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Abstract. The relationship between collectivity and ground state correlations is analyzed 
for the single closed shell lead isotopes. The effects of the schematic approximation are 
discussed, within the framework of both the quasiparticle Random Phase Approximation 
and the quasiparticle Tamm-Dancoff approach. The consistency of the RPA is investigated. 

1. Introduction 

In the last decade a great deal of effort has been 
devoted to the task of approximately describing 
nuclear excited states, either in the particle-hole sub- 
space (Tamm-Dancoff, RPA) or in the two quasi- 
particle (q.p.) one (QTDA, QRPA), and, in all fairness, 
the overall results should be regarded as rather success- 
ful ones. 
In later years, however, the foundations of the RPA 
have been subjected to careful scrutiny, and doubts 
about his consistency have arisen [1], Most of the 
work done along these lines has been concerned with 
the particle-hole version of the RPA, and only recently 
the q.p. one has been, in this sense, specifically exam- 
ined. This was done in relation with the description 
of collective vibrations in rare earth nuclei [2, 3]. 
A closely related topic is that of the approximations 
usually employed in order to solve the QRPA equa- 
tions. In particular, the so-called schematic treatment 
[4] (s.t.), which assumes a separable interaction, has 
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been widely applied (see for example Ref. 5, and works 
cited therein). To use this approach, one is forced to 
consider only the direct particle-hole (ph) term of the 
residual interaction. In this respect, one should care- 
fully distinguish between its meaning in each of the 
two different frameworks above mentioned (i.e., 
particle-hole RPA and QRPA). In the last case, the 
s.t. implies the discard of five of the six interaction 
diagrams entering into the QRPA equations [6], 
being thus a much more drastic approximation than 
in the former one, in which only the exchange ph term 
is neglected. 
It has been found in Ref. 2 that, in relation with a 
nonschematic description (n.s.t.), i.e., one in which the 
full QRPA equations are solved, without throwing 
away any interaction term, the s.t. exaggerates collec- 
tivity. A strong correlation was also found [3] between 
coherence and the detailed shape of the spectral dis- 
tribution of virtual q.p. in the correlated ground state 
(c.g.s.). Moreover, it could be ascertained that the 
QRPA is consistent, either in the s.t. or in the n.s.t. [3]. 
All these results, however, apply to the description 
of collective vibrations in heavy deformed nuclei, and 
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need not be valid generally, specially, if one considers 
the peculiarities of the region, i.e., stable deformed 
shape, definite collective character of the vibrations, 
high single-particle (s.p.) level density and great number 
of both protons and neutrons outside closed shells. 
The even lead isotopes constitute a natural field for 
discussion of the above outlined questions. They 
present us with just a few neutrons outside closed 
shells, in relatively widely spaced s.p. levels. The 
equilibrium shape is spherical and the collective char- 
acter of the vibrations around it just begins to insinuate 
itself. We find then conditions that look quite antithetic 
to the ones that prevail in the rare earth nuclides. 
In addition, QRPA studies of the even-even Pb 
isotopes have been performed in the past utilizing 
both the s.t. (see for example Ref. 7) and the n.s.t. 
(consider for instance Ref. 8). 
The purpose of the present paper is then, in general, 
to ascertain whether the characteristics of the QRPA 
found in Refs. 2 and 3 are inherent to the method 
itself(or should instead be attributed to the peculiarities 
of the deformed heavy regions) and, in particular, to 
answer the following questions, in relation to the 
description of excitations in the Pb zone: 
i) Is the QRPA consistent? 
ii) What is the difference between the s.t. and the n.s.t. ? 
iii) Is the relationship between collectivity and the 
structure of the c.g.s, similar to the one found in 
deformed heavy nuclei? 
A brief review of the formalism is given in Section 2. 
The results are presented in Section 3 and discussed 
in Section 4. 

2. Formalism 

The QRPA eigenvalue problem for an excited state 
of angular momentum J and parity ~c is given by 

P _ Q ]  [X] =co IX] (1) 
_Q 

where co is the excitation energy. P and Q are sym- 
metric submatrices, whose explicit expression is given 
in many places (see for example Ref. 9). The anti- 
symmetrized residual interaction between q.p. yields 
- v i a  the Bogoliubov Valatin transformation-six 
diagrams, out of which, with appropriate pairing 
factors, the matrices P and Q are built. These diagrams 
are depicted in Fig. 1. In the schematic approach one 
takes into account only the direct ph term. 
The QRPA c.g.s, can be constructed by the action, 
upon the BCS wave function, of an operator S defined 
as [103 

