
Physics of Atomic Nuclei, Vol. 66, No. 3, 2003, pp. 438–443. From Yadernaya Fizika, Vol. 66, No. 3, 2003, pp. 466–471.
Original English Text Copyright c© 2003 by Bes, Civitarese.

DOUBLE BETA DECAY
Symmetry Violations in Nuclear Hamiltonians and Their Consequences
for Electroweak Decays*

D. R. Bes and O. Civitarese1)

Departamento de Fı́sica, CNEA, and Departamento de Fı́sica, Universidad Favaloro, Argentina
Received February 13, 2002

Abstract—We discuss the results of the treatment of nuclear Hamiltonians in terms of collective and
intrinsic variables. The BRST method is adapted to identify spurious and physical sectors of the wave
functions and operators. Counterterms are added to the Hamiltonian to enforce the symmetries broken by
the single-particle field and/or by the residual two-body interactions. We focus on the study of Fermi and
Gamow–Teller transitions, with reference to the nuclear double-beta-decay processes, and on the study
of vector operators (λπ = 1−), with reference to (µ, e−) conversion processes. We address the following
aspects of the problem: (a) Isospin symmetry and the calculation of 0+ and 1+ states; sensitivity of the
Fermi and Gamow–Teller response in double-beta-decay processes; (b) Restoration of the translational
and Galilean invariance of the nuclear Hamiltonians and the calculation of Iπ = 1− states; sensitivity of the
nuclear response to the spurious center-of-mass motion and µ-electron lepton-flavor-violation processes.
c© 2003 MAIK “Nauka/Interperiodica”.
1. ISOSPIN SYMMETRY AND THE PAIRING
HAMILTONIAN

In most cases, the short-range part of the two-
body interaction in nuclei is described in terms of
monopole pairing forces. From first principles, one
may expect that both T = 0 and T = 1 channels
of the interaction should be present [1–3]. The ex-
perimental evidence, however, favors the isovector
(T = 1) pairing, and it is less conclusive about the ex-
istence of T = 0 (isoscalar) pairing. At the same time,
the conventional treatment of the nuclear pairing
force implies that the interaction is operative among
nucleons with the same charge, and occasionally
the interaction between protons and neutrons is also
considered. In general, we may say that the pairing
channels of the nuclear two-body interaction are not
treated in a fully symmetric way. Another source of
symmetry breaking is, naturally, the adoption of the
empirical single-particle basis. Clearly, the consider-
ation of both sources of symmetry breaking is of some
importance, particularly, in dealing with the calcula-
tion of observables that are isospin-dependent. Let
us start with the analysis of the pairing force problem
with reference to isospin-dependent excitations and
transitions in nuclei.

The separable pairing Hamiltonian is written as

H = Hsp +Hpair
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with

Hsp = εvjτvj ,

Hpair = −gpS+
p Sp − gnS+

n Sn − 1
2
g⊥S

+
⊥S⊥,

S+
v = c+vjmc

+
vjm̄ (with v = p, n),

S+
⊥ = c+pjmc

+
njm̄ + c+njmc

+
pjm̄

(with summation over repeated indices). The Hamil-
tonian allows for differences between proton and neu-
tron single-particle energies and pairing strengths,
and for an (arbitrary) strength of the neutron–proton
isovector pairing component. As a consequence of
the presence of the isovector and isoquadrupole terms
in this Hamiltonian, it does not in general conserve
isospin. Therefore, we are faced with the problem of
discriminating between unphysical violations of the
symmetries introduced by the formalism (through the
use of the basic set of states determined by the mean
field approximation) and violations produced by the
lack of invariance of the effective nuclear Hamilto-
nian. After transforming to collective and intrinsic
variables, this Hamiltonian reads

H = H0 +H1 +H2,

where we define its different terms as

H0 = εajτaj − g0
(
S+

p Sp + S+
n Sn +

1
2
S+
⊥S⊥

)
,

H1 = ε0jD
1
0στσj − g1D1

00(S
+
p Sp − S+

n Sn)
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The coupling constants entering into this expression
are defined by

g0 =
1
3
(gp + gn + g⊥), g1 =

1
2
(gp − gn),

g2 =
1
6
(gp + gn − 2g⊥),

εaj = εpj + εnj, ε0j = εpj − εnj ,

τaj =
1
2
(τpj + τnj), τ0j =

1
2
(τpj − τnj).

