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Abstract. In this paper we present and discuss results of Monte Carlo numerical simulations of the

two-dimensional Ising ferromagnet in contact with a heat bath that intrinsically has a thermal gradient.

The extremes of the magnet are at temperatures T1 < Tc < T2, where Tc is the Onsager critical

temperature. In this way one can observe a phase transition between an ordered phase (T < Tc) and a

disordered one (T > Tc) by means of a single simulation.

By starting the simulations with fully disordered initial configurations with magnetization m ≡ 0

corresponding to T = ∞, which are then suddenly annealed to a preset thermal gradient, we study the

short-time critical dynamic behavior of the system. Also, by setting a small initial magnetization m = m0,

we study the critical initial increase of the order parameter. Furthermore, by starting the simulations

from fully ordered configurations, which correspond to the ground state at T = 0 and are subsequently

quenched to a preset gradient, we study the critical relaxation dynamics of the system. Additionally, we

perform stationary measurements (t → ∞) that are discussed in terms of the standard finite-size scaling

theory.

We conclude that our numerical simulation results of the Ising magnet in a thermal gradient, which are

rationalized in terms of both dynamic and standard scaling arguments, are fully consistent with well

established results obtained under equilibrium conditions.

PACS Numbers : 64.60.De; 64.60.an, 05.10.-a

Keywords : Phase transitions, thermal gradient, Ising ferromagnet, numerical simulations.

PACS. XX.XX.XX No PACS code given

http://arxiv.org/abs/1208.0965v1


2 Muglia and Albano: The Ising magnet in a thermal gradiente

1 Introduction

Let us assume that a physical system undergoes a smooth

transition between two distinctly characteristic phases when

a certain control parameter (e.g., T = temperature, P =

pressure, µ = chemical potential, etc.) is finely tuned

around a critical value. This physical situation is often

addressed by means of analitical and numerical methods

where the control parameter asuumes a fixed value. How-

ever, here we considered an alternative approach by as-

suming that along a given spatial direction, the system

undergoes a well established gradient of the control pa-

rameter, such that the critical point lies between the ex-

treme values, e.g., T1 < Tc < T2, where one has a ther-

mal gradient between temperatures T1 and T2, and the

critical temperature Tc is within that range [1,2,3,4,5].

Of course, a standard reversible system, usually studied

under equilibrium conditions, will be out of equilibrium

under the gradient constraint applied to the control pa-

rameter. However, we will show below that this situation

is no longer a shortcoming for the application of methods

and theories already developed for the study of equilib-

rium systems. In order to fix ideas, in this paper we will

study the dynamical and stationary behavior of the Ising

model for a two-dimensional magnet[6] in a thermal gra-

dient. The proposed study not only possess interesting

theoretical challenges, but it may also be useful in con-

nection to recent experimental work aimed to characterize

films in general, and magnetic films in particular, which

are obtained under thermal gradient conditions imposed

on the substrate. In fact, since the temperature is a key

parameter for the relevant properties of thin films, several

experiments have focused on the influence of a tempera-

ture gradient on film growth, e.g., Tanaka et al. reported

studies of magnetic Tb-Te films obtained under thermal

gradient conditions[7]. Also, Schwickert et al.[8] have in-

troduced the temperature wedge method where a temper-

ature gradient of several hundred Kelvin was established

across a substrate during the co-deposition of Te and Pt.

Other experiments performed by Xiong et al.[9] involve

nanostructures obtained by using a gradient temperature.

So, within the broad context discussed above, we now

focus our attention on the aim of this paper, which is to

perform an extensive numerical study of the two-dimensional

Ising ferromagnet in a thermal gradient. In previous nu-

merical studies performed by various authors[1,2,3,4,5],

the two extremes of the magnet are considered in con-

tact with different thermal baths, e.g. the left-hand and

the right-hand side extremes are at fixed temperatures T1

and T2, respectively. In order to study this particular out-

of-equilibrium situation, varoius algorithms can be used,

e.g. the Creutz algorithm [1,10], the Kadanoff-Swift move

[11] the Q2R rule [12], the KQ rule [3], a recently intro-

duced microcanonical dynamics [5], etc. In this way, the

system naturally evolves into a stationary state and a ther-

mal gradient is established between its extremes. Also, the

surfaces in the direction perpendicular to the one where

the gradient is observed are surrounded by an adiabatic

wall. In particular, Neek-Amal et al. [2] have reported the

ocurrence of an almost linear temperature gradient (c.f.

figure 1 of reference [2]), for the case of the d = 2 Ising
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model, by using the Creutz algorithm. On the other hand,

the mean-field treatment given by the well known Fourier

equation [13], namely

∂2T (x, t)

∂x2
−K

∂T (x, t)

∂t
= 0,

T (0, t) = T1, T (L, t) = T2,

where T (x, t) is the temperature along the solid and K

is the (constant) thermal conductivity, predicts a linear

temperature gradient between both baths. In fact, we as-

sumed a solid of length L where the gradient is applied,

while the remaining directions are irrelevant. Then, in the

t → ∞ limit, the time-dependent contributions to the so-

lution become negligible, and one gets the linear gradient,

namely,

T (x) = T1 +
(T2 − T1)

L
x. (1)