S=exp{ ~ ~ ~k~'~J~ crb+~ b~]SM'~[ b+ b+]Sg~} �9 (2) 
nJM iklm 

Diagrams in P (abcd )  0 ( Q ( a b c d )  

direct par t i c le -  hole format exchange 

H(abcd)  H ( a b d e )  

exchange par t ic le  - hole formal, exchange 

K(abcd)  K ( a b d c )  

par t ic le  - p a r t i c l e  formal exchange 

G(abcd) @(abdc) 

Fig. I. The six interaction diagrams that enter into the QRPA or 
tile QTDA equations, in building up the matrix elements P~bcd or 
Q~bcd (see Ref. 9) 

The sum in (2) runs over pairs (i k), (l m) of q.p. operators 
b which couple to J, M and re. All states characterized 
by these last quantum numbers are to be considered. 
The index n is used to distinguish among them. The 
C's are the so-called correlation coefficients [103. They 
can be obtained from the wave function of (1) by 
means of a relationship which, in matrix notation, 
can be stated as [103 

Y= CX.  (3) 

One sees that, after solving the eigenvalue problem (1), 
it is possible to obtain the correlation coefficients by 
inversion, and proceed thereafter to build up explicitely, 
using (2), the c.g.s. 
A very interesting quantity is the q.p. density matrix p, 
defined as 

pu---(c.g.s.I b? bj Ic.g.s.), (4) 

where the diagonal elements Pil give us the average 
virtual population of q.p. in the s.p. level l i) in the 
c.g.s. 
Evaluation of the matrix p allows for a test of the 
consistency of the QRPA. A crucial assumption is 
made in deriving Eq. (1) (see for example Ref. 10), 
which can be concisely expressed as follows 

B + (c.g.s.I [ i k ,  Bim] Ic.g.s.)~-(BCS[ [B~ S~m] [BCS), (5) 

where the B's are the coupled 2 q.p. operators which 
appear in (2). Now, first order corrections to (5) are 
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linear in p [3], so one can, after solving (1), check a 
posteriori the consistency of the QRPA, by going 
through Eqs. (3)-(2)-(4), in that order. 

3. Results 

In the present work the residual interaction has been 
chosen to be the Surface Delta Interaction (SDI) [8]. 
The s.p. scheme, interaction strength and all other 
numerical details are identical to those of Ref. 8. Four 
types of calculations were performed, which in ab- 
breviated form are referred to as QRPA (s.t. and n.s.t.) 
and QTDA (s.t. and n.s.t.). Due to the fact that, for 
the case of the single closed shell lead isotopes, only 
the first excited 2 + states (2+), among the low lying 
ones, show any sign of collectivity, attention is focused 
throughout on this state. Table 1 displays the energy 
of this state, calculated with the QRPA for the s.t. 
and the n.s.t. Experimental results are also shown. 
The quantity 

A E 1 = (E2 + ) Q R P A  - -  (E2 +)QTOA, (6) 

is tabulated in Table 2, against the mass number, for 
both the s.t. and the n.s.t. It is seen that in both cases 
AE1 grows with A, but with a much greater rate in 
the latter one. 
Fig. 2 depicts the theoretical spectra for 2~ (Com- 
parison with experiment has been already made in 
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Table 1. The energies of the 2 + states in the even lead isotopes, 
calculated within the framework of the QRPA,  for both the schematic 
and nonschematic cases. Experimental figures are shown in the 
fourth column 

2+ Energies (MeV) 

Mass number  Q R P A  (n.s.t.) Q R P A  (s.t.) Experimental 

206 0.78 0.88 0.80 
204 0.90 0.88 0.90 
202 1.01 0.92 0.96 
200 1.13 1.00 1.03 
198 1.24 1.09 1.06 

Table 2. Energy difference between Q R P A  and Q T D A  predictions 
for the 2+ state, calculated for both the schematic and nonschematic 
approaches 

A E 1 = (E2+)QRPA - -  (E2,+)QTDA (MeV) 

Mass  number  E(n.s.t.) E(s.t.) 

206 0.01 0.03 
204 0.01 0.08 
202 0.02 0.15 
200 0.03 0.18 
198 0.04 0.22 

o . o L _ _ o "  _ _ o *  o § _ _ o  ~ 

Q.R.RA Q.T.DA Q.R.RA QIDA 
n.s.t s.t 

Fig. 2. Theoretical spectra for 2~ 

Ref. 8, for the QTDA, n.s.t, case.) They do not look 
much dissimilar, although it is apparent that the 
QTDA calculations resemble each other more closely 
than the corresponding QRPA ones. 
Another quantity of interest is 

AE 2 = E 2 + - e 2 q . p "  . (7) 

