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Abstra
t

We study the stability of some 
lassi
al string worldsheet solutions employed for 
omputing the potential

energy between two stati
 fundamental quarks in 
on�ning and non-
on�ning gravity duals. We dis
uss

the �xing of the di�eomorphism invarian
e of the string a
tion, its relation with the �u
tuation orientation

and the interpretation of the quark mass substra
tion worldsheet needed for 
omputing the potential energy

in smooth (
on�ning) gravity ba
kground. We 
onsider various dual gravity ba
kgrounds and show by

a numeri
al analysis the existen
e of instabilities under linear �u
tuations for 
lassi
al string embedding

solutions having positive length fun
tion derivative L′(r0) > 0. Finally we make a brief dis
ussion of 't Hooft

loops in non-
onformal ba
kgrounds.

http://arxiv.org/abs/0911.0662v3


1 Introdu
tion

The proof of 
on�nement in non-abelian gauge theories from �rst prin
iples remains to date unsolved. The

strong-
oupling aspe
t of the phenomenon pre
ludes from atta
king it with standard QFT perturbative

te
hniques. Nevertheless a 
riteria for 
on�nement was proposed long ago by Wilson [1℄. The 
riteria states

that an area law behavior for the so 
alled Wilson loop indi
ates 
on�nement of the 
hromoele
tri
 �ux

tubes (QCD string). In parti
ular, an area law behavior for a re
tangular (in�nite strip) spa
etime 
ontour


orresponding to a stati
 quark-antiquark pair indi
ates a linear 
on�ning potential between quarks.

In the latest years, the gauge/string 
orresponden
e [2℄ has provided new insights into the 
on�nement

phenomenon. The 
ru
ial observation is that the string aspe
t of the 
hromoele
tri
 �ux tube manifests

in the dual perspe
tive by the appearan
e of a holographi
 dimension [2℄,[3℄. A string theory pres
ription

for 
omputing Wilson loops was proposed in [4℄: the gauge theory loop is to be though at in�nity in the

radial holographi
 
oordinate and the Wilson loop for fundamental quarks is de�ned by an open string whose

endpoints lie on the loop at in�nity. In the large Nc limit ('t Hooft limit) the QCD string self-intera
tions

vanish [6℄ and the dual gravity pres
ription for 
omputing the potential energy between quarks in a given

gauge theory amounts to �nding a minimal surfa
e in the 
orresponding gravity dual.

The 
anoni
al 
omputation for the potential energy between a pair of fundamental stati
 quarks (re
tan-

gular loop) involves a U-shaped string extending in the holographi
 dire
tion where the gauge theory quarks

separation L translates into the separation between the �xed open string endpoints lo
ated at in�nity. As the

quarks separation varies, the string worldsheet explores the holographi
 dire
tion, therefore, the minimum

radial position r0 rea
hed by the string depend on the endpoints separation distan
e L. This pro
edure was
applied to a number of paradigmati
 examples and gave results 
onsistent with gauge theory expe
tations,

in parti
ular a theorem stating su�
ient 
onditions for 
on�ning ba
kgrounds was proved in [8℄ (see [7℄ for

a review). Extensions to higher gauge group representations and 't Hooft loops were analyzed and proposed

in [9℄,[10℄,[11℄, they involve higher dimensional D-branes with or without worldvolume gauge �elds turned

on.

In many appli
ations to dual gravity ba
kgrounds the pres
ription [4℄ has been applied at the 
lassi
al

zeroth order level to establish 
on�nement, phase transitions or transport properties [7℄,[12℄, only re
ently

has the stability of some 
lassi
al string embeddings been studied [13℄,[14℄,[15℄ (see also [17℄,[18℄,[19℄,[20℄).

One of the motivations for the stability analysis, in generalized situations, has been the appearan
e of

multiple 
lassi
al embedding solutions for given boundary 
onditions [14℄,[15℄,[21℄ (see also [22℄) signaled by

the presen
e of extrema in the length fun
tion L(r0) (see [23℄ for related re
ent work). The presen
e of a

maximum separation length was interpreted as dual to the o

urren
e of s
reening. The aim of the present

work is to show that whenever one has a L′(r0) > 0 bran
h of solutions, they are unstable. We will 
on�rm

this statement by expli
itly showing the existen
e, in parti
ular gravity ba
kgrounds, of unstable (ω2 < 0)
modes for the L′(r0) > 0 bran
hes. It is worth mentioning that this is a satisfying result sin
e the expe
ted

physi
al behavior for the L(r0) relation from the gauge/string 
orresponden
e is to have L′(r0) < 0. We will

mention brie�y an analysis of 't Hooft loops 
omputations in non-
onformal gravity duals where instabilities

also arise.

