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Abstract. A complete set of a graph G is a subset of V inducing a
complete subgraph. A clique is a maximal complete set. Denote by C(G)
the clique family of G. The clique graph of G, denoted by K(G), is the
intersection graph of C(G). Say that G is a clique graph if there exists a
graph H such that G = K(H). The clique graph recognition problem asks
whether a given graph is a clique graph. A sufficient condition was given
by Hamelink in 1968, and a characterization was proposed by Roberts
and Spencer in 1971. We prove that the clique graph recognition problem
is NP-complete.

1 Introduction

We consider finite, simple and undirected graphs. V and E denote the vertex set
and the edge set of the graph G, respectively. A complete set of G is a subset of
V inducing a complete subgraph. A clique is a maximal complete set.

If G is a graph, C(G) denotes the clique family of G. The clique graph of G,
denoted by K(G), is the intersection graph of C(G). Say that G is a clique graph
if there exists a graph H such that G = K(H). Not every graph is a clique graph.
The Clique graph recognition problem can be formulated as follows.
clique graph

instance: A graph G = (V, E).
question: Is there a graph H such that G = K(H)?

A sufficient condition for a graph to be a clique graph was given in [6], and
characterizations of clique graphs are given in [9] and more recently in [1]. How-
ever the time complexity of the problem of recognizing clique graphs is still open
[4,8,10].

Given a set family F = (Fi)i∈I , the sets Fi are called members of the family.
F ∈ F means that F is a member of F . The family is pairwise intersecting if the
intersection of any two members is not the empty set. The intersection or total
intersection of F is the set ∩F = ∩i∈IFi. The family F has the Helly property,
if any pairwise intersecting subfamily has nonempty total intersection.

The edge with end vertices u and v is represented by uv. We say that the
complete set C covers the edge uv when u and v belong to C. A complete edge
cover of a graph G is a family of complete sets of G covering all edges of G.
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the flight of his 14 Bis in Paris in October 1906.

F.V. Fomin (Ed.): WG 2006, LNCS 4271, pp. 269–277, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



270 L. Alcón et al.

The following Theorem is a well known characterization of Clique Graphs.

Theorem 1 (Roberts and Spencer [9]). G is a clique graph if and only if
there exists a complete edge cover of G satisfying the Helly property.

A triangle is a complete set with exactly 3 vertices. The set of triangles of G is
denoted T (G). Let F be a complete edge cover of G and T a triangle, FT is the
subfamily of F formed by all the members containing at least two vertices of T .

Next lemma is a characterization of a complete edge cover satisfying the Helly
property, in what follows RS-family, which will be used in the proof of our main
theorem.

Lemma 1 (Alcón and Gutierrez [2]). Let F be a complete edge cover of G.
The following conditions are equivalent:
i) F has the Helly property.
ii) For every T ∈ T (G), the subfamily FT has the Helly property.
iii) For every T ∈ T (G), the subfamily FT has nonempty intersection, this means
∩FT �= ∅.

As noted by Roberts and Spencer [9], Theorem 1 yields a polynomial certificate of
G being a clique graph. First, for the polynomial size of the edge cover certificate,
note that if F has the Helly property, then every subfamily F ′ of F has the
Helly property as well. In addition, we prove that if G admits a complete edge
cover F , then G admits a complete edge cover F ′ of size at most |E| which is our
considered certificate: just greedily scan the edges of E, select for F ′ one complete
set of F covering the first edge, and for each edge e not yet covered by F ′, select
for F ′ one complete set of F covering e. Clearly this greedy procedure labels
each selected set with a corresponding scanned edge of E, yielding a subfamily
F ′ of size at most |E|. Second, for the polynomial verification of the certificate,
a result of Berge [3] says that a family of sets has the Helly property, if and only
if for any triple of elements, the subfamily of sets containing at least two out
of these three elements has non-empty intersection. Actually, by Lemma 1, it is
enough to consider the triples of vertices a, b, c of G defining a triangle T . We
consider the members of F ′

T and check for every vertex v of V if v belongs to⋂
F ′

T . This produces an O(n4m) algorithm that checks if a complete edge cover
F ′ of size O(m) is Helly. Thus clique graph belongs to NP.

In this paper we prove that clique graph is NP-complete by a reduction from
the following version of the 3–satisfiability problem with at most 3 occurrences
per variable.