In (7) Ezq.p. is the lowest unperturbed 2q.p. energy. 
AE2 gives us the shift produced by the residual inter- 
action, which should be the more pronounced, the 
more collective the character of the corresponding 
excitation. 
Fig. 3 exhibits the quantity AE2 against the mass 
number, for the different cases above mentioned. One 
clearly sees that the largest collectivity arises if one 
employs the s.t. within the QRPA framework. The 
last two pictures show also that, as far as the energetic 
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Fig. 3. For the case of the even single closed shell lead isotopes, the 
2 + energy shifts from the lowest unperturbed 2 q.p. energies are 
plotted, for different theoretical approaches 

t rend  is concerned,  there  is a greater  difference between 
the Q R P A  and  Q T D A  within the s.t. than  within 
the  n.s.t. 
Fig. 4 shows the B (E 2) t rans i t ion  rate  from the g round  
s tate  into the 2+. One not ices  that ,  again,  the Q R P A  
(s.t.) predic ts  s t ronger  col lect ivi ty than  the o ther  types 
of  calculat ion.  
The  quan t i t y  

( g )  = ~ (c.g.s. I bl- bi Ic.g.s.) = Tr p ,  (8) 
f 

is l is ted in Table  3 for bo th  the n.s.t, and  the s.t. 
As  it can be seen f rom the s t ructure  of the o p e r a t o r  S 
in (2), the to ta l  occupa t ion  number  in the c.g.s, receives 
con t r ibu t ion  f rom all those  excited states that  can 
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Fig. 4. B(E2) transition rates into the ground state from the 2 + for 
the even single closed shell lead isotopes, calculated with different 
theoretical approaches 

Table 3. Expectation value of the quasiparticle number operator in 
the correlate ground state of single closed shell lead isotopes, 
evaluated with the nonschematic and the schematic approaches. 
The third column lists this number, to which all excited states 
contribute. The fourth one gives that fraction of the previous figure 
furnished by the set of collective excited states, while the one supplied 
by just the 2i ~ is displayed in the fifth column 

Total q.p. number in the correlated ground state 

Mass Method Total 2 + set 2i ~ 2~- percentage 
number of total figure 

206 n.s.t. 0.069 0 .018 0.010 15 ~o 
s.t. 0.186 0 .142  0.120 65 

204 n.s.t. 0.212 0 .055 0.029 14 
s.t. 0.642 0.491 0.458 71 

202 n.s.t. 0.412 0 .108 0.056 14 
s.t. 1.13 0.792 0.756 67 

200 n.s.t. 0.639 0 .169  0.090 14~ 
s.t, 1.49 0.949 0.908 61 

198 n.s.t. 0.848 0 .231 0.128 14~ 
s.t. 1.72 1.00 0.966 56 

be genera ted  within the q.p. space. In add i t i on  to 
this to ta l  figure, the a moun t s  furnished by a) the 2i ~ 
state by  itself and  b) the set of  all 2 + excited states 
are  also tabula ted .  A r e ma rka b l e  result  can be ob-  
served:  in the s.t., a l r eady  the 2i ~ supplies  ( N )  with 
a b o u t  65~o of  its to ta l  value. The co r re spond ing  
percen tage  in the n.s.t, is a scant  1 4 ~  (consider  that  
the 2i ~ is the only  low-lying collective exci ted state). 
In  Fig. 5 the d i agona l  e lements  of  the q.p. densi ty  
mat r ix  are p lo t t ed  agains t  the q.p. energy for 2~ 
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Fig. 6. Virtual q.p. spectral distribution for the correlated ground 
state of z~176 

To the extreme left lies the Fermi surface. The figure 
illustrates the deviation of the c.g.s, from the ground 
state corresponding to a set of independent fermions. 
Both the " to ta l"  Pu (i.e., with contributions from all 
excited states) and that generated by just the 2~- are 
shown, in both the s.t. and n.s.t, cases. 

Table 4. The largest diagonal elements of the density matrix are 
tabulated for both the nonschematic and the schematic cases 

Largest diagonal element of q.p. density matrix 

Mass number n.s.t, s.t. 

206 0.026 0.075 
204 0.076 0.270 
202 0.158 0.443 
200 0.255 0.508 
198 0.358 0.486 

The 2~- in 2~ is not collective. Fig. 6 is similar 
to Fig. 5, but it refers to 2~176 a nuclide for which 
the 22- already begins to show weak traces of collec- 
tivity. The patterns depicted in these last two graphs 
look quantitatively different. 
The largest diagonal elements of the q.p. density matrix 
are listed in Table 4, for both the s.t. and the n.s.t. 

