The infrared spectrum of NaV₃P₃O₁₂

E. J. BARAN, I. L. BOTTO

Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115, 1900 La Plata, Argentina

N. KINOMURA, N. KUMADA

Institute of Inorganic Synthesis, Faculty of Engineering, Yamanashi University, Miyamae-cho 4, Kofu, 400 Japan

Materials belonging to the α -CrPO₄ structural type are rather uncommon. Only two simple compounds, apart from α -CrPO₄ itself [1, 2], are known to adopt this structure, namely CrAsO₄ [3] and RhPO₄ [4].

A phase of composition NaV₃P₃O₁₂ (with chemical formula NaV^{II}V₂^{III}P₃O₁₂) has recently been prepared [5]. It possesses a packed structure of α -CrPO₄, with the Na⁺ cations located in the tunnels of the α -CrPO₄ framework. It seems, therefore, interesting to characterize this new material by means of infrared (IR) spectroscopy in order to obtain an insight into the vibrational behaviour of this complex and unusual mixed-valence compound. The investigated samples were obtained as described in [5]. The IR spectra were recorded with a Perkin–Elmer 580 B spectrophotometer, using the KBr pellet technique.

NaV₃P₃O₁₂ crystallizes in the orthorhombic space group Imma (D_{2h}^{28} – Nr 74) with Z = 4. The structure is composed of two building units, which are parallel to the *b*-axis of the unit cell. One is an -O-P-O-V-O-P- zig-zag chain constituted by PO₄ tetrahedra and VO₆ octahedra linked alternately by corner sharing. The second unit is a rigid shaped V₂P₂O₁₄ block consisting of two VO₆ octahedra and two PO₄ tetrahedra; each VO₆ unit shares opposite edges with a VO₆ octahedron and a PO₄ tetrahedron [5].

The complexity of the structure suggests that the factor group method should be the best method for vibrational analysis of this material. This analysis was performed using the tables of Adams and Newton [6] (see also [7]), together with the known structural information [5]. The results are shown in Table I.

A more detailed analysis of the 54 internal vibrations corresponding to the six PO₄-vibrators can be obtained correlating the point group of the "free ion" (T_d) with its site groups (C_2 and C_{2v}) and its factor group (D_{2h}), as done formerly for the case of α -CrPO₄ [8]. The results are summarized in Table II.

The IR spectrum obtained is shown in Fig 1 and the measured band positions are presented in Table III. In order to propose a rough assignment of this very complex spectral pattern, it seems reasonable to analyse the higher- and lower-frequency regions independently. Relatively "pure" P–O stretching vibrations can be expected in the first region, whereas at lower frequencies an important mixing between PO_4 bendings, MO_6 vibrations and lattice modes is expected.

According to the information given in Table II, 10 IR-active bands can be expected in the stretching region and 11 in the bending region. The 10 expected stretching modes are clearly seen in the spectrum. They cover an unusually wide frequency range, between 1200 and 800 cm^{-1} , in agreement with the very different P–O bond types present in the material. The range covered and general spectral features are similar to those found in α -CrPO₄ and RhPO₄ [8].

The spectral range below 800 cm^{-1} is more difficult to analyse. However, as shown in Table III, the first group of bands can be assigned to factor group components of the antisymmetric bending of the PO₄ groups (i.e. we can identify five of the eight expected bands). All of the remaining bands, in the range below 500 cm^{-1} , are certainly strongly mixed modes.

Especially interesting to remark is the strong shift to

Atom	Number and position	A _g	B _{1g}	\mathbf{B}_{2g}	B _{3g}	A _u	B _{1u}	B_{2u}	B _{3u}
Na	2e	1	0	1	1	0	1	1	1
V(1)	2a	0	0	0	0	1	2	2	1
V(2)	4g	1	2	1	2	1	2	1	2
P(1) ·	2e	1	0	1	1	0	1	1	1
P(2)	4g	1	2	1	2	1	2	1	2
O(1)	4h	2	1	1	2	1	2	2	1
O(2)	4i	2	1	2	1	1	2	1	2
O(3)	8i	3	3	3	3	3	3	3	3
O(4)	8j	3	3	3	3	3	3	3	3
Total (= $3N = 114$)		14	12	13	15	11	18	15	16
Acust. $(=3)$							1	1	1
$T_{\rm end} (= 14 \times 3 = 42)$		4	4	4	6	3	8	6	7
Rot. $(= 6 \times 3 = 18)$		1	3	2	3	2	2	2	3
$N_{\rm int} (= 6 \times 9 = 54)$		9	5	7	6	6	8	7	6