Let U = {ui, 1 ≤ i ≤ n} be a set of boolean variables. A literal is either a
variable ui or its complement ui. A clause over U is a set of literals of L. Let
C = {cj, 1 ≤ j ≤ m} be a collection of clauses over U . We say that variable
ui occurs in clause cj (and then in C) if ui or ui ∈ cj . We say that variable ui

occurs in clause cj as literal ui (or that literal ui occurs in cj) if ui ∈ cj , and as
literal ui (or that literal ui occurs in cj) if ui ∈ cj .
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3sat3
instance: I = (U, C), where U = {ui, 1 ≤ i ≤ n} is a set of boolean variables,
and C = {cj , 1 ≤ j ≤ m} a set of clauses over U such that each clause has two
or three variables, each variable occurs two or three times in C, each variable
occurs never twice in the same clause. If variable ui occurs twice in C, then it
is once as literal ui and once as literal ui. If variable ui occurs three times in C,
then it is once as literal ui and twice as literal ui.
question: Is there a truth assignment for U such that each clause in C has at
least one true literal?

It is a known result that 3sat3 is an NP-complete problem [5,7].
In order to reduce 3sat3 to clique graph we need to construct in polynomial

time a particular instance G of clique graph from a generic instance I = (U, C)
of 3sat3, in such a way that C is satisfiable if and only if G is a clique graph.

In Section 2 we describe the construction of instance G of clique graph from
instance I = (U, C) of 3sat3. In Section 3, we state and prove the main theorem;
and in Section 4 give some conclusions and propose new related problems.

2 Construction of G from I = (U, C)

Let I = (U, C) be any instance of 3sat3,
For each variable ui let ji be the subindex of the unique clause where variable

ui occurs as literal ui; and J i = {j | literal ui occurs in cj}.
For each clause cj with | cj |= 3, let Ij = {i | variable ui occurs in cj}; and

for each clause cj with | cj |= 2, let Ij = {i | variable ui occurs in cj}∪{n+1}.
Notice that in any case | Ij |= 3. Given Ij = {i1, i2, i3}, with i1 < i2 < i3, let
i∗1 = i2, i∗2 = i3 and i∗3 = i1.

From instance I = (U, C), we construct a graph G = (V, E). Please refer to
Figures 1 and 2. The vertex set V is the union:

V =
�

1≤i≤n

�
�{ai

ji
, ci

ji
, di

ji
, ei

ji
, f i

ji
, gi

ji
, hi

ji
}
�

j∈Ji

{ai
j , c

i
j , d

i
j , e

i
j , f

i
j , g

i
j , h

i
j , z

i
j , v

i
j , w

i
j}

�
��

�
1≤j≤m,|cj |=2

�
{an+1

j , cn+1
j , dn+1

j , en+1
j , fn+1

j , gn+1
j , hn+1

j }
�
.

Since | J i |≤ 2, | V | is bounded by (n + 1) × 7 + n × 2 × 10 = 27 × n + 7.
The edge set E contains:
For each j, 1 ≤ j ≤ m, the edges of the complete graph induced by the vertex

set K12(j) = {ai
j , d

i
j , g

i
j, h

i
j | i ∈ Ij}; the edges of the sets {ci

jd
i
j | i ∈ Ij , i �= n+1}

and {ci
ja

i
j , c

i
ja

i∗

j , ei
jd

i
j , e

i
jh

i
j , f

i
jg

i
j, f

i
ja

i∗

j | i ∈ Ij}.
And for each i, 1 ≤ i ≤ n, for each j ∈ J i, the edges of the complete graph

induced by the vertex set K5(j, i) = {hi
ji

, gi
ji

, vi
j , h

i
j , g

i
j}; and the edges of the set

{hi
ji

wi
j , w

i
jh

i
j , g

i
ji

zi
j , z

i
jg

i
j , a

i
ji

vi
j , v

i
ja

i
j}.

Notice that for each variable ui, graph G contains as induced subgraph the
graph depicted in Figure 1; and for each clause cj , graph G contains as induced
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Fig. 1. Truth Setting component Ti for variable ui with J i = {j, k}
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Fig. 2. Satisfaction Testing component Sj for clause cj with: (a) 2 literals corresponding
to variables ui1 and ui2 ; and (b) 3 literals corresponding to variables ui1 , ui2 and ui3 .
Vertices {ai

j , d
i
j , g

i
j , h

i
j | i ∈ Ij} induce a complete graph but for simplicity some edges

are not drawn.
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subgraph the graph depicted either in Figure 2 (a) or (b), where some edges have
been omitted. We obtain the whole graph G by superposing these subgraphs.