It is worth mentioning that the above simulation stud-

ies [1,2,3,5] of the Ising system are precisely focused on

the calculation of the thermal conductivity, among other

relevant observables, such as the energy profiles of the sys-

tems transversal sections. Also, in all cases the discussed

results were obtained under stationary conditions. How-

ever, simulation results that are in contrast to the mean-

field theory, clearly show that the thermal conductivity is

not a constant in these systems since it depends on the

local temperature (or energy) [1,2,3,5], hence the tem-

prature may not necessarily grow linearly along the heat

propagation direction. In fact, in the presence to ther-

mal fluctuations it is expected that transport properties

may exhibit non-trivial spatial patterns due to the non-

equilibrium nature of the system under study [5], and un-

der these conditions the thermal conductivity depends on

the temperature (apart from other relevant parameters of

the model). In particular, for the Ising system in a ther-

mal gradient, Agliari et al. [5] reports that K(T ) exhibits

a peak slightly above criticality, whose position is inde-

pendent of both the lattice size and the temperature dif-

ference between the extrems of the sample. Therefore, the

system that we study in the present paper is not simply

an Ising model where different temperatures are imposed

at the bundaries, but it describes a system where the tem-

perature gradient is present in the heat bath itself and the

transport properies of the system are determined also by

the bath and not only by the Ising dynamics. While the

linear gradient used in our calculations is motivated by the

fact that we considered a sample in contact with a thermal

bath that intrinsically has a gradient, that assumption can

also be supported by a physical argument. In fact, to de-

fine a thermal conductivity there must exist mechanisms

such that the degrees of freedom (e.g. the phonons) dom-

inate the thermal properties and spins locally thermalize

to the temperature of the lattice. In the absence of such

mechanisms the phonons at one end of the crystal will not

be in thermal equilibrium at a temperature T2, and those

at the other end in equilibrium at T1 [13]. Then, if we as-

sume that the lattice has a constant conductivity, at least

in the temperature range where the magnetic transition

takes place, we expect a linear growth of the temperature

when a temperature difference is apllied to the extrems.
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In the present paper we not only undertake a com-

pletely different approach than those used in previous stud-

ies, as already anticipated, but we are also interested in

both the dynamic and the stationary behavior of a broad

spectra of physical observables. In fact, we consider that

the Ising ferromagnet is already in contact with a ther-

mal bath that intrinsically has a thermal gradient along

the x−direction, as described by equation (1). In this way

each column of coordinates xi = i, with i = 1, 2, ...., L

of our two-dimensional (lattice) system, is in equilibrium

with the thermal bath at temperature T (xi). Under this

condition we apply the standard Metropolis dynamics by

considering the proper temperature for each column. So,

the whole system reaches a stationary, non equilibrium

regime, with a net flux of energy from the hotter to the

colder extremes at temperatures T2 and T1, respectively.

As already anticipated, we are interested in the study

of the dynamic behavior of the system, i.e., by addressing

both the relaxation dynamics and the short-time dynamics[14],

as well as the stationary behavior that is established in

the long-time regime. By using the dynamic scaling the-

ory [14] and the finite-size scaling theory [18], both de-

veloped for the analysis of critical behavior of samples in

homogeneous thermal baths, we are able to rationalize all

measurements performed in our thermal gradient system.

In this way we determined not only the critical tempera-

ture but also relevant critical exponents such as those of

the order parameter (β), the susceptibility (γ), the corre-

lation length (ν), etc. We also show that the hyperscaling

relationship given by d∗ − 2β/ν = γ/ν holds, with an ef-

fective dimension d∗ = 1, which reflects the fact that the

susceptibility is measured as the fluctuations of the order

parameter (magnetization) per unit of length along the

direction perpendicular to the gradient.

The paper is organized such that in Section 2 we pro-

vide the description of the model and the simulation method,

in order to allow for a smooth introduction of the theoret-

ical background in Section 3. In section 4 we present and

discuss the results. Finally, our conclusions are stated in

Section 5.

2 BRIEF DESCRIPTION OF THE ISING

MAGNET IN A THERMAL GRADIENT

AND THE SIMULATION METHOD

We performed simulations of the Ising model in the two-

dimensional square lattice with a rectangular geometry,

with a Hamiltonian given by

H = −J
∑

〈ij,i′j′〉
si,jsi′,j′ , (2)

where the spin variables can assume two values, i.e. sij =

±1, J > 0 is the coupling constant that is set positive

in order to account for ferromagnetic interactions, and

summation runs over nearest-neighbor sites as indicated

by the symbol 〈ij, i′j′〉. The Ising system is an archety-

pal model for the study of second-order equilibrium phase

transitions. In fact, it is well known that the local interac-

tions of the Hamiltonian given by equation (2) lead to a

macroscopically observable transition between an ordered

ferromagnetic phase and a disordered paramagnetic one,
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which in d = 2 dimensions takes place at the Onsager

critical temperature Tc =
2J

kB ln(1+
√
2)
[15], where kB is the

Boltzmann constant (hereafter we report all temperature

values in units of J/kB).

In this work we placed the Ising ferromagnet of size

L × M in contact with a thermal bath that intrinsically

has a thermal gradient along the L−direction, as given by

equation (1). Therefore, each column of length M located

at x = i, with 1 ≤ i ≤ L, is in thermal equilibrium with

the bath temperature T (i) = T2 +(T2 −T1)i/L, where T1

and T2 are the temperatures on the left- and right-hand

sides of the magnet, respectively. Since we are interested

in the study of the critical behavior, the temperatures are

selected such that T1 < Tc < T2, so that a phase transi-

tion between the ordered phase on the left-hand side and

the disordered one at the right-hand side can be observed

in a single simulation run. As imposed by the simulation

geometry used we take periodic boundary conditions in

the direction perpendicular to the gradient, while open

boundary conditions are adopted for the extremes of the

sample in the direction parallel to the gradient.

