(x, p1,02) = ™ {(p1pz+10)7/\/1 [2(P1Pz+10)7|x|] +
O(—p1p2)vV—p1021(2iv/—=p1p2 X)} (7.22)

where A is the Newman function. If we consider now the distribution:

1
m(p, p1,02) = p ' [(p— p1— p2)> —4p1p2)* (7.23)

the corresponding tempered ultradistribution is:

00 1

1 t [(t—p1— p2)? —4p1p2] 2
M(p, p1,p2) = 5 J | r— E dt (7.24)

which can also be written as:
1
Mip, p1, p2) = {FD}p,p1,02) —
1 ) .

] [0, p1, p2) + F{T}H—i0, p1, Pz)}} (7.25)

Thus the extension to the complex plane of h(p), N(p) is:

N(p) =3 || flenlglozMip, o1, 2] dor dos (7.20)

—00
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To obtain M in an explicit way we use the following Laplace transforms:

£{t M)} () =2 V5T alhn (@)

25 (1n(2) +1 ) (7.27)
a7t
L{t " Tilat)} (s) = % (7.28)

(see @ pags. 310 1nd 313). Then we have for the Fourier transforms:

2_ 2 _ 3
F It Witalt)} (o) = {@mpn [mln (@ w) '

ip (In(2) + 1 =)l —©[=3(p)] [\/fpzln (Jffzﬂp) -

ip(In(2) +1—v)1} (7.29)

F LT (alth} (p) = O(p) LLE—P— TP

a

2__ A2 s
OL-a(p) (7.30)

With these results we obtain:

M(p) = 0O[3(p)] {®(p1pz)\/4p1pz— (p—p1—p2)?% %
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| [\/40192— (p—p1—p2)?—ilp—p1—p2)
n +

2,/P1P2
O(—p1p2) {%ﬂ [\/49192 —(p—p1—p2)2—ilp—p1— pz)] -

V4pip2—(p—p1 —p2)* —ilp—ps —pz)] }}_

2i\/—p1p2

O[-7J(p)] {@(0192)\/40192 —(p—p1—p2)? %

V4102 — (p— p1— p2)2In [

VApip2— (p—p1—p2)2 +ilp— p1 — p2)
2,/p1p2

O(—p1p2) {%ﬂ [\/49192— (p—p1—p2)2+ilp—p1— pz)] -

VApip2—(p—p1— p2)? +ilp — o —pz)] }}_

In +

V4102 — (p— p1— p2)2In [

2i\/—p1p2
% {@(9102)(01 —p2)In (E) +O(—p1p2)(p1 — p2)In (—E) +
P2 P2

O(—p1)O(p2) [imt(p1 — p2)Sgn(p1 + p2) + 2imP20(p1 + p2) + 2imP1O(—p1 — p2)] +

O(p1)O(—p2) [—im(p1 — p2)Sgn(p1 + p2) + 2imp1O(p1 + p2) +

2imp,0(—p1 — p2)1} (7.31)

To obtain an expression for the convolution of two ultradistribution we use

for the Heaviside function the identity:

O(xy) = B(x)B(y) + B(—x)O(—y) (7.32)
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Taking into account that

1
O(p) = lim 5— 5 [In(—p 4+ A) —In(—p — A)] (7.33)

a conceptually simple by rather lengthy expression is obtained for Lorentz

invariant tempered ultradistributions:

Ha(p, A) = ”F(pne(pz)pmz{@ 3(0)] {In(—py + A) — In(—py — A)]x

[P

8m2p

[In(—ps 4+ A) —In(—p, — A)IV/4(p1 + A)(p2+ A) — (p — p1 — p2 — 2A)2x

\/4P1+/\)(pz+/\) (p—p1—p2—2A)2—i(p—p1—p2—2A) N
2\/(p1 + A)(p2+ A)

[In(p1 4+ A) —In(p1 — A)llln(p2 + A) — In(p, — A)lx

VA1 — A)(p2—A) — (p— p1— p2 + 2A)2x

1 [\/4(91 —A)(p2—A)—(p—p1—p2+2A)2—1i(p—p1— p2+2A)
n +
2/ (p1—A)(p2—A)

(n(p1 + A) —In(p1 — A)JlIn(—p2 + A) —In(—p2 — A)I x

{%ﬂ [\/4(91 +A)(p2—A)—(p—p1—p2)?—ilp—p1— pz)] +

=

VA(p1 +A)(p2— A) — (p— p1 — p2)2x

\/4p1+/\)(92—/\) (p—p1—p2)2—1ilp—p1—p2)
2i/—(p1 + A)(p2 — A)

In(—p1 +A) —In(—p1 — A)]lIn(p, + A) — In(p, — A)x
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{%ﬂ [\/4(91 —A)(p2+A)—(p—p1—p2)2—ilp—p1— pz)] +