Along the way we will dis
uss various aspe
ts of the 
lassi
al embeddings: the �rst one regards the

physi
al interpretation of the 
on�guration employed for obtaining a �nite potential energy between quarks

in smooth gravity ba
kgrounds, the se
ond regards the di�eomorphism invarian
e of the string a
tion and

its relation to the possible gauge 
hoi
es for the orientation of the in-plane �u
tuations, the third one is

the relation between instabilities of the string embedding and the L(r0) relation between the separation of

the string endpoints at in�nity L and the maximum depth rea
hed by the string probe in the holographi


dire
tion r0. It was proved in [15℄ that the presen
e of an extremum in the L(r0) relation leads to the

existen
e of a zero mode for the longitudinal �u
tuations, signaling an instability. We will 
on�rm this fa
t

by expli
itly 
omputing the lowest �u
tuation modes in a number of gravity duals examples.

The paper is organized as follows: in se
tion 2 we review the pres
ription for 
omputing Wilson loops

from gravity ba
kgrounds. In se
tion 3 we des
ribe the ba
kgrounds we will study and 
ompute their length

and energy fun
tions. In se
tion 4 we perform a quadrati
 �u
tuations analysis and 
ompute numeri
ally

the lowest �u
tuation modes. In se
tion 5 we reanalyze the result of se
tion 4 transforming the �u
tuations

equations of motion into a S
hrodinger problem. In se
tion 6 we brie�y dis
uss the 't Hooft loop 
ase and
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in se
tion 7 we summarize our 
on
lusions. We 
on
lude with two appendi
es with te
hni
al details.

2 Wilson loops and string solutions

2.1 Stati
 string U-shaped embeddings

The starting point for Wilson loop 
omputations, in the large Nc, λ ('t Hooft limit), from gravity duals with

metri
 gµν is the Nambu-Goto a
tion

1

S =
η

2πα′

∫

dτdσ
√

η h . (1)

Here h = dethαβ , hαβ = gµν∂αX
µ∂βX

ν
is the indu
ed metri
 on the string worldsheet, ∂α = ∂/∂ξα with

ξα = {τ, σ} the string worldsheet 
oordinates and Xµ
run over the target spa
e 
oordinates. A sign η

a

ounts for possible Eu
lidean (η = +) and (timelike) Lorentzian (η = −) 
on�gurations. The 
lass of

metri
s we 
onsider take the form

ds2 = −gt(r)dt2 + gx(r)dx
2
i + gr(r)dr

2 + gab(r, θ)dθ
adθb . (2)

The t, xi (i = 1, 2, 3) 
oordinates represent the gauge theory 
oordinates, r is the bulk holographi
 
oordinate
and θa (a, b = 1, .., 5) are additional angular 
oordinates parametrizing a 
ompa
t 5d spa
e Σ5. The potential

energy between quarks involves solving the NG a
tion for (timelike) worldsheets 
orresponding to strings

whose endpoints at in�nity lie on the loop to be 
omputed, typi
ally the endpoints are kept separated by a


onstant distan
e L in one of the xi 
oordinates whi
h we 
all x (see [7℄ for a review). We start analyzing

stati
 embeddings of the form t(τ), x(σ), r(σ), with all other 
oordinates �xed to 
onstants

2

. Pla
ing the

anzats into the a
tion leads to the 
orre
t equations of motion, one therefore has

S = − 1

2πα′

∫

dτdσ

√

gt(r) ṫ2 (gx(r) x́2 + gr(r) ŕ2)

= − 1

2πα′

∫

dtdσ
√

gt(r) (gx(r) x́2 + gr(r) ŕ2)

= − T
2πα′

∫

dσ
√

f2(r) x́2 + g2(r) ŕ2 . (3)

where g2(r) = gt(r)gr(r) and f2(r) = gt(r)gx(r). The reparametrization invarian
e of (1) fa
torizes the

temporal extension of the loop T and redu
es the Wilson loop 
omputation to �nding a geodesi
 in the

e�e
tive 2-dimensional geometry

ds2eff = f2(r)dx2 + g2(r)dr2 . (4)

The 
onserved 
harge asso
iated to x-translations in (3) is

f2(r) x́(σ)
√

f2(r)x́(σ)2 + g2(r)ŕ(σ)2
= A (5)

from whi
h one obtains

x́(σ) = ±Ag(r)
f(r)

1
√

f2(r) −A2
ŕ(σ) . (6)

Reparametrization invarian
e guarantees that (6) solves the r-equation of motion. Calling r0 the point given
by f(r0) = A, (6) 
an rewritten as [8℄

dx

dr
= ± g(r)

f(r)

f(r0)
√

f2(r) − f2(r0)
. (7)

1

Generi
ally one should take into a

ount 
ontributions from B2 ba
kground �elds but for the ansatz we will 
onsider they

do not 
ontribute to (1).