In order to perform the Monte Carlo simulation, a

spin sij selected at random and the change of the energy

(∆H) involved in a flipping attempt sij → −sij are eval-

uated by using the Hamiltonian given by equation (2).

Now, due to the applied thermal gradient, the flipping

probability given by the Metropolis dynamics W (sij →

−sij) = exp(−∆H/kBT (i)) depends on the ith column

(1 ≤ i ≤ L) where the selected spin is located. Subse-

quently, the standard Monte Carlo procedure is imple-

mented.

The upper panel of figure 1 shows a typical snapshot

configuration obtained under stationary conditions by us-

ing the above-described procedure, while the lower panel

shows a sketch of the linear gradient applied to the sample.

Due to the applied thermal gradient, all relevant phys-

ical observables depend on the coordinate running in the

direction of the gradient itself, so one essentially has to

measure profiles of the observables, such as the nth mo-

ment of the order parameter (magnetization in this case)

is given by

m
(n)
i (T (i), x, t) =

(

1

M

M
∑

j=1

si,j(t)

)n

, (3)

where the dependence on the gradient axis (1 ≤ i ≤ L) is

explicitly indicated. Here, we have also included the time

dependence, where a Monte Carlo time unit involves the

random selection of L×M spins, as usual.

Furthermore, other measured observables are the sus-

ceptibility profiles, evaluated as the magnetization fluctu-

ations, i.e.,

χi(T (i), t) =
1

M
[m

(2)
i (T (i), t)− (m

(1)
i (T (i), t))2]; (4)

and the second- and the fourth-order cumulants

U2(T (i), t) =
m

(2)
i (T (i), t)

(m
(1)
i (T (i), t))2

− 1, (5)

and
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Fig. 1. (Color online) The upper panel shows a typical snap-

shot configuration of a two-dimensional Ising ferromagnet in

contact with a thermal bath that intrinsically has a linear tem-

perature gradient that grows from T1 = 0.2 (left-hand side) to

T2 = 4.338 (right-hand side). Up and down spins are shown in

blue and red, respectively. The lower panel is a sketch of the

applied gradient, showing the critical region around Tc ≃ 2.269

by means of a dotted line. The critical interphase between the

ordered phase (left-hand side) and the disordered one (right-

hand side) can be observed in the snapshot. More details in

the text.

U4(T (i), t) = 1−
m

(4)
i (T (i), t)

3(m
(2)
i (T (i), t))2

, (6)

respectively.

In order to understand the behavior of spin-spin cor-

relations in a system in the presence of a temperature

gradient, we also measured the spin-spin spatial correla-

tion function in the direction perpendicular to the thermal

gradient, defined for each column i at temperature Ti as

g(Ti, r) =
1

(M − r)

M−r
∑

j=1

(〈si,jsi,j+r〉−〈si,j〉〈si,j+r〉), (7)

where r is the distance between spins. Furthermore, we

also measured the correlation function in the direction

parallel to the thermal gradient, by fixing the origin just

at Tc.

For the sake of completeness it is worth mentioning

that for dynamic simulations the time dependence of the

already defined observables is obtained by averaging over

a (large) number of different realizations (NR) performed

with different sets of random numbers and physically equiv-

alent initial conditions. Also, measurements corresponding

to the stationary regime are performed by taking aver-

ages after a large number (Nc) of different configurations,

which are obtained after disregarding a (large) number

(ND) of Monte Carlo time steps, in order to allow for the

system stabilization.

3 THEORETICAL BACKGROUND

By considering a fully disordered sample but with a small

initial magnetization (m0), the general scaling behavior of

the n-th moment of the magnetization that it is expected

to hold for temperatures close to the critical region, such

that ǫ ≡ (T (i)−Tc)
Tc

≃ 0, is given by[14],

m(k)(ǫ, t, L) = b−
kβ

ν m̃(k)(b−zt, b
1

ν ǫ, b−1L, bx0m0), (8)

where β and ν are the order parameter and the correla-

tion length (static) critical exponents, z is the dynamic



Muglia and Albano: The Ising magnet in a thermal gradiente 7

exponent, and b is a suitable scaling parameter[14]. Ac-

cordingly to the short-time dynamic scaling theory, x0 is

a new exponent that governs the early-time scaling be-

havior of the moments of the initial magnetization. Now,

by setting b ≡ t1/z , just at the critical point (ǫ ≡ 0[16]),

and for the short-time regime such that the correlation

length ξ(t) ∼ t1/z is smaller than the typical lattice side

(ξ < L,M) but slightly larger than the lattice spacing,

one has that for k = 1 equation (8) becomes

m(t) ∼ tθ, (9)

where the exponent θ = x0−β/ν
z is the scaling exponent of

the initial increase of the magnetization and equation (9)

holds for tx0/z ≪ 1[17].

Furthermore, for ǫ = 0 and m0 ≡ 0 the scaling be-

havior of the fluctuations of the second moment of the

magnetization, which give the susceptibility according to

equation (4), is given by[14]

χ(t) ∼ t(d−2β/ν)/z. (10)

It is worth mentioning that if the hyperscaling relationship

νd − 2β = γ holds, one has the well-known dependence

χ(t) ∼ tγ/νz, where γ is the susceptibility exponent.