1.1. Definition of the Intrinsic Frame

We choose Im〈Sp〉 = Im〈Sn〉 = 〈S⊥〉 = 0. This
choice leads to the usual Bogolyubov–Valatin trans-
formation between identical particles. This selection
of a gauge constitutes a violation of isospin and
gauge symmetries occuring in the intrinsic frame.
The np pairing is incorporated through the collective
rotations in the isospace and the gauge space [3].
The two remaining expectation values 〈Sp〉 and 〈Sn〉
are real and considered to be the order parameters,
i.e., the large quantities of the system. If the isospin
T is also large, the D functions may be treated
within a boson description through generalization of
the Holstein–Primakoff algebra (Marshalek’s expan-
sion).

1.2. Boson Image of the Hamiltonian

The leading orders of the Hamiltonian are simpli-
fied to

H⊥ = ω⊥ιΓ+
⊥ιΓ⊥ι + ωξξ

+ξ

− g2
3
T
〈Sp〉〈Sn〉(β4ξ+2 + β−4ξ2)

−
(
β2ξ+Γ⊥ι + h.c.

)
φaι −

(
β2ξ+Γ+

⊥ι + h.c.
)
φbι

− 1
2I⊥

[
τ

(20)
1 , τ

(20)

1̄

]
+
.

In the present treatment, the proton–neutron inter-
action is replaced by the isospin-independent nu-
clear interaction which gives rise to the well-behaved
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bosons Γ+
⊥ι, creating the so-called antianalog states.

The operator ξ+ acts in the collective space by in-
creasing the value ofm = T −M (it excites the band
of analog states havingM = T for the ground state).
Therefore, the “badly behaved” operator τ1 is replaced
by the “well-behaved” operator ξ+. The excitation
frequency ωξ includes the single-particle Coulomb
displacements

ωξ = − 1
T
ε0j〈τ0j〉 +

3g2 + g1
T

〈Sp〉2 +
3g2 − g1
T

〈Sn〉2.
(1)

The spectrum of states associated with the neu-
tron–proton sector is labeled by the quantum num-
bers (A,T,M, (nξ , n⊥ι, ndι)). It displays a signature

(−1)
∑

ι(n⊥ι+ndι)+T− 1
2
A = 1. (2)

The operator β2 increases the value of the isospin
by one unit (β2|T 〉 = |T + 1〉). Therefore, the product
β2ξ+ conserves the projection M in the laboratory
frame. The operator β4ξ+2 mixes the ground state of
a nucleus having isospin T − 2 and projection T − 2
with the double IAS with spin T . It is proportional to
the isoquadrupole strength g2. The operator β2ξ+Γ+

⊥ι

creates the antianalog states Γ+
⊥ι|0〉 in the neighbor-

ing odd–odd nucleus with isospin T − 1, laboratory
projection M = T − 1, simultaneously with the IAS
carrying isospin T,M = T − 1. There are also transi-
tions in which the antianalog state is destroyed, while
the analog is created.

1.3. Transition Operators

The β− transition operators, being isovectors,
should also be transformed to the intrinsic frame.
For the Fermi and Gamow–Teller (GT) operators,
we obtain

β(F−) = −
√

2τ1 → −
√

2Tξ+, (3)

β(GT−)
q = σq1 ≡ 1√

3
〈j1||σ||j2〉[c+pj1

cnj2]
1
q (4)

→ β−2
(
qfιΓ+

dιq + (−1)qbιΓdι(−q)

)
.

We note that for Fermi transitions the operator τ1
is again replaced by ξ+. Therefore, there are only
Fermi beta-decay processes within the isobaric ana-
log band. However, the isospin mixing admixtures
make possible the transition between the initial state
(ATT ) and the final state (A(T − 2)(T − 2)). It
may proceed through either the intermediate IAS
(AT (T − 1)(1, 0, 0)) or through the states (A(T −
1)(T − 1)(0, 1, 0)). The reduced matrix elements of
the spin operator are included in the GT opera-
tor. In that expression, there appears the isospin-
decreasing operator β−2, which allows occurrence of
3



440 BES, CIVITARESE
the double-beta-decay process without recourse to
the isospin nonconserving terms of the Hamiltonian.
The coefficients qfι, qbι are obtainable within the RPA
calculation of Iπ = 1+ excitations.