VA(p1 —A)(p2+ A) — (p— p1 — p2)2x

In [\/4(91—/\) P2+ A)— (P—P1—Pz) —i(p—m—pz)”}_

21\/ )(p2+ A)
O-J(p){lln(—p1 + A) —In(—p1 — A)J[In(—p2 + A) —In(—p2 — A)] x

VA1 —A)(p2—A) — (p— p1 — p2 + 2A)2x

ln[\/4(91—/\)(pz—/\)—(P—pl—pz+2/\)2—i(p—pl—pz+2/\) .
2/(p1 = A)(p2— A)

[In(p1 4+ A) —In(p1 — A)llln(p2 + A) — In(p, — A)Ix

V41 +A)(p2+A) — (p— p1— p2 — 2A)2x

\/4P1+/\)(pz+/\) (p—p1—p2—2A)2—i(p—p1—p2—2A) N
2/ (p1+A)(p2+A)

[In(p1 +A) —In(ps — A)llIn(—p2 + A) — In(—p2 — A)]x

{%ﬂ [\/4(91 —A)(p2+A)—(p—p1—p2)2—ilp—p1— pz)] +

=

{%ﬂ [\/4(91 +A)(p2—A)—(p—p1—p2)?—ilp—p1— pz)] +

VA(p1 —A)(p2+ A) — (p— p1— p2)2x

In VA1 —A)(p2+A) — (p—m—pz) —i(p—p1—p2)
2i/—( A)(p2+A)

In(—p1 +A) —In(—p1 — A)]lIn(p, + A) —In(p, — A)Ix

VA(p1 + A)(p2— A) — (p— p1 — p2)2x
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21\/ (p1 +A)(p2—A)
{In(—p1 +A) — In(—p2 +A) —In(—p2 — A)] x

1+A o=\ ]
(p1—p2) | ( p2+/\> (—1 pz—/\>_ +
[(In(p1 +A) —1In(p; — A)llIn(ps + A) —In(p, — A)]
[ . A= CA+01)]
(p1—p2) _hl —i A_p2>+ln<1 /\+p2>_+
(n(p1 + A) —In(p1 — A)JlIn(—p2 + A) —In(—p2 — A)I x
A+ A —ps
{mrﬂmlm( A_m>+m( A+m)

(p]%pﬂ In(—p1 —p2+A)—In(—p1 —p2—A) —

" [\/4 p1+A)(p2—A) — (9—91—02)2—1(0—01—92)]}}_ix
2

_|_

In(p1 +p2+A)+In(pr +p2—A)+p2In(—p1 —p2+ A) —
In(—p1 —p2—A)] +p1[In(py + p2 + A) —In(p1 + p2 — A)J}
In(—p1 +A) —In(—p; — A)llIn(p2 + A) — In(p — A)]x

A —p; A+ pi
fon=en i (252w (f222)

(p1—p2)
2

_|_

(n(p1 4+ p2+A) —In(p1 +p2—A) —

In(—p1 —p2+A)+In(—p1 —p2—A)l+p1 In(—p1 —p2 + A) —

In(—p1 —p2—A)]+ p2[In(p1 + p2+ A) —In(p1 + p2 — A)I}}} dpr dpo  (7.34)

45



Which defines an ultradistribution on the variables p and A for

[3(p)[ > T(A) > [3(p1)l + [I(p2)]

Let B be a vertical band contained in the complex A-plane 3. Integral ([Z34)
is an analytic function of A defined in the domain 3. Moreover, it is bounded
by a power of |pAl. Then, according to the method of ref. B, Ha(p, A) can

be analytically continued to other parts of . Thus we define

H(p) = H'%(p,10") (7.35)

Ha(p,i0%) = ZH (p, 10F)A™ (7.36)

As in the other cases we define now

{F* G}(p) = H(p) (7.37)

as the convolution of two Lorentz invariant tempered ultradistributions. The
proof that H(p) is a Tempered Ultradistribution is similar to the one given

in ref.[Bf] for the one-dimensional case. Starting with ([Z3d]) we can write:

(e¢]

Hﬂpﬂoﬂ:=—%iUfﬂpﬂgﬂpﬂNﬂppnpﬂdp1Mn (7.38)

—00

where f(p) and ga(p) are defined by Dirac’s formula:

L[ AW L[ ot
A _ A .OAA _
R e O e F (£0)
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Let Ax(x) be the Fourier antitransform of Hy(p,10"). The according with
1) to (EID) we can express H®(x) as a function of de Laurent develop-
ments of fj(x) and ga(x)

Examples

As an example of the use of ([Z30) we will evaluate the convolution product of
§(p) with 8(p—p?) with u = pr+1ip; a complex number such that: pg > u?,

pgpr > 0. Thus from ([C34)) we obtain:

Holp, A) = —irlin( % +A)~In(—* )] {M lln (p_—u> +

8m2p A(p2+ A)
1 u?—p
n
—A(pu? +A)

—ip?) A A u?
(0 (o) n ()] -5} o

Simplifying terms (CZ7) turns into:

n?—p
l6mp

} —inln(—p? + A) —In(—p? +A)] x

)
Ho(p, A) = —irnlal—1a2 + A) ~tn(—y4 ) { 622D o - )+
.2
In (u*—p)] + 8;“2‘) [In(p? + A) 4+ In(p? — A)] } (7.41)

Now, if
Fi(i, A) = In(—p? + A) — In(—p? — A)
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then
Fi(p,i07) =2im ; wg > ui 5 prer >0
And, if
Fa(i, A) = In(p? + A) —In(p? — A)

then

Fa(u, i0M) =0 3 pg>uf; g >0
Using these results we obtain:
2

)= Uo— ) in

H
(p 7o

2p

[In(p — p?) + In(p* — p)] + =— In(p?)

(7.42)

As an example of the use of [EID) we will evaluate the convolution product

of two Dirac’s delta: 8(p) * 6(p). In this case we have:

A1
P
Falp) = _E

and as a consequence:

_sin(mA) 5

falp) = — P

The Fourier antitransform of ([CZ) is:

AN

22T +N)
43T(1 —A)

which can be written as:

£ ) - 222 T(1 4 A) [cos(mA) — 1
A 43T (1 = A) A
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falx) = =5 ———= [x M1 — cos(mA)x ]

§(x) +x; ' —cos(mA)x_" +

(7.43)

(7.44)

(7.45)



ST — cos(mA) S (7.46)

Thus we have:

8%(x) + xf + cos?(MA)x % +

204 2% T2(14A) { (cos(mA) — 1)?
A

~16meT2(1 —A) A2
[SfH — COS(H}\)S:)\_1] ? + Z[Xj — cos(mA)x~1] [Sf‘_] — cos(mA\)SM 1+
) cos(mA) — 1 - P A
ff)(x) (X" — cos(mA)x_" + ST — cos(mA)STAT] b (7.47)

From ([CZ7) we obtain:

A 4
N Y -2
;\1_r)r(1)f)\(x) = (27T)6X (7.48)
and taking into account that:
3
F{x 2} = 7Sgn(p) (7.49)
we obtain
U
8(p) + 8(p) = 5Sgn(p) (7.50)
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8 Discussion

In a earlier paper B] we have shown the existence of the convolution of
two one-dimensional tempered ultradistributions. In other paper ref.[d] we
have extended these procedure to n-dimensional space. In four-dimensional
space we have given an expression for the convolution of two tempered ul-
tradistributions even in the variables k® and p. In this paper we obtain a
expression for the convolution of two Lorentz invariant tempered ultradistri-
butions in both, Euclidean and Minkowskian space. In an intermediate step
of deduction we obtain the generalization to the Minkowskian space of the
dimensional regularization in configuration space (ref.[I3])

When we use the perturbative development in Quantum Field Theory,
we have to deal with products of distributions in configuration space, or
else, with convolutions in the Fourier transformed p-space. Unfortunately,
products or convolutions ( of distributions ) are in general ill-defined quanti-
ties. However, in physical applications one introduces some “regularization”
scheme, which allows us to give sense to divergent integrals. Among these
procedures we would like to mention the dimensional regularization method
(ref. [[& M4 ). Essentially, the method consists in the separation of the

volume element ( dYp ) into an angular factor ( dQ ) and a radial factor (
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p¥~'dp ). First the angular integration is carried out and then the number
of dimensions v is taken as a free parameter. It can be adjusted to give a
convergent integral, which is an analytic function of v.

Our formula (7.34) is similar to the expression one obtains with dimen-
sional regularization. However, the parameter A is completely independents
of any dimensional interpretation.

All ultradistributions provide integrands ( in (7.34) ) that are analytic
functions along the integration path. The parameter A permits us to control
the possible tempered asymptotic behavior ( cf. eq. (3.9) ). The existence
of a region of analyticity in A, and a subsequent continuation to the point of
interest ( ref. B ), defines the convolution product.

The properties described below show that tempered ultradistributions
provide an appropriate framework for applications to physics. Furthermore,
they can “absorb” arbitrary pseudo-polynomials, thanks to eq. (3.10). A
property that is interesting for renormalization theory. For this reason and
also for the benefit of the reader we began this paper with a summary of the
main characteristics of n-dimensional tempered ultradistributions and their
Fourier transformed distributions of the exponential type.

As a final remark we would like to point out that our formula for convo-

o1



lutions is a definition and not a regularization method.
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