2

Generalizations 
onsidering moving quarks on the boundary, relevant for QGP appli
ations, are straightforward and

rephrased in terms of non-diagonal terms in the metri
[14℄,[21℄.
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The boundary 
onditions at in�nity for the string endpoints separation are ∆x|r=∞ = L. From (7) one

noti
es that the string rea
hes the boundary in an orthogonal way. Two natural gauge 
hoi
es that appear

in the literature are: x(σ) = σ (x-gauge) or r(σ) = σ (r-gauge). The �rst 
hoi
e (x-gauge) has the

bene�t of providing a 
omplete parametrization of the embedding r(x) when imposing x ∈ [−L/2, L/2] and
r(±L/2) = ∞ (the tip of the string is 
onventionally 
hosen to be at (r, x) = (r0, 0)). Making x → t,
equation (7) 
an be understood as a zero energy motion in a potential U(r) given by

U(r) =
f2(r)(f2(r) − f2(r0))

g2(r)f2(r0)
, (8)

the point r0 is therefore easily seen to be the minimum value in the holographi
 
oordinate rea
hed by

the string. The se
ond 
hoi
e (r-gauge) gives a double valued x(r) relation when imposing r ∈ [r0,∞) and
x(∞) = ±L/2. Nevertheless in several examples leads to 
losed analyti
al expressions for x(r) and moreover,

when 
omputing �u
tuations around the stati
 solution, drasti
ally simplify the equations of motion sin
e

no �u
tuations in the metri
 
omponents gµν should be taken into a

ount (see [8℄,[15℄). One should keep in

mind that the tip of the string is a spe
ial point in the r-gauge sin
e we must pat
h there the two bran
hes


orresponding to the ± signs in (7) (see the following se
tion).

Integrating (6) we arrive to the important L(r0) length fun
tion,

L(r0) = 2

∫ ∞

r0

g(r)

f(r)

f(r0)
√

f2(r)− f2(r0)
dr . (9)

Assuming that f(r), f ′(r) > 0 the lower limit r0 in (9) is generi
ally integrable

3

. Note that a �nite lhs in (9)

demands that g/f2
should de
ay at in�nity faster than 1/r. In the following se
tions we will be interested

in the relation (9). The derivative L′(r0) 
an be 
omputed as follows [15℄ (see also the re
ent work [33℄),

L′(r0)

2
= − g(r)

√

f2(r)− f2(r0)

∣

∣

∣

∣

∣

r→r0

+ f ′(r0)

∫ ∞

r0

f(r)g(r)

(f2(r) − f2(r0))
3
2

dr

= − g(r)
√

f2(r)− f2(r0)

∣

∣

∣

∣

∣

r→r0

+ f ′(r0)

∫ ∞

r0

dr
g(r)

f ′(r)

d

dr

(

− 1
√

f2(r) − f2(r0)

)

= − f ′(r0)g(r)

f ′(r)
√

f2(r) − f2(r0)

∣

∣

∣

∣

∣

r→∞

+

∫ ∞

r0

dr
f ′(r0)

√

f2(r) − f2(r0)

d

dr

(

g(r)

f ′(r)

)

,

where we have integrated by parts when passing from the se
ond to the third line. Sin
e the �rst term in

the rhs of the third line vanishes in all the ba
kgrounds we 
onsider, we obtain

L′(r0) = 2

∫ ∞

r0

dr
f ′(r0)

√

f2(r) − f2(r0)

d

dr

(

g(r)

f ′(r)

)

. (10)

The energy of the qq̄ 
on�guration was proposed in [4℄ to be given by the length of the string solution

(6) in the e�e
tive 2d metri
 (4),

E =
1

2πα′

∫

dσ
√

f2(r)x́(σ)2 + g2(r)ŕ(σ)2 (11)

The expressions for the energy in the x- and r-gauges, using (6) are

E(r0) =
1

2πα′

∫ L/2

−L/2
dx

f2(r(x))

f(r0)
(12)

=
1

πα′

∫ ∞

r0

dr
g(r)f(r)

√

f2(r) − f2(r0)
. (13)

3

A zero f ′(r0) = 0 leads to a r0-dependent logarithmi
 divergen
e in (9) (see [33℄ for a generi
 dis
ussion on divergen
es in

the length fun
tion).
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The energy 
omputed by expression (11) diverges due to the in�nite extension of the string

4

. The inter-

pretation for this divergen
e is that (11) 
ontains, in addition to the potential energy between quarks, the

self energy (mass) of the external quarks [4℄. In order to obtain a meaningful quantity and get the poten-

tial between quarks we should 
ompare (11) with respe
t to a referen
e state taking 
are to substra
t a r0
independent quantity. It is 
ustomary to take the length of a straight string stret
hing from in�nity all the

way down to the interior of the bulk spa
etime along the r 
oordinate, with all other 
oordinates set to


onstants, as the �bare� quark mass. Calling r = rmin the minimum allowed value for the radial 
oordinate

in the geometry (2), either be
ause of presen
e of a horizon (e.g. AdS in Poin
are 
oordinates or thermal

BH ba
kgrounds) or be
ause the spa
etime ends in a regular fashion (e.g. Witten AdS soliton, Malda
ena

Núñez and Klebanov-Strassler ba
kgrounds), the quark mass takes the form

5

mq =
1

2πα′

∫ ∞

rmin

g(r) dr . (14)

The potential energy between quarks obtained from (11) after substra
ting the quarks self energy (14) is

Eqq̄(r0) = E(r0)− 2mq

=
1

πα′

[

∫ ∞

r0

g(r)f(r)
√

f2(r) − f2(r0)
dr −

∫ ∞

rmin

g(r) dr

]

. (15)

Eliminating r0 from (9) and (15) we obtain the gauge/string proposal for the potential energy between

quarks in the planar large 't Hooft limit Vstring(L). In the following se
tions we will plot this relation in

several examples and analyze its fun
tional form. For 
ompleteness we 
ompute the derivative of (15), one

has

E′
qq̄(r0) =

1

πα′

[

− g(r)f(r)
√

f2(r) − f2(r0)

∣

∣

∣

∣

∣

r=r0

+

∫ ∞

r0

dr
f(r)g(r)f(r0)f

′(r0)

(f2(r)− f2(r0))
3
2

]

.