TABLE I Factor group analysis of the NaV₃P₃O₁₂ lattice (space group Imma- D_{2h}^{28} ; Z = 4/2 = 2)

TABLE II Expected factor group components for the internal PO₄ vibrations

Symmetric stretching	$2A_{1} + B_{2} + A_{1} + B_{2} + B_{3}$
Antisymmetric stretching	$2A_{g} + 2B_{1g} + 2B_{2g} + 3B_{3g} + A_{n} + 3B_{1u} + 2B_{2n} + 3B_{3u}$
Symmetric bending	$3A_{g} + B_{1g} + 2B_{2g} + 3A_{u} + B_{1u} + 2B_{2u}$
Antisymmetric bending	$2\ddot{\mathbf{A}_{g}} + 2\ddot{\mathbf{B}_{1g}} + 2\ddot{\mathbf{B}_{2g}} + 3\mathbf{B}_{3g} + \ddot{\mathbf{A}}_{u} + 3\ddot{\mathbf{B}_{1u}} + 2\ddot{\mathbf{B}_{2u}} + 3\ddot{\mathbf{B}_{3u}}$

Activity: Ag, B1g, B2g and B3g Raman; B1u, B2u and B3u, IR; Au, inactive.

higher wavenumbers of all of the internal phosphate modes, when compared with those usually found in crystalline phosphates and in phosphate solutions ($v_s = 938$, $v_{as} = 1017$, $\delta_s = 420$ and $\delta_{as} = 567 \text{ cm}^{-1}$), [9]. These shifts are a direct consequence of the highly condensed nature of this structural type.

In conclusion, the $NaV_3P_3O_{12}$ investigated presents a very complex IR spectral pattern, in agreement with its highly condensed structure and the very different building units that constitute it. Its vibrational behav-

TABLE III IR spectrum of $NaV_{3}P_{3}O_{12}$ (band positions in $cm^{-1})$

1175		688	
$\sim 1150 \mathrm{sh}$		630	Principally
1125		589	$\sigma_{\rm as}~({\rm PO}_4)~{\rm modes}$
$\sim 1095 \mathrm{sh}$		548	
1050	PO ₄ stretching	511	
1022			
975		∼ 435 sh	
920		392	Strongly mixed
890		377	PO ₄ bendings, VO ₆
850		\sim 263 sh	and external modes

sh, Shoulder.

iour resembles closely that of the other materials belonging to the same structural type [8].

Acknowledgement

E.J.B. and I.L.B. acknowledge the support of CONICET.

References

- 1. B. R. SULLIVAN and H. F. MCMURDIE, J. Res. Natn. Bur. Stand. USA 48 (1952) 159.
- 2. M. W. SHAFER and R. ROY, J. Amer. Chem. Soc. 78 (1956) 1087.
- 3. M. M. RONIS, C. R. Acad. Sci. Paris 271C (1970) 64.
- 4. G. ENGEL, J. Less-Common Metals 77 (1981) 941.
- 5. N. KINOMURA, N. MATSUI, N. KUMADA and F. MUTO, J. Solid St. Chem. 79 (1989) 232.
- D. M. ADAMS and D. C. NEWTON, "Tables for Factor Group and Point Group Analysis" (Beckman RIIC, Croydon, 1970).
- 7. D. M. ADAMS, Coord. Chem. Rev. 10 (1973) 183.
- E. J. BARAN and D. I. RONCAGLIA, Spectrochim. Acta 44A (1988) 399.
- 9. S. D. ROSS, "Inorganic Infrared and Raman Spectroscopy (McGraw-Hill, London, 1972).

Received 23 January and accepted 5 February 1990