On the other hand, by starting from a well ordered

initial configuration, e.g., form0 = 1, the scaling approach

given by equation (8) for k = 1 becomes

m(ǫ, t) ∼ t−β/νz m̃(t1/νzǫ). (11)

Therefore, just at criticality (ǫ ≡ 0), one should observe a

power-law decrease of the initial magnetization according

to[18]

m(t) ∼ t−β/νz, ǫ = 0, (12)

while the logarithmic derivative of equation (11) evaluated

just at criticality gives[14]

∂ ln(m(t))

∂ǫ

∣

∣

∣

∣

ǫ≡0

∼ t1/νz . (13)

Finally, note that the scaling behavior of the cumulants

(see equations (5) and (6)) can also be worked out by using

equation (8) and one gets

U2(t) ∼ td/z, (14)

and

U4(t) ∼ td/z, (15)

respectively.

Summing up, by properly measuring the dynamic be-

havior of the system at criticality one should be able to

determine the exponents, θ (equation (9)) and (d−2β/ν)z

(equation (10)), by starting from disordered initial config-

urations; and β/νz (equation (11)), 1/νz (equation (13)),

and d/z (equation (14)), by starting from ordered initial

configurations.

Usually the dimensionality of the system is known so

that this set of five independent determinations becomes

redundant in order to evaluate four critical exponents.

However, as will be shown later on, in the case of a system

in a thermal gradient the complete set is essential for the

determination of the effective dimensionality involved in

the scaling relationships. Of course, in our gradient simu-

lations we obtained (simultaneously and by means of sin-

gle sets of simulations) information over a wide range of T
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(T1 < Tc < T2), while the above discussed scaling relation-

ships are expected to hold only close to the critical region,

i.e., for columns of coordinates such that xc ≃ (Tc−T1)
(T2−T1)

L

(see equation (1)).

On the other hand, equation (8) is also useful in order

to describe the stationary scaling regime. In fact, for t →

∞ the value of m0 becomes irrelevant and one gets the

standard scaling relationship for the magnetization given

by[18]

m(ǫ, L) = L−β/νm̃(ǫL1/ν), (16)

where m̃ is a suitable scaling function. Furthermore, just

at criticality (ǫ ≡ 0) equation (16) yields

m(ǫ = 0) ∼ L−β/ν , (17)

which reflects the fact that the magnetization vanishes at

criticality in the thermodynamic limit (L → ∞).

Also in the stationary limit, the spin-spin correlation

function (equation (7)) has its own scaling relationship,

given by[19]

g(ǫ = 0, r) ∼ r−(d−2+η), (18)

where η is the critical exponent associated with spatial

correlations, which is related to other exponents by the

relationship γ = ν(2− η)[19].

Furthermore, for homogeneous systems away from the

critical temperature, the spin-spin correlation function ex-

hibits an exponential decay behavior given by:

g(Ti, r) ∼ e−r/ξi , (19)

where ξi is the correlation length, at temperature Ti, which

diverges close to criticality, according to

ξi ∼ A |Ti − Tc|
−ν , (20)

where ν is the correlation length exponent.

4 RESULTS AND DISCUSSION

Let us begin our presentation with results correspond-

ing to dynamic measurements obtained by starting the

simulations with fully ordered configurations such that

m(i, t = 0) ≡ 1, ∀i, which corresponds to the ground

state configuration at T = 0. By following the standard

procedure the sample is suddenly quenched to the temper-

ature of the heat bath with the proper thermal gradient.

So, each column of the sample evolves, at its own tem-

perature, towards its stationary configuration (t → ∞),

and in particular we focus our attention on the critical re-

gion. According to equation (8), or equivalently to equa-

tion (11), one expects to measure a power-law behavior

of the physical observables just at criticality, while devi-

ations from that type of behavior have to be found away

from Tc. By plotting all the relevant measured observ-

ables (m, ∂ ln(m)
∂(ǫ) , U2 and U4) as obtained for samples of

different sizes (100 ≤ L ≤ 1000), the best set of power

laws is obtained for Tc = 2.2691(3)[20], which is in full

agreement with the Onsager critical temperature[15] of

the Ising model in d = 2. Figure 2 shows the time de-

pendence of the second-order cumulant (see equations (5)

and (14)) as obtained close to criticality by using a square

lattice of side L = 1000. Here, the thermal gradient is set

between T1 = 2.0 and T2 = 2.4, while the results are aver-

aged over NC = 10000 different runs. From the best fit of

the data shown in figure 2 we obtained d/z = 0.474(6)[20].
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Fig. 2. (Color online) Log-log plot of the second-order cumu-

lant versus time as obtained for a lattice of side L = 1000 and

averaging over NC = 10000 different runs. The full line corre-

sponds to the best power-law behavior that is identified as the

critical point. Notice that dashed (dashed-dotted) lines show

upward (downward) deviations that are typical for T > Tc

(T < Tc). The best fit of the solid line yields d/z = 0.474(6).

More details in the text.

Our measurements obtained by using initially ordered

configurations are completed by log-log plots of the time

dependence of the magnetization and its logarithmic deriva-

tive, as shown in figures 3(a) and 3(b), respectively. The

best plots of the lines, obtained for data corresponding

to the same column that was identified with the critical

temperature in figure 2, yield β/νz = 0.058(1)[20], and

1/νz = 0.4857(4)[20], respectively.