1.4. Mixing between Components

Themixing between different components for each
of the states belonging to the above-discussed level
scheme may be calculated by direct diagonalization.
As an example, we discuss the perturbative approach.
The mixing is therefore expressed as

δ|AT (T − 1)(nξ = 1)〉
= −aι|A(T − 1)(T − 1)(n⊥ι = 1)〉,

δ|A(T − 2)(T − 2)〉
= bι|A(T − 1)(T − 2)(nξ = 1)(n⊥ι = 1)〉
PH
+ c|AT (T − 2)(nξ = 2)〉,
where

aι =
φaι

ω⊥ι − 2κT − ωξ
,

bι = − φbι

2κ(T − 1) + ωξ + ω⊥ι
,

c =
3g2〈Sn〉〈Sp〉√

2T (κ(2T − 1) + ωξ)
.

1.5. Transition Matrix Elements

With the wave functions of the previous subsec-
tion, we have calculated the matrix elements for al-
lowed Fermi transitions from the initial (A,T,M =
T ) state. The results are
M1ξ = 〈AT (T − 1)(nξ = 1)|βl(F−)|ATT 〉 = −
√

2T ,

M1⊥ι = 〈AT (T − 1)(n⊥ι = 1)|βl(F−)|ATT 〉 = −
√

2Taι,

M2ξ = 〈A(T − 2)(T − 2)|βl(F−)|AT (T − 1)(nξ = 1)〉 = −
√

2T (c− aιbι),

M2⊥ι = 〈A(T − 2)(T − 2)|βl(F−)|AT (T − 1)(n⊥ι = 1)〉 = −
√

2Tbι.
The matrix element corresponding to double Fermi
transitions is

M
(F)
2ν =

M1ξM2ξ

∆ + E(IAS)
+
M1⊥ιM2⊥ι

∆ + ω⊥ι
.

In the same way, we can write the expression for the
double Gamow–Teller matrix element

M1�jq = σfj , M2�jq = σbj,

M
(GT)
2ν =

(−1)qM1�ιqM2�ι(−q)

∆ + ω�ι
=

3σfισbι

∆ + ω�ι
.

To summarize, we have developed a collective treat-
ment for motion in the isospace and the gauge space.
The system is described within a moving frame of ref-
erence by using both collective variables (determining
the orientation of the moving frame) and intrinsic
variables (describing the motion of the particles with
respect to the moving frame) [1]. Two difficulties have
to be overcome: (i) a zero-frequency RPA mode and
subsequent infrared problems should be expected if
the Hamiltonian is an isoscalar, and (ii) the Hamil-
tonian is not an isoscalar. Thus, we must disentangle
the real isospinmixing effects produced by theHamil-
tonian from those produced by our isospin-violating
treatment. The solution has been checked against
exact results for the case of particles moving in a
single-j shell and coupled by the isovector pairing in-
teraction [2]. The agreement is very satisfactory. This
is not the case for other procedures used previously to
treat the same problem (as the renormalized version
of the RPA, etc.).

2. CENTER-OF-MASS EFFECTS
IN ELECTROWEAK DECAYS

We now turn to the discussion of spurious center-
of-mass effects in nuclear Hamiltonians [4]. The
problem is perhaps one of the most studied ones
and, together with the particle number and angular
momentum symmetries, received a lot of attention in
the past, mainly in connection with the development
of projection techniques. We shall discuss the spuri-
ous center-of-mass motion as we have discussed the
isospin case, by the way of the separation between
collective and intrinsic variables. We shall also dis-
cuss the structure of the counterterms that should
be introduced to fulfill translational and Galilean
invariances [4].

2.1. The Hamiltonian
The degree of violation of the translational and

Galilean invariances of a given Hamiltonian H is
measured by the commutators

πµ ≡ [H, pµ], ρµ ≡ [H, rµ] − i

m
pµ,

which are, in general, nonvanishing operators.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 3 2003
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2.2. Counterterms

In order to restore the invariances, we may add
counterterms to the Hamiltonian; they are formally
defined by

Hp = P · r, Hr = R · p,
0 = πµ + iAPµ + (−1)ν [P−ν , pµ]rν

+ (−1)ν [R−ν , pµ]pν ,

0 = ρµ − iARµ + (−1)ν [P−ν , rµ]rν
+ (−1)ν [R−ν , rµ]pν ,

and these equations have to be solved for each order of
the expansion in powers of 1/A. The systematic ap-
plication of the previous procedure associates resid-
ual interactions to any single-particle Hamiltonian.
In what follows we study some applications to the
most frequent single-particle contributions, namely,
the harmonic oscillator potential, the spin–orbit and
l2 terms, and the empirical single-particle Hamilto-
nian.