Using the �rst line of (10) one obtains [15℄

E′
qq̄(r0) =

1

2πα′ f(r0)L
′(r0) ⇒

dEqq̄
dL

=
1

2πα′ f(r0) , (16)

where r0 in the last expression should be understood as the fun
tion r0(L) obtained by inverting (9).

We end this se
tion quoting some 
onditions that must be satis�ed by any potential pretending to des
ribe

the intera
tion between physi
al quarks. The so 
alled `
on
avity' 
onditions proved in [24℄ are

dV

dL
> 0,

d2V

dL2
≤ 0 . (17)

This 
onditions hold independently of the gauge group and the details of the matter se
tor. The physi
al

interpretation of (17) is that the for
e between the quark-antiquark pair is: (i) always attra
tive and (ii)

a non in
reasing fun
tion of their separation distan
e. From (9),(15),(16) we �nd that the string proposal

Vstring(L) gives [22℄

dVstring
dL

=
dEqq̄
dr0

dr0
dL

=
1

2πα′ f(r0),
d2Vstring
dL2

=
1

2πα′

(

dL

dr0

)−1

f ′(r0) . (18)

The �rst 
ondition is always met in dual gravity ba
kgrounds sin
e by de�nition f(r) > 0. Although in

all our examples f ′(r) > 0, the se
ond 
ondition might fail whenever L′(r0) is positive. We will present


ases where this non-physi
al behavior appears and show that pre
isely in those 
ir
umstan
es the string

embedding solution (7)-(9) is unstable under small perturbations. This last statement was the motivation

of the present work.

4

The divergen
e in (13) is generi
ally r0-independent, an additional r0-dependent divergen
e might appear in (9) and (11)

whenever the string stret
hes to regions where f ′(r0) = 0.
5

See the dis
ussion at the end of se
tions 3.1.2 and 3.3 regarding the interpretation of the referen
e state in smooth gravity

ba
kgrounds.
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2.2 Stability analysis of 
lassi
al string embeddings

We will study in this se
tion the stability of the 
lassi
al solution (rcl(σ), xcl(σ)) given by (7)-(9) under small

(linear) perturbations. A general �u
tuation around the embedding solution 
an be written as

Xµ = (τ, xcl(σ) + δx1(τ, σ), δx2(τ, σ), δx3(τ, σ), rcl(σ) + δr(τ, σ), θa + δθa(τ, σ)) . (19)

We 
an use the di�eomorphism invarian
e of the a
tion to �x t = τ and forget about the t-equation of motion.

For the 
lass of metri
s 
onsidered in (2), the δx2 and δx3 �u
tuations de
ouple and as expe
ted satisfy the

same equation of motion, the δθa �u
tuations mix among themselves for generi
 
ompa
t manifolds and lead

to �ve eom (we will not analyze the angular �u
tuations in the present work and we 
onsistently set them

to zero), �nally the δx1 and δr �u
tuations result mixed in two 
oupled equations.

x

rr0

?

L
2

−L
2

Figure 1: r-gauge �xing: The dashed line rep-

resents the 
lassi
al embedding over whi
h we

perturb. At the tip r0, the �u
tuation is ori-

ented along the string, and therefore not phys-

i
al.

x

δr0

r

L
2

−L
2

Figure 2: x-gauge �xing: The dashed line rep-

resents the 
lassi
al embedding we are per-

turbing. This is a physi
al gauge 
hoi
e

all over the embedding solution, the plotted

(even) �u
tuation 
hanges the position of the

tip.

It is easily shown that the r- and x1-equations of motion are proportional. The remaining di�eomorphism

should therefore be used to �x the orientation of the (δr, δx1) ve
tor (in-plane �u
tuation) at ea
h point

of the solution (rcl(σ), xcl(σ)). After imposing a gauge 
onstraint one equation des
ribes the �u
tuations

in the (r, x1)-plane and we end up with a well posed system of di�erential equations. The physi
al gauge


hoi
e (n-gauge) would be to orient the �u
tuation along the normal dire
tion to the 
lassi
al embedding