On the other hand, by starting the simulations with

fully disordered initial configurations such that m0 = 0,

which corresponds to samples in contact with a thermal

bath at T = ∞ that are then suddenly annealed to a de-

sired thermal gradient, we measured the time evolution of

the fluctuations of the order parameter that under equi-

Fig. 3. (a) (Upper panel) and (b) (lower panel) show log-log

plots of the magnetization and its logarithmic derivative ver-

sus time, respectively. Results obtained at criticality by using

samples of side L = 1000 and by averaging over NC = 10000

different runs. In both panels the straight lines correspond to

the best fits of the data shown by means of circles. The lin-

ear gradient of the thermal bath is set between T1 = 2.0 and

T2 = 2.4. More details in the text.

librium conditions is identified with the magnetic suscep-

tibility, as shown in figure 4.

Furthermore, initially disordered configurations with

a preset (vanishing) initial magnetization are suitable for

the measurement of the initial increase of the order param-

eter, which after the scaling arguments discussed within

the context of equation (9), is expected to be observed

for times such that t << m
−z/x0

0 . Figure 5 shows log-log

plots of m versus t as obtained for the different values of



10 Muglia and Albano: The Ising magnet in a thermal gradiente

Fig. 4. Log-log plot of the fluctuations of the order parameter

versus t, as obtained for the column identified with the critical

temperature in the plots shown in previous figures. Data corre-

sponding to L = 1000 and taking a linear gradient set between

T1 = 2.0 and T2 = 2.4. Averages are taken over NC = 10000

different initial configurations. The best fit of the data, shown

as a full line, has slope γ/νz = 0.3570(4).

m0 (0.035 ≤ m0 ≤ 0.050). The data shown in figure 5

correspond to the previously identified ”critical” column.

The best fits of the curves give estimates of the initial

increase exponent θ that, after a proper extrapolation to

the limit m0 → 0 (not shown here for the sake of space),

yields θ = 0.196(6)[20].

Based on the results obtained by means of dynamic

measurements only, we are in a condition to outline a few

interesting preliminary conclusions on the critical behav-

ior of the Ising magnet in contact with a gradient thermal

bath. On the one hand, the best fits of all physical observ-

ables were found at the same column (i.e., the same tem-

perature) of the sample, which has been identified as the

critical temperature Tc = 2.2691(3)[20]. This value is in

full agreement with the well known exact result early eval-

Fig. 5. Log-log plot of the magnetization versus t, as ob-

tained for the column identified with the critical temperature

in the plots shown in previous figures. Data corresponding to

L = 1000 and taking a linear gradient set between T1 = 2.0 and

T2 = 2.4. Averages are taken over NC = 10000 different ini-

tial configurations. Each curve corresponds to a different initial

magnetization m0, as indicated, and the dashed lines are the

fits of the data. The full straight line corresponds to θ = 0.196,

i.e. the value of the initial increase exponent obtained by ex-

trapolation to m0 → 0. More details in the text.

uated by Onsager, i.e., TOnsager ≃ 2.2692. On the other

hand, by using β/νz = 0.058(1) and 1/νz = 0.4857(4)[20]

as determined by means of the measurements of the mag-

netization and its logarithmic derivative, respectively, we

obtained β = 0.120(2)[20], in excellent agreement with the

exact value β = 1/8 = 0.125[15]. Additionally, by assum-

ing that the hyperscaling relationship dν − 2β = γ holds,

just dividing by νz one can write

d

z
−

2β

νz
−

γ

νz
= 0, (21)

where equation (21) can be interpreted as a ”dynamical”

hyperscaling relationship. Then, by replacing the mea-

sured exponents in equation (21) we obtain 0.001(9) on

the right-hand of the equality, a result that strongly sup-
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ports the validity of hyperscaling. On the other hand, we

found that the exponent for the initial increase of the order

parameter (θ = 0.196(6)) is in full agreement with previ-

ous numerical results obtained by applying the Metropolis

dynamics to the two-dimensional Ising magnet (d = 2) in

a homogeneous bath, namely, θ = 0.191(1)[21]. However,

it should be mentioned that this exponent depends on the

dynamics used (e.g. Metropolis, Glauber, Heat-Bath, etc.)

and that our Gradient-Metropolis dynamics may not give

the same exponents as the proper standard Metropolis

dynamics.

Let us now point our attention to stationary results

obtained after disregarding ND = 5 × 105 Monte Carlo

steps, in order to allow for the stabilization of the sample,

and evaluated during the subsequent time interval of 5×

105 Monte Carlo steps.

Figure 6(a) shows plots of magnetization profiles (i.e.,

plots of m(i) versus Ti, where Ti is the temperature of the

ith column), as obtained for samples of different sizes.

Since the temperatures at the extremes of the sample

are kept constant at T1 = 0.64 and T2 = 3.40, each

curve in figure 6(a) corresponds to different gradients. It

follows that finite-size effects are negligible in the low-

temperature range, e.g., for T < 2.1, while these effects

become slightly evident above criticality.

It is worth mentioning that the results shown in fig-

ure 6(a) can be replotted in order to test whether the

standard scaling also holds for gradient measurements. In

fact, figure 6(b) shows log-log plots ofm(Ti, L)L
β/ν versus

Fig. 6. (Color online) (a) Plot of the magnetization profiles

versus T as obtained for samples of different thermal gradients.