2.3. Single-Particle Hamiltonians

(i) The harmonic oscillator case is

Hho
sp =

1
2m

p2 +
mω2

2
r2.

The resulting interaction is

Hho
p = −χhor · r, χho =

mω2

2A
.

The single-particle and residual interactions are

Hho =
1

2m
p2 +

χho

2

∑
ab

|ra − rb|2.

(ii) Spin–orbit interaction. The single-particle
term is

Hso
sp = −χso(l · s)(1v).

The two-body interactions are

Hso
p =

χso

A

∑
w

(p × s)(1(v−w)) · r(1w),

Hso
r = −χso

A

∑
w

(r× s)(1(v−w)) · p(1w).

The total Hamiltonian is

Hso = Hso
sp +Hso

p +Hso
r

= −χso

2A

∑
ab

(ra − rb) × (pa − pb) · (sa + sb)

+
χso

2A
(l · s)(2v),
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 3 200
Pµ =
χso

A

(
(p × s)µ(1v) −

1
2A

×
∑
w

(
p(1(v−w)) × s(1w)

)
µ(2v)

)
,

Rµ = −χso

A

(
(r × s)µ(1v) −

1
2A

×
∑
w

(
r(1(v−w)) × s(1w)

)
µ(2v)

)
.

(iii) The l2 terms are

H ll
sp = −χll(l · l).

The interactions are

H ll
p =

χll

A
(p× l) · r− χll

A
(l× p) · r− 2χll

3A2
〈p2〉r · r,

H ll
r =

χll

A
(l× r) · p− χll

A
(r× l) · p− 2χll

3A2
〈r2〉p · p.

The sum of the contributions is

H ll
sp +H ll

p +H ll
r

= −χll

2A

∑
ab

|(ra − rb) × (pa − pb)|2

− 2χll

3A
〈p2〉

(r · r
A

− (r · r)(11)+(10)

)

− 2χll

3A
〈r2〉

(
1
A

p · p− (p · p)(11)+(10)

)

+
χll

A
l · l +

χll

A

∑
ab

rb × pa · ra × pb

+
χll

A
(r · r)(11)+(10)(p · p)(11)+(10) −

χll

A

×
∑
µ,a,b

(−1)µra,µpb,µ(ra,µ+1pb,µ+1 + ra,µ−1pb,µ−1).

2.4. The Collective Formalism
The above-described solution guarantees that

there is a zero-frequency RPA boson for each direc-
tion of space. This consequence of the homogeneity
of space gives rise to infrared divergences, which
should be taken into account. One way to solve
the problem is to introduce collective coordinates,
which in the present case represent the coordinates
Rµ determining the position of the moving frame of
reference relative to the laboratory frame. Within this
description, there is no way to distinguish between
the motion of the body in one direction and the
displacement of the frame of reference in the opposite
one. This gauge-type invariance is expressed by the
constraint pµ − Pµ = 0, where Pµ is the generator of
displacements of themoving frame, hereon the collec-
tive momentum ([R−µ,Pν ] = i(−1)µδµν). Physical
3
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states |phys〉 are annihilated by the constraint, and
physical operators Ophys commute with it. As is well
known, the constraints may be taken into account by
adding to the Hamiltonian the terms proportional to
the Lagrange multipliersΩ

H → H − Ω · (p− P)

and requiring the vanishing of B, the momentum
conjugate to Ω ([Ω−µ, Bν ] = i(−1)µδµν).

The BRST Hamiltonian reads
HBRST = H − Ω · (p− P) + iπ · π̄

+ ω2

(
r · B
A

− B ·B
2mA

− iη̄ · η
)

and the different elements entering into the BRST
Hamiltonian are the Hermitian and nilpotent operator
Q, the fermion ghost operators, and their conjugate
momenta. The BRST charge is given by

Q = (p− P) · η + B · π̄.
In the same manner, we can write the operator for the
transformation to a moving frame

T = exp
[
i

A
P ·

(
B
m

− r
)]
,

THBRSTT
+ = H ′

BRST +
1

2mA
P2.