For the convenience of the reader we offer an example in Figure 5 of graph
G obtained from the instance I = (U, C), U = {u1, u2, u3}, C = {{u1, u3},
{u1, u2, u3}, {u1, u2}}.

2.1 About Graph G

The following two lemmata present properties of graph G that we will use in the
proof of the main theorem. Notice that any RS-family of a graph contains the
triangles of the graph that are cliques, in particular the triangles with a vertex
of degree 2.

Lemma 2. (Two Cover Lemma) Let F be an RS-family of the graph G. For
each j, 1 ≤ j ≤ m, and for each i ∈ Ij , i �= n + 1, exactly one of the triangles
{ai

j, a
i∗

j , ci
j}, {ai

j, c
i
j , d

i
j} belongs to F .

Proof. Please refer to Figure 1. There are three possible complete sets of G
covering ai

j , c
i
j : {ai

j, a
i∗

j , ci
j , d

i
j}, {ai

j , a
i∗

j , ci
j}, {ai

j, c
i
j , d

i
j}.

Note that both triangles {di
j, e

i
j , h

i
j} and {f i

j , a
i∗

j , gi
j} belong to F , as ei

j and
f i

j are vertices of degree 2 in G.
Suppose {ai

j, a
i∗

j , ci
j , d

i
j} ∈ F . The Helly property implies {ai

j, g
i
j, v

i
j} is not

contained in a complete set of F , which implies {ai
j , h

i
j, v

i
j} ∈ F , in order to

cover edge ai
jv

i
j ; but then {ai

j , a
i∗

j , ci
j , d

i
j}, {ei

j, h
i
j , d

i
j} and {ai

j, h
i
j , v

i
j} violate

the Helly property. Then {ai
j, a

i∗

j , ci
j, d

i
j} �∈ F .

Assume {ai
j, a

i∗

j , ci
j} and {ai

j, c
i
j , d

i
j} belong to F . Since {ai

j, a
i∗

j , ci
j} ∈ F , then

{ai
j, v

i
j , g

i
j} is not contained in a complete of F , thus {ai

j, v
i
j , h

i
j} ∈ F , but in this

case {ai
j, v

i
j , h

i
j}, {ai

j, c
i
j , d

i
j} and {ei

j, h
i
j , d

i
j} violate the Helly property. �	

Lemma 3. (Literal Communication Lemma) Let F be an RS-family of the graph
G. For each i, 1 ≤ i ≤ n, and for each j ∈ J i, if {ai

j, c
i
j , d

i
j} ∈ F then

{ai
ji

, ai∗

ji
, ci

ji
} ∈ F .

Proof. Please refer to Figure 1. Since {ai
j , c

i
j, d

i
j} ∈ F and {ei

j, h
i
j , d

i
j} ∈ F ,

we have that {ai
j , h

i
j, v

i
j} and {ai

j, h
i
j , g

i
j, v

i
j} do not belong to F , because this

violates the Helly property. Thus {ai
j , g

i
j, v

i
j} ∈ F , in order to cover edge ai

jv
i
j .

Triangles {ai
j, g

i
j , v

i
j}, {gi

ji
, gi

j , z
i
j} belong to F implies {ai

ji
, gi

ji
, vi

j} and
{ai

ji
, hi

ji
, gi

ji
, vi

j} do not belong to F . Thus {ai
ji

, hi
ji

, vi
j} ∈ F .

Since {ai
ji

, hi
ji

, vi
j} and {di

ji
, hi

ji
, ei

ji
} belong to F , then {ai

ji
, ci

ji
, di

ji
} �∈ F . By

the Two Cover Lemma {ai
ji

, ai∗

ji
, ci

ji
} ∈ F . �	

These two lemmata are the basis of the proof of the main theorem. It follows
that given any RS-family of G, and any variable ui, by looking if one triangle
of the satisfaction testing subgraph Sji belongs or not to the RS-family it is
possible to know whether one triangle of the satisfaction testing subgraph Sj ,
with j ∈ J i, belongs or not to the RS-family. The two possible cases are shown
in Figures 3 and 4.
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3 Main Theorem

Theorem 2. clique graph is NP-complete.

Proof. As shown in the Introduction, clique graph belongs to NP.
Let G be the graph obtained by Section 2 process from an instance I =

(U, C) of 3sat3. Suppose G is a clique graph, we will exhibit a truth assignment
for U such that C is satisfied.

Let F be an RS-family for G. Let ui ∈ U be a variable. Set ui equal to true
if and only if {ai

ji
, ci

ji
, di

ji
} ∈ F .