The temperatures at the extremes of the sample are T1 = 0.64

and T2 = 3.40, and results are averaged over ND = 5 × 105

Monte Carlo steps after disregarding the initial 5× 105 Monte

Carlo steps in order to allow for the stabilization of the sam-

ples. (b) Scaling plots of the data already shown in (a) as ob-

tained by using equation (16). More details in the text.

|Ti−Tc|L
1/ν as obtained by using the data already shown

in figure 6(a). The quality of the collapse supports the va-

lidity of the standard scaling Ansatz for the case of our

gradient measurements; however, the terms of correction

to scaling, which are neglected in our analysis, cannot be

disregarded. On the other hand, just by selecting the crit-

ical column one has that equation (17) simply gives the

monotonic decay of the magnetization when the system

size is increased, namely m(T = Tc) ∼ L−β/ν , a result
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Fig. 7. Log-log plot of the magnetization, measured close to

criticality, versus the system side L. Data corresponding to the

critical column (open circles), and two adjacent columns: T <

Tc, open squares, and T > Tc, open diamonds, respectively.

Results obtained by averaging over 5× 105 Monte Carlo steps

after disregarding the first ND = 5 × 105 Monte Carlo steps

in order to allow for the stabilization of the system. The full

line has slope −β/ν = 0.125(9), and corresponds to the best

fit of the data. The other two lines correspond to the fits of

the data from adjacent columns and give the error bars to the

result[20]. More details in the text.

that has been verified in figure 7 where the best fit of the

data corresponds to β/ν = 0.125(9)[20].

As already established in the field of critical phenom-

ena, the so-called cumulants (see equations (5) and (6))

are suitable functions of the moments of the order param-

eter distribution function whose pre-scaling factor, disre-

garding high-order finite-size scaling corrections, is inde-

pendent of the system size. So, plots of the cumulants

versus the control parameter (i.e., the temperature of the

gradient thermal bath) should exhibit a common inter-

section point, as it is indicated with full straight vertical

Fig. 8. (Color online) Plots of the second- (a) and fourth-

order (b) cumulants U2 and U4 versus the temperature of the

column, as obtained for different values of the system side L as

indicated. The vertical straight lines on each graph indicate the

intersection points and are shown for the sake of comparison.

lines in the data shown in figures 8(a) and 8(b), obtained

with our gradient system for U2(L, T ) and U4(L, T ), re-

spectively. A careful inspection of the critical region close

to the interaction points reveals very small but system-

atic shifts of the intersection points between curves cor-

responding to adjacent system sizes. After proper extrap-

olation of the intersection points to the thermodynamic

limit (not shown here for the sake of space), we obtain

Tc(∞) = 2.284(1)[20] and Tc(∞) = 2.283(3)[20], for data

corresponding to U2 and U4, respectively.
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On the other hand, plots of the fluctuations of the or-

der parameter, which are identified with the susceptibility

in standard measurements, show peaks close to criticality

as expected (see figure 9). In fact, it is known that the

susceptibility exhibits rounding and shifting effects as the

size-dependent ”critical” temperature of the peaks (Tc(L))

converges toward the true critical temperature according

to a standard finite-size scaling relationship given by[18]

Tc(L) = Tc(∞) + constantL−1/ν. (22)

So, the inset of figure 9 shows plots of Tc(L) versus L−1

(here we assume ν = 1 for the correlation length exponent

as justified below) that yield Tc(∞) = 2.296(1)[20].

In additional simulations, we studied the spin-spin cor-

relation functions, both parallel and perpendicular to the

gradient direction. We measured the correlation function

in the perpendicular direction, by using equation (7) for

different temperatures, both lower and higher than Tc ≃

2.26918. We used a rectangular lattice of size L = 300,

M = 4000, and set the temperatures of the extremes of

the sample at T1 = 0.8 and T2 = 3.74, respectively. For

each measurement corresponding to a certain temperature

outside criticality, we plotted the correlation function ver-

sus the distance r, in log-linear plots as shown in figure

10(a). Then, by fitting the data to an exponential decay,

according to equation (19), we obtained the values of the

correlation length ξi(|Ti − Tc|). The inset of figure 10(a)

shows a linear-linear plot of ξ(T ) versus 1/(T − Tc) that

yields a straight line. This behavior confirms that equa-

Fig. 9. (Color online) Plots of the fluctuations of the mag-

netization versus the temperature of the column, obtained by

means of simulations with systems of different side, as listed in

the figure. The inset shows the extrapolation of the effective

”critical” temperature according to equation (22), which yields

Tc(∞) = 2.296(1) as the best fit (open circles). Notice that ex-

trapolation of data corresponding to the columns adjacent to

the critical one are also included, such that open diamonds and

open squares correspond to T < Tc and T > Tc, respectively.

More details in the text.

tion (20) holds with ν = 1, and from the slope we also

obtained the prefactor given by A = 1.16(4).