By applying this procedure, we may transform the
coordinate to (transformed operator)

TF (ri + R)T−1 = F

(
ri +

1
A

(
B
m

− r
)

+ R
)

→ F
(
ri −

r
A

+ R
)
.

In the moving frame of reference, the collective
variables R are considered to be real, and thus, as
a tradeoff, some original degrees of freedom must
join the spurious sector. At the level of elementary
modes of excitation, these are given by the RPA zero-
frequency modes. In addition to the spurious sector
|n0µ, n1µ〉, the intrinsic sector displays elementary
modes of excitation, which are represented by the
finite-frequency RPA modes |nν〉 (ων > 0). The
physical operator is r +AR, and it reduces to AR
after being boosted: the vector r disappeares from the
calculation (and the associated infrared divergencies
as well). The problem is reduced to the calculation
of the well-behaved operator R within the collective
sector of the Hilbert space.

2.5. Empirical Single-Particle Energies

We have performed three sets of RPA calcula-
tions using the empirical single-particle energies (as
in 208Pb) and introducing as interaction (i) an r · r
PH
term with a self-consistent strength; (ii) the same
interaction as in (i) but with such a strength that
there is an eigenvalue as close to zero as allowed
by the computational facilities; and (iii) the coun-
terterms with the values of P(11),R(11). The results
are given in [4], where the matrix elements of the
operator r corresponding to transitions between the
ground state and the excited states are calculated as
a function of the excitation energy. Although calcu-
lation (i) with the self-consistent strength displays a
prominent peak at low energies, the peak is finite and
located at an energy significantly larger than zero.
On the contrary, results (ii) and (iii) show the peak
at zero energy (within the numerical accuracy of the
calculation). This similarity apparently supports the
use of procedure (ii) appearing in the literature. Let us
consider now the matrix elements to finite frequency
modes, which are the ones that interest us from the
physical point of view. In this case, calculations (i) and
(ii) yield very similar results, while the scale is smaller
by two orders of magnitude for (iii), although the
excitation pattern is quite similar. We conclude that
the admixture of the spurious and the finite-frequency
modes is not changed significantly by varying the
strength of the r · r interaction and thus the use of
this interaction does not insure that we obtain correct
matrix elements for excited states [4].

2.6. Transition Operator

Conversion of muons into electrons may proceed
according to the lepton-flavor-violating processes.
Such a process is mainly of interest because of nec-
essary mixing of muon and electron neutrinos. So far,
there are experimental upper limits for this process.
Considering the dominance of the contributions due
to excitation of 1− states in the context of the RPA
diagonalization, it is obvious that from the nuclear
structure point of view one has to estimate the nu-
clear matrix elements involved in the transitions as
accurately as possible. The vector operator exciting
Iπ = 1− states may be written as

j1(qr)Y1µ|(11) (5)

=
∑
nν

〈nν |j1Y1|〉
(
γ+

nν ,µ − (−1)µγnν ,(−µ)

)

− i

A
(−1)µ〈[j1Y1µ, p−µ]〉rµ(11),

where nν denotes the finite-frequency RPAmode and
a similar expression should be used for the dipole
axial-vector term of the weak current. Its contribution
is not affected by the treatment of the spurious sector.
The amplitude in the second line may be regularized.
The results corresponding to the transition matrix
elements of the shifted operator, obtained in the RPA
YSICS OF ATOMIC NUCLEI Vol. 66 No. 3 2003
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diagonalization, are given in [4]. The similarity of the
results obtained with the three different Hamiltonians
supports the claim about the validity of the procedure.
The same effects are expected to materialize in the
case of realistic calculations, and work is in progress
to include the counterterms obtained in the previous
sections, starting with realistic two-body forces.

3. CONCLUSIONS

We have treated the problem of broken symmetries
in two steps: (i) reconstruction of the invariance of the
Hamiltonian by introducing counterterms, and (ii) in-
clusion of collective variables in order to eliminate
infrared singularities.

The comparison between the available exact re-
sults and those obtained by using the present ap-
proach shows the accuracy of the method. We thus
suggest the use of the present approach in cases
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 3 200
where, as in (µ−, e−) conversion, the dominance of
the Iπ = 1− channels is apparent or, as in the case
of double Fermi and Gamow–Teller transitions in
double-beta-decay processes, the strong dependence
of the theoretical results on model parameters may
limit the predictive power of the theory.
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