(rcl(σ), xcl(σ)) and generi
ally this means to a

ount for �u
tuations on both x1 and r 
oordinates. Two other
natural possibilities 
onsidered in the literature 
orrespond to �xing δx1(τ, σ) = 0 (x-gauge) or δr(τ, σ) = 0
(r-gauge). The n- and x-gauge �xings, as mentioned in the previous se
tion, parametrize the �u
tuations

along the whole 
lassi
al embedding but the equations of motion are lengthier be
ause the δr �u
tuations

result in additional 
ontributions to the eom arising from 
hanges in the metri
 [18℄,[15℄. Note that at �rst

sight the n- and x-gauge �xings appear to allow for the os
illation of the tip, while the r-gauge �xing should
not (more on this in the following). We will 
hoose to work in the r-gauge, this means �xing δr(τ, σ) = 0
and work with simpler equations de�ned on half of the embedding. It will then be mandatory to analyze

the boundary 
onditions to be imposed at the tip (r0, 0) of the embedding in order to get a meaningful

solution. Moreover, sin
e we are 
onsidering �u
tuations along the x1 
oordinate, pre
isely at the tip the

δx1 �u
tuation is oriented along the string worldvolume and not transverse to it: the δx1 �u
tuation in the

r-gauge is therefore not physi
al at the tip of the embedding. The required additional analysis developed in

[14℄,[15℄ will be dis
ussed below. At last, another advantage of the r-gauge is that it gives 
losed expressions
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for the linearized �u
tuations equations of motion (see (22)-(23)), the isometry along x1 implies that upon


omputing �u
tuations over the 
lassi
al solution (7)-(9), we do not need the expli
it analyti
 solution xcl(r),
what 
ontribute to the equations of motion is its derivative (7) (as an example 
ompare (113) with (114)).

We would like to quote the work [14℄ where δr �u
tuations in the δx1 = 0 gauge �xing were 
onsidered over

(half) the 
lassi
al embedding parametrized in the r-gauge (see below eqn. (27),(28)).

In the following we will be 
on
erned with the equations of motion for the δxi �u
tuations, they 
an be

obtained by pla
ing the ansatz

t = τ, x1 = xcl(r) + δx1(t, r), x2 = δx2(t, r), x3 = δx3(t, r), r = σ , (20)

into the a
tion (1). Expanding to se
ond order in the �u
tuations one obtains

2πα′L(2) =
1

g(r)f(r)
√

f2(r) − f2(r0)

[

h2(r) (f2(r) − f2(r0)) (δẋ1)
2 − (f2(r) − f2(r0))

2(δx́1)
2

+f2(r)h2(r)((δẋ2)
2 + (δẋ3)

2)− f2(r) (f2(r)− f2(r0)) ((δx́2)
2 + (δx́3)

2)
]

, (21)

where h2(r) = gx(r)gr(r). The Euler-Lagrange equation for the δx1 �u
tuation is

[

d

dr

(

(f2(r) − f2(r0))
3
2

g(r)f(r)

d

dr

)

+ ω2h
2(r)

√

f2(r)− f2(r0)

g(r)f(r)

]

δx1(r) = 0 , (22)

where we fa
torized the time dependen
e of the �u
tuations as δx(t, r) = δx(r) e−iωt. The equations for the
�u
tuations transverse to the (r, x1)-plane obtained from (21) are

[

d

dr

(

f(r)
√

f2(r) − f2(r0)

g(r)

d

dr

)

+ ω2 h2(r)f(r)

g(r)
√

f2(r) − f2(r0)

]

δxm(r) = 0 , m = 2, 3 . (23)

Equations (22)-(23) are di�erential equations of the Sturm-Liouville type de�ned for the half line rmin ≤
r0 ≤ r < ∞ and we are interested in analyzing the existen
e of instabilities, in parti
ular determining the

range of values of r0 for whi
h ω2 < 0.
The boundary 
onditions to be imposed on the problem are Diri
hlet, this means �u
tuations keeping

the string endpoints �xed at the boundary δxi(τ, σ)|r=∞ = 0, but, the nature of the r-gauge parametrizing

only half of the (rcl(σ), xcl(σ)) embedding requires an additional analysis of boundary 
onditions at the tip

r = r0 (singular point of (22)-(23)). We start by analyzing (23), the expansion around the tip gives

6

d

dr

(√
r − r0

dδxm(r)

dr

)

+
ω2h2(r0)

2f(r0)f ′(r0)

1√
r − r0

δxm(r) ≈ 0 =⇒ δxm(r) ≈ C0 +C1

√
r − r0 +O(r − r0) .

(24)

Here C0,1 are arbitrary 
onstants 
orresponding to the two independent solutions of the di�erential equa-

tion (23), whi
h on
e 
hosen determine the whole series expansion for δxm(r). Physi
ally they 
orrespond

respe
tively to even and odd �u
tuations around the tip on
e we pat
h them with the �u
tuations around

the other half of the embedding, whi
h obviously satisfy the same eom. A dis
rete set of eigenvalues ω2
is

expe
ted if non-normalizable solutions exist in the large r-limit, we also expe
t the even solution to have the

lowest ω2
eigenvalue (see appendix B).

We now turn to the analysis of the in-plane δx1 �u
tuation. Expanding (22) around r = r0 one �nds

d

dr

(

(r − r0)
3
2
dδx1(r)

dr

)

+
ω2h2(r0)

2f(r0)f ′(r0)

√
r − r0 δx1(r) ≈ 0 =⇒ δx1(r) ≈ C′

0+C′
1

1√
r − r0

+O(
√
r − r0) .