On the other hand, for the correlation function corre-

sponding to the column of the system with temperature

closest to Tc ≃ 2.26918, we performed a power-law fit ver-

sus the distance r, according to equation (18) (see figure

10(b)), which yields d− 2 + η = 0.238(3). By eliminating

the value of d from the exponent equation with the use

of relationship dν − 2β = γ, and by using values already

calculated from both stationary and dynamic simulations,

we obtained η = 1.22(1). This value is in excellent agree-

ment with η = 5/4 = 1.25, found by taking d = 1 in
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Fig. 10. (Color online) (a) Log-linear plots of the vertical spin-

spin correlation function g(T, r) versus the distance r. Different

curves correspond to different temperatures away from critical-

ity, as indicated. For each curve an exponential decay fit was

made, obtaining values of the correlation length ξ(T ). The in-

set in (a) shows the values of ξ versus 1/|T − Tc|. The linear

fit indicates that equation (20) holds, with an exponent ν = 1.

Furthermore, the slope of the fit gives us the value of the pre

factor A in equation (20), which is found to be A = 1.16(4).

(b) Log-log plot of g(T, r) versus r, as obtained for the critical

temperature, with its corresponding power-law fit (full line).

The exponent obtained corresponds to d− 2+ η = 0.238(3). A

rectangular lattice was used, with L = 300 and M = 4000. The

temperature gradient was set between T1 = 0.8 and T2 = 3.74.

Results obtained by averaging over 5× 105 Monte Carlo steps

after disregarding the first ND = 5× 105 Monte Carlo steps in

order to allow for the stabilization of the system. More details

in the text.

the relationship that results from combining γ = ν(2− η)

and dν − 2β = γ with the exact exponent values of the

two-dimensional Ising Model, i.e., ν = 1 and β = 1/8[15].

On the other hand, the correlation function in the di-

rection parallel to the thermal gradient has also been mea-

sured, by using a system of L = 5000 and M = 100, with

a gradient between temperatures T1 = 0.8 and T2 = 3.74,

respectively. The correlation function studied corresponds

to g(T, r) at the critical temperature, namely, g(Tc, r). It

is worth mentioning that correlations along the direction

of the applied gradient involve spins at different tempera-

tures, so a quantitative study such as the one done for ver-

tical correlations is no longer possible. Instead, we gain an

insight into the qualitative behavior of the Ising ferromag-

net in a thermal gradient. In fact, figure 11 shows g(Tc, r)

versus the distance r. For r > 0, we found that correla-

tions between the spins in the critical column and those

placed in columns at higher temperatures are almost neg-

ligible. On the other hand, for r < 0 correlations between

the spins located in the critical column and those placed

in columns at lower temperatures are measured. Here, the

correlations first abruptly decrease and then they become

almost constant for colder temperatures. The inset in fig-

ure 11 shows a log-log plot of a zoomed view of the area

near criticality, where absolute values of r were taken, in

order to account for both branches of g(r), namely, for

r > 0 and r < 0, respectively. The full line is a plot

of a power-law decay with exponent 1/4 = 0.25 and is

shown for the sake of comparison. By comparing the mea-

sured points with the full line, it can be inferred that close



Muglia and Albano: The Ising magnet in a thermal gradiente 15

Fig. 11. Plots of the correlation function g(T, r), where the

origin is taken just at the critical temperature. Here, for r < 0

(r > 0) one has T < Tc (T > Tc). A rectangular lattice was

used, with L = 5000 and M = 100. The temperature gradient

was set between T1 = 0.8 and T2 = 3.74, respectively. Results

obtained by averaging over 5 × 105 Monte Carlo steps after

disregarding the first ND = 5×105 Monte Carlo steps in order

to allow for the stabilization of the system. The inset shows an

enlarged view of the area close to criticality, on log-log scale.

Squares (circles) correspond to correlations with spins in the

direction of T < Tc (T > Tc). The full line is a plot of the

power law of r with exponent 1/4 = 0.25 and is shown for the

sake of comparison. Absolute values of r have been taken, in

order to show both branches of g(r). More details in the text.

enough to the critical column correlations have a func-

tional behavior in agreement with the well known scaling

law r−(d−2+η). This result reflects the fact that for the

considered gradient ∆T
∆L = 0.588 × 10−3, the region close

to r = 0 is almost at the critical temperature.

Let us now discuss the results obtained in the present

paper and perform comparisons to existing numerical re-

sults and/or exact values corresponding to the Ising mag-

Type Observable Tc

Dynamic Magnetization 2.2691(3)

Dynamic Cumulant U2 2.2691(3)

Dynamic 2nd order magnetization 2.2691(3)

Stationary Cumulant U2 2.284(1)

Stationary Cumulant U4 2.283(3)

Stationary Scaling of m 2.282(3)

Stationary Extrapolation of Tc(L) from χ 2.296(1)

Exact[15] - ∼ 2.26918

Table 1. List of critical temperatures (third column) obtained

by means of dynamic and stationary measurements, as listed

in the first column. More details in the text.

net in a homogeneous thermal bath. Table I summarizes

over seven independent estimations of the critical temper-

ature as follows from the measurement of different phys-

ical observables in our gradient Ising system. In all cases

we obtained an excellent agreement with the exact value,

pointing out that the proposed gradient method is suitable

for accurate determinations of critical points.