4. Discussion 

The only difference between the QRPA and the QTDA 
lies in the fact that the former takes into account 
ground-state correlations (g.s.c.) while the latter does 
not [11]. Any discrepancies between the results ob- 
tained with either of these two methods is then attribut- 
able to the features and traits of the g.s.c. 
On the other hand, dissimilitudes found between the- 
oretical predictions made by either the s.t. or the 
n.s.t, are to be ascribed to the effects of the last five 
diagrams of Fig. 1, which the former does not con- 
sider. 
As far as the energetic trends are concerned, the neglect 
just referred to does not seem to be a nonsensical one. 
In fact, the corresponding spectra do not differ too 
much (Fig. 2), nor are the 2+ energies widely dis- 
similar (Table 1). 
The n.s.t, and s.t. are at variance, however, as soon 
as one concerns oneself with the effects of g.s.c. This 
can be seen already in Fig. 2. The two n.s.t, spectra 
(QRPA and QTDA) resemble each other more closely 
than the corresponding s.t. ones. 
The consequences of the diverse ways of handling 
the g.s.c, become the more noticeable, the more collec- 
tive the corresponding excited state is. The 2~- in 2~ 
does not display such a character. As we move away 
from closed shells, increasing the number of neutron 
holes, collectivity begins to slowly set in, starting the 
2+ states to show weak signs of it for 2~176 The 
effects of the manner in which the g.s.c, are dealt 
with can be clearly observed in Table 2. The quantity 
AE1 of Eq. (6) is a measure of the influence that g.s.c. 
have upon the excitation energies. It is seen that AE1 
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grows with the hole number in both cases (n.s.t. and 
s.t.), but in a much more rapid fashion in the former 
case. All the trends described above are also apparent 
in  Fig. 3, where the energy shift produced by the 
residual interaction with respect to the lowest un- 
perturbed 2 q.p. energy is shown. Again the two n.s.t. 
curves lie closer to each other than the corresponding 
s.t. ones. One notices also that the s.t. (QRPA) calcula- 
tion overrates the shift with respect to the n.s.t, one. 
Since the 2i ~ comes down farther into the energy gap, 
the greater its collective character, we conclude that 
there is, within the QRPA framework, overestimation 
of collectivity in the s.t. 
This exaggeration is distinctly displayed by the behav- 
iour of the B(E2) transition rates (Fig. 4). Since there 
is no collectivity in 2~ the way in which g.s.c. 
are handled becomes irrelevant, and QRPA predictions 
are similar for either the n.s.t, or the s.t. Coming away 
from closed shells, B(E2) values grow, and the dif- 
ference between the results of the two methods is 
steadily magnified. 
When we focus our attention upon the specific prop- 
erties of the c.g.s, we find that the virtual q.p. population 
also augments with the hole number. The s.t. figures 
are always larger than n.s.t, ones, and there is a 
qualitative distinction between them, which can be 
easily appreciated by glancing at the last column of 
Table 3. In the s.t. case, the c.g.s, is almost entirely 
built up with the correlations induced by the 2~- state. 
A similar result holds for the case of gamma vibrations 
in rare earth nuclei [3], where the band-head supply 
is a very large part of the whole 2 + contribution. 
The shape of the q.p. spectral distribution (Figs. 5 
and 6) allows one to draw interesting conclusions*. 
When there is no collectivity the s.t. and n.s.t, patterns 
are not yet quite defined ones. On the other hand, 
as the separation from closed shells becomes larger, 
and, correspondingly, the B(E2) values grow, the 
above mentioned patterns adopt different forms. In 
the s.t. case, they exhibit an ever increasing tendency 
to become peaked near the Fermi surface, which, on 
the other hand, loses special relevance in the n.s.t, one. 
This behaviour is also found in the deformed heavy 
region [3]. 
It is safe to assert, as a consequence of the previous 
discussion, that the relationship between collectivity 
and the structure of the c.g.s, is similar here as that 
found for the case of rare earth nuclei [3], a fact that 
would indicate that we are, in this respect, in the 
presence of properties which would be inherent to 
the QRPA method. 

* Our remarks here are based on the 2 + contribution, which is the 
only one that can be compared to results for the rare earth region [3]. 

As for the consistency question, it is convenient to 
consider the values displayed in Table 4, which should 
give us an idea as to the extent to which the assumption 
of Eq. (5) is a correct one. (First order corrections to 
the right side of (5) are linear in p.) It is seen that 
the QRPA is a more consistent method if the n.s.t. 
is adopted. The fact that, in the s.t. case, the largest 
diagonal element is smaller for 198pb than for 2~176 
should not be misinterpreted: there are two other 
diagonal elements which are also large (see Table 3). 
The QRPA could be regarded as consistent, as far 
as the n.s.t, is concerned, but doubts arise in the s.t. 
case, for the nuclides 2~176 and 19spb. 
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