(25)

A singular behavior appears for δx1 at the tip and one might be tempted to 
an
el it by imposing C′
1 = 0.

Nevertheless, as mentioned above one should take noti
e that the r-gauge �xing implies that, at the tip, δx1
is dire
ted along the string worldsheet and not transverse to it, therefore in the r-gauge the displa
ement

6

We 
onsider f(r) to be an in
reasing fun
tion of r having no zeroes ex
ept perhaps at the bottom of the bulk r = rmin.
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δx1 at the tip is not physi
al. In order to give a physi
al interpretation to the 
onstants C′
0,1 in (25) we now

make a 
hange from the r- to the x-gauge (
f. [12℄,[15℄). The 
hange of gauge on the ansatz (20) 
an be

implemented by a 
hange of variables on the solution (22) from r to a new variable whi
h we 
all u. It 
an
be implemented perturbatively, to �rst order in the �u
tuation the relation is [15℄,

u = r +∆(t, r) with ∆(t, r) =
δx1(t, r)

x′cl(r)
. (26)

This transformation performs the desired 
hange of gauge sin
e

x1 = xcl(r) + δx1(t, r) = xcl(u−∆(t, r)) + δx1(t, r)

≈ xcl(u)− x′cl(r)
δx1(t, r)

x′cl(r)
+ δx1(t, r) = xcl(u) (27)

r ≈ u− δx1(t, u)

x′cl(u)
, (28)

here r0 ≤ u < ∞. This is pre
isely the gauge �xing employed in [14℄ mentioned above. The se
ond term

on the rhs of (28) is interpreted as the r-dire
tion �u
tuation indu
ed by the (r-gauge) x1-�u
tuation. It

is now easy to see that it is �nite. The asymptoti
 behavior (25) and the expansion around the tip of (7),

x′cl(r) ∼ (r − r0)
−1/2

, plugged in (28) gives

r ≈ r0 − α(C′
0

√
u− r0 + C′

1) +O(u − r0) , (29)

with α a �nite 
onstant. The result (29) shows that the physi
al δr �u
tuation originated from the non-

physi
al divergent δx1 �u
tuation at the tip is manifestly �nite. Therefore we interpret the (C′
0) C

′
1 in (25)

as the �u
tuation that (do not) os
illates the tip position.

In the following se
tions we will show numeri
al solutions of (22) for various gravity ba
kgrounds deter-

mining the lowest eigenvalues leading to normalizable solutions. We will solve (22) by a shooting method

integrating numeri
ally from the tip r0 up to a large value r∞. The allowed values for ω2
will be obtained

imposing the numeri
al solution to be zero at r = r∞. The boundary 
onditions at the tip 
orresponding

to even solutions are C′
0 = 0 and C′

1 arbitrary, for numeri
al purposes we set C′
1 = 1, its value sets the

normalization of the �u
tuation. An even solution around the tip satis�es

dδr(t, r)

dx1

∣

∣

∣

∣

r=r0

= 0 where δr(t, r) = −δx1(t, r)
x′cl(r)

. (30)

Using (27) we 
an write (30) in terms of δx1(r). The boundary 
onditions for even solutions of (22) are

implemented numeri
ally as

δx1(r) + 2(r − r0)
dδx1(r)

dr
= 0, r → r0

√
r − r0 δx1(r) = 1 , r → r0 . (31)

Odd solutions C′
0 = 1 and C′

1 = 0 are implemented as

δx1(r) + 2(r − r0)
dδx1(r)

dr
= 1, r → r0

√
r − r0 δx1(r) = 0 , r → r0 . (32)

Summarizing, in general ba
kgrounds, the fun
tional relation of the 
lassi
al solution (7) between the x1 and
r 
oordinates at the tip takes the form x2cl(r) ≈ r − r0, and the asymptoti
 behavior of the x1-�u
tuations
over it, in the r-gauge, is of the form (25). Although a divergent pie
e appears in (25), an appropriate 
hange

of gauge shows that the divergent and non-divergent pie
es 
orrespond respe
tively to (physi
al) even and

odd �u
tuations around the tip.
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3 Gravity Ba
kgrounds

In this se
tion we 
ompute the string embeddings (6) dual to re
tangular Wilson loops for a a number of

paradigmati
 gravity ba
kgrounds. We review the AdS5×S5
[4℄ and AdS5-S
hwarzs
hild×S5

[16℄ 
ases. Next

we perform the numeri
al analysis of the equations (9) and (15) for the Malda
ena-Nuñez [25℄, Klebanov-

Strassler [26℄ and the generalized Malda
ena-Nuñez [28℄ ba
kgrounds. In all 
ases the geometry is supported

by some non-trivial p-form �uxes, but they will not be relevant for our 
omputations.

3.1 AdS5 × S5

This ba
kground is dual to N = 4 SYM with G = SU(N) gauge group in the Coulomb phase. The

AdS 
urvature R relates to the gauge theory 't Hooft 
oupling λ as R4 = α′2λ and the �ux of the 5-

form supporting the geometry N =
∫

S5 F5 relates to the rank of the gauge group as N = Rank(G) [2℄.