To see that this truth assignment for U satisfies C consider a clause cj .
The Helly property on F implies there exists i ∈ Ij such that the triangle

{ai
j, a

i∗

j , ci
j} is not a member of F . Notice that i �= n + 1.

By the Two Cover Lemma, {ai
j, a

i∗

j , ci
j} �∈ F implies {ai

j , c
i
j, d

i
j} ∈ F .

If j = ji then variable ui is true and clause cj is satisfied.
If j �= ji, then j ∈ J i, by Literal Communication Lemma, {ai

j , c
i
j , d

i
j} ∈ F

implies {ai
ji

, ai∗

ji
, ci

ji
} ∈ F , thus by Two Cover Lemma, {ai

ji
, ci

ji
, di

ji
} �∈ F . It

follows that ui is false, then cj is satisfied.
Conversely, given a truth assignment of U that satisfies C, we exhibit a com-

plete edge cover F of G.
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Fig. 5. Graph G obtained from the 3sat3 instance U = {u1, u2, u3}, C = {{u1, u3},
{u1, u2, u3}, {u1, u2}}.

For each j, 1 ≤ j ≤ m, complete set K12(j) = {ai
j, d

i
j , g

i
j, h

i
j | i ∈ Ij};

For each j, 1 ≤ j ≤ m, for each i ∈ Ij , the triangles {f i
j , a

i∗

j , gi
j}, {ei

j, d
i
j , h

i
j}.

For each j, 1 ≤ j ≤ m, for each i ∈ Ij , i �= n+1, {ci
j, a

i∗

j , di
j}; and for i = n+1,

{cn+1
j , an+1∗

j , an+1
j }.

For each i, 1 ≤ i ≤ n, for each j ∈ J i, the complete set K5(j, i) =
{hi

ji
, gi

ji
, vi

j , h
i
j, g

i
j};

For each i, 1 ≤ i ≤ n, for each j ∈ J i, {zi
j, g

i
ji

, gi
j}, {wi

j , h
i
ji

, hi
j}.

For each i, 1 ≤ i ≤ n, such that variable ui is true, {ci
ji

, di
ji

, ai
ji

}; and for each
j ∈ J i, {ai

ji
, gi

ji
, vi

j}, {vi
j , h

i
j, a

i
j}, {ai

j , a
i∗

j , ci
j}.

For each i, 1 ≤ i ≤ n, such that variable ui is false, {ci
ji

, ai
ji

, ai∗

ji
}; and for each

j ∈ J i, {ai
ji

, hi
ji

, vi
j}, {vi

j , g
i
j, a

i
j}, {ai

j , d
i
j , c

i
j}.

The proof is completed by showing that the complete edge cover F of G has
the Helly property. By Lemma 1, it is enough to show that for each triangle
T ∈ T (G), ∩FT �= ∅.
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Fig. 6. RS-cover F for graph G of Figure 5, obtained from the satisfying truth assign-
ment where u1 is true, and u2 and u3 are false. Bold edges depict forced triangles of F ,
dashed connected regions depict triangles of F which depend on the truth assignment
for I = (U, C), complete sets K5(j, i) and K12(j) are not depicted in order to make
simpler the drawing.

If a triangle T contains an edge e for which any complete set of F covering
e contains also T , then ∩FT �= ∅. We call such a triangle an easy triangle and
use this tool in order to accomplish the proof. We classify the triangles of G into
types according to either they are, or they are not contained in a K12(j) or in a
K5(j, i). Details are omitted in the extended abstract. �	

Figure 6 exhibits the RS-cover F defined from Theorem 2 for graph G of Figure 5.

4 Final Remarks

We have proved that deciding whether a given graph is a clique graph is an
NP-complete problem. From the same proof, it follows that the problem remains
NP-complete even for bounded degree graphs and for graphs with bounded clique
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size. However the problem is polynomial when restricted to graphs with max-
imum degree less than 5 and also when restricted to graphs with clique size
less than 4 [10]. This fact suggests the search of the best bounds both for the
maximum degree and for the clique size for which the problem is polynomial.
Notice that the problem of recognizing clique graphs restricted to Planar Graphs
of maximum clique size 4 was left open in [2]. It seems not to be trivial.
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FAPERJ, PROCIÊNCIA-UERJ Project, CNPq–Project PROSUL- Proc. no.
490333/04-4.

References

1. Alcón, L., Gutierrez, M.: A new characterization of Clique Graphs. Matemática
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