Pointing now our attention to the measured critical

exponents, we have already shown that our dynamic mea-

surements of d/z, β/νz, and γ/νz are fully consistent with

a sort of ”dynamic” hyperscaling relationship (equation

(21)). However, since the dimensionality entering in equa-

tion (21) appears in a quotient between exponents, more

precisely as d/z as follows from dynamic measurements

of the cumulant, one needs independent measurements in

order to obtain an unbiased estimation of d. The same rea-
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Exponent Present work Exact/numerical value

β 0.120(2) 1/8=0.125

ν 0.96(7) 1

η 1.238(3) 5/4=1.25 (Details in the text)

γ 0.736(1) 3/4=0.75 (Details in the text)

z 2.16(4) 2.166(7)[22]

θ 0.196(6) 0.191(1)[21]

d 1.02(8) −

Table 2. List of the critical exponents (second column), along

with the value of the dimensionality, obtained by combining

dynamic and stationary measurements. The third column lists

the exact value, in the first four rows, and the comparison value

from numerical simulations, in the fifth and sixth rows.

soning applies to the dynamic exponent z. Therefore, we

conclude that in order to obtain all the critical exponents

we have to combine measurements corresponding to both

the short-time dynamic simulations, namely, d/z, β/νz,

and γ/νz, and stationary simulations, namely, β/ν and

d − 2 + η. The results are shown in Table II, along with

the values for the exponents that are known exactly (β, ν,

η, and γ), and the best available numerical results (z and

θ), for the two-dimensional Ising model with a homoge-

neous thermal bath. It is worth mentioning that the error

bars in each value were propagated from those of the orig-

inal exponents, which in turn were calculated considering

the values of the physical observables from the adjacent

columns (at different temperatures) to the critical one[20].

There is an interesting result that involves both γ and

η because the values obtained are different in a quantity of

1 as compared with the exact values for the Ising ferromag-

net for d = 2, namely γ = 7/4 and η = 1/4. Furthermore,

if we determine the values of γ and η from the scaling rela-

tionships dν−2β = γ and γ = ν(2−η) by using the values

of the exponents found in this work, we roughly reach the

same results, namely γ = 0.74(8) and η = 1.23(8) re-

spectively. The reason for this apparent disagreement be-

comes evident when we calculate, from the combination

of dynamic and stationary results, the value of the effec-

tive dimensionality, obtaining d = 1.02(8), which strongly

suggests d = 1 as judged by the uncertainty interval.

If we now use d = 1 and re-calculate the exponents of

the Ising ferromagnet, we obtain γ = 3/4 = 0.75 and

η = 5/4 = 1.25, which are in perfect agreement with

the exponents found by means of our simulations. This

value for the effective dimensionality d takes into account

the fact that due to the presence of a thermal gradient,

the thermodynamic functions are calculated as profiles of

columns, thus lowering the effective dimensionality exactly

by one unit.

5 CONCLUSIONS

We have studied, by means of Monte Carlo numerical sim-

ulations, the dynamic and stationary critical behavior of

the two-dimensional Ising ferromagnet, in contact with a

thermal bath that exhibits a linear gradient between low-

and high- temperature extremes at T1 and T2 (T2 > T1),

respectively. It is worth mentioning that our proposed ap-
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proach, is based on the assumption that the ferromagnet

is in thermal equilibrium with the heat bath that intrinsi-

cally has a thermal gradient. This is in contrast to previous

studies by other authors [1,2,3,4] who placed only the ex-

tremes of the magnet in contact with two thermal baths at

T1 and T2, and subsequently measured the thermal con-

duction between these baths. While for the numerical im-

plementation of this ”conductivity approach” one needs

to use a suitable ”Creutz demon” algorithm[10], our more

straightforward approach can be implemented by means of

standard algorithms, e.g., the Metropolis dynamics, just

as in the present paper. Of course, our whole sample is out

of equilibrium, but a key feature is that each column of the

magnet (or sample in general) can be considered in equi-

librium with the gradient thermal bath that is in contact

with it. In this way, now one not only has information of

the system under study for a wide range of temperatures

(T1 < T < T2), but also by means of a suitable choice

of the temperatures of the extremes of the sample, such

that T1 < Tc < T2, where Tc is the critical temperature,

one can deal with samples simultaneously exhibiting the

ordered and the disordered phases. In this way, instead

of measuring average values of the physical observables at

each T , one actually measures ”thermal profiles” of the

observables averaged over (d− 1)-dimensional columns of

the sample. For this reason, the effective dimensionality

entering in the scaling relationships is d = 1.

Focusing our attention on the dynamic measurements,

the measured thermal profiles allow us to simultaneously

follow the time evolution of the sample for all tempera-

tures of interest and, by drawing suitable plots, quickly

identify the critical temperature (corresponding to a par-

ticular column) and determine the relevant critical expo-

nents. Similarly, for the case of stationary measurements,

we take advantage of the wide information available (criti-

cal temperature, critical exponents, correlation functions,

etc.) that can be obtained just by performing a single sim-

ulation. The results obtained for the critical temperature

and critical exponents are summarized and discussed in

the context of Tables I and II, respectively. Based on that

analysis, we conclude that the figures are remarkably accu-

rate when one considers the computational effort involved.

In fact, full agreement is obtained when our results are

compared with exactly known values, e.g., for the critical

temperature Tc, and the critical exponents β, ν, γ, and η,

as well as with the best available data taken from numer-

ical simulations of other authors, e.g., for the exponents θ

and z.

Based on the results presented and discussed in this

paper, we conclude that the study of critical systems in

the presence of a gradient of the suitable control parameter

is a useful and powerful tool to gain rapid inshight on the

behavior of the system, which could eventually be studied

in further details by using more sophisticated methods .

Furthermore, the studies of material systems under gra-

dient conditions could shed light on the understanding of

a wide variety of experimental and technologically useful

situations.
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