The 
onformal invarian
e of the gauge theory implies a Coulomb behavior for the potential V (L) ∼ 1/L
between quarks. The novelty of the gravity 
omputation is to 
ompute the gauge 
oupling dependen
e of

the proportionality 
oe�
ient.

3.1.1 Poin
are 
oordinates [4℄

This 
oordinate system is supposed to des
ribe the gauge theory formulated on R
3,1
. The metri
 is written

as

ds2 =
r2

R2
(−dt2 + dxidxi) +R2 dr

2

r2
+R2dΩ2

5 . (33)

One �nds f2(r) = r4/R4, g2(r) = 1. The radial 
oordinate range is 0 < r <∞, at r = 0 one �nds a Killing

horizon. Equation (7) 
an be analyti
ally solved in the r-gauge, one obtains

xcl(r) = ±
{

cte− R2

4r0
B

(

(r0
r

)4

;
3

4
,
1

2

)}

, r0 ≤ r <∞ (34)

where B(z; a, b) is the in
omplete beta fun
tion B(z; a, b) =
∫ z

0
ta−1(1− t)b−1dt. The boundary 
onditions �x

the 
onstant in (34) and relate the parameters r0 and L, setting xcl(r0) = 0 and xcl(∞) = ±L/2 one obtains
[4℄,

L(r0) =
R2

2r0
B

(

3

4
,
1

2

)

=
R2

r0

(2π)
3
2

Γ[ 14 ]
2
. (35)

The energy (15) takes the form [4℄

Eqq̄(r0) =
r0
πα′ (K(−1)− E(−1)) = − r0

2πα′
(2π)

3
2

Γ[ 14 ]
2
, (36)

here K(m), E(m) are the 
omplete ellipti
 integrals of �rst and se
ond kind. Eliminating r0 from expressions

(35)-(36) the AdS/CFT proposal for the intera
tion potential between fundamental quarks in the large 't

Hooft 
oupling for the N = 4 SYM theory is [4℄

Vstring(L) = − (2π)2

Γ[ 14 ]
4

R2/α′

L
∼ −

√
λ

L
. (37)

An attra
tive Coulomb potential is obtained as expe
ted from 
onformal invarian
e. The interesting result

is the

√
λ = (g2YMN)

1
2
dependen
e when 
ompared with the perturbative λ = g2YMN result. This suggests

that some renormalization of the 
harges takes pla
e at strong 
oupling [4℄. Note that in order to obtain

the negative quantity (37) starting from a positive de�nite one (see eqn (11)), it was 
ru
ial to substra
t the

quark masses (14) .
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3.1.2 Global 
oordinates

We dis
uss this example be
ause it 
lari�es 
on
eptual issues regarding the interpretation of the substra
tion

pro
edure (15) in smooth and 
omplete gravity ba
kgrounds (see se
tions 3.3, 3.4, 3.5).

Computations performed in AdS global 
oordinates are supposed to represent the N = 4 SYM gauge

theory de�ned on S3 × R. The AdS metri
 is now written as

ds2 = R2[− cosh2ρ dt2 + dρ2 + sinh2ρ dΩ2
3] . (38)

All 
oordinates are dimensionless in this 
ase with the AdS radius R setting the s
ale. We write the S3

metri
 as dΩ2
3 = dθ21 + sin2θ1(dθ

2
2 + sin2θ2dϕ

2). Being ϕ a 
y
li
 
oordinate, the appropriate string ansatz

is t = τ, ρ = ρ(σ), ϕ = σ, one obtains f2(ρ) = 1
4 sinh

22ρ, g2(ρ) = cosh2ρ. The remaining angular variables

must be set to θi =
π
2 (equator of S3

) in order to satisfy their eom. The 
onserved 
harge in the ϕ 
oordinate

leads to an e�e
tive one dimensional zero energy motion

ρ́2 + U(ρ) = 0 , (39)

where ρ́ = dρ/dϕ and the potential U(ρ) = sinh2ρ
(

1− sinh22ρ
sinh22ρ0

)

. ρ0 is the minimum radial position rea
hed

by the string when separating the string endpoints at in�nity by ∆ϕ = Φ. The Φ(ρ0) relation (9) is 
omputed

straightforwardly

Φ(ρ0) = 2

∫ ∞

r0

sinh 2ρ0

sinh ρ
√

sinh22ρ− sinh22ρ0
dρ . (40)

Sin
e the gauge theory is de�ned on a S3
there exists a maximum separation for the quarks and it 
orresponds

to pla
ing them at antipodes on the equator of the S3
. This results in the string rea
hing the origin Φ(0) = π

and leading to a smooth straight worldsheet (stret
hed along the radial r 
oordinate) parametrized by two

halves at ϕ = ϕ0 and ϕ = π + ϕ0 . The (divergent) energy (13) of the 
on�guration (39) is

E(ρ0) =
R

2πα′

∫ ∞

ρ0

sinh22ρ

sinh ρ
√

sinh22ρ− sinh22ρ0
dρ . (41)

Substra
ting the quark masses as in (15) leads to,

Eqq̄(ρ0) =
R

2πα′





∫ ∞

ρ0





2 coshρ
√

1− sinh22ρ0
sinh22ρ

− 2 cosh ρ



 dρ− 2 sinh ρ0



 , (42)

whi
h is �nite and negative de�nite (see �g.3). The �nite result (42) should be understood as resulting from

the 
omparison of (41) wrt the aforementioned smooth referen
e state 
onsisting in a straight string with

its endpoints at in�nity at antipodes on the S3
equator. We interpret this last 
on�guration as the one


orresponding to �in�nitely� separated quarks on S3
. Note that the referen
e state and the 
on�guration we

are analyzing satisfy di�erent boundary 
onditions.

3.2 AdS5-S
hwarzs
hild×S5

Finite temperature gauge theories are des
ribed by 
onsidering bla
k hole (BH) solutions in the gravity duals

[5℄. The near horizon geometry of N non extremal (bla
k) D3-branes is therefore 
onje
tured to des
ribe

N = 4 SYM at �nite temperature. As explained in [5℄, the appropriate BH ba
kground for des
ribing the

gauge theory on R
3,1

involves a deli
ate in�nite mass limit of the AdS5-S
hwarzs
hild BH resulting in

7

,

ds2 =
r2

R2

[

−(1− µ4

r4
)dt2 + dxidxi

]

+
R2

r2
1

1− µ4

r4

dr2 +R2dΩ2
5 . (43)

7

The limit results in the metri
 depending on only one s
ale, 
ontrary to the �nite mass 
ase where one has two parameters:

the temperature (BH mass) and the AdS radius. This last geometry was shown to exhibit a phase transition (Hawking-Page),

whi
h was interpreted as dual to the 
on�niement/de
on�nement phase transition in N = 4 on S3
[5℄.

9



0.5 1.0 1.5 2.0 2.5 3.0
F

-14

-12

-10

-8

-6

-4

-2

0
VstringHFL

Figure 3: Vstring(Φ) obtained from (40) and (42). For small angular separations

between the string endpoints Φ ≪ 1 one �nds the expe
ted Coulomb behavior

V ∼
√
λ/(RΦ). For larger separations the solution deviates due to the 
ompa
t-

ness of the S3
.

The BH horizon is lo
ated at r = µ and its temperature is T = µ
R2π. It is 
onvenient to work with

dimensionless 
oordinates, s
aling r = µ ρ, t = R2/µ t̄ and x = R2/µ y one obtains

ds2 = R2

[

−
(

ρ2 − 1

ρ2

)

dt̄2 + ρ2dyidyi +
1

ρ2 − 1
ρ2

dρ2 + dΩ2
5

]

. (44)

The s
ale of the dimensionless gauge theory 
oordinates t̄, yi in (44) is set by R2/µ and one �nds f2(ρ) =
ρ4 − 1, g2(ρ) = 1 and ρ = 1 as the horizon lo
ation. The expressions for the dimensionless qq̄ separation

length (9) and potential energy (15) 
an be analyti
ally 
omputed [15, 16, 22℄

L̄(ρ0) =
(2π)

3
2

Γ[ 14 ]
2

√

ρ40 − 1

ρ30
2F1

(

3

4
,
1

2
,
5

4
;
1

ρ40

)

(45)

Ēqq̄(ρ0) =
R2

πα′

[

1− (2π)
3
2

2Γ[ 14 ]
2
ρ0 2F1

(

−1

2
,−1

4
,
1

4
;
1

ρ40

)

]

(46)

Here ρ0 ≥ 1 is the minimum radial position rea
hed by the string and the minimum radial value rmin in

(15) was taken to be the horizon lo
ation rmin = µ. One 
an easily 
he
k that in the small temperature

limit LT ≪ 1 (
orresponding to ρ0 ≫ 1) one re
overs the zero temperature behavior (35)-(37). We have

plotted in �gures 4 and 6 the behavior of the length (45) and the energy (46) as fun
tions of ρ0. In �gure

5 we plotted the relation Vstring(L) obtained from (45)-(46) by eliminating ρ0, the result is a double valued

fun
tion.

Figure 4 shows a maximum L̄c ≃ 0.869 at ρ0c ≃ 1.177 whi
h implies that no smooth solution 
onne
ting

the pair of quarks exists for L̄ > L̄c. The only existing solution for L̄ > L̄c 
orresponds to two straight

strings rea
hing the horizon. This 
on�guration, used for the substra
tion in (15), is interpreted as the one


orresponding to a pair of free quarks. The existen
e of a maximum in the L(r0) relation in BH ba
kgrounds

has been interpreted as the gravity dual of thermal bath s
reening [16℄. Figure 4 also shows the existen
e

of two bran
hes of solutions for ea
h string endpoints separation distan
e L < Lc. The left bran
h (L′ > 0)
leads to a potential Vstring(L) not satisfying the 
onditions (17) and it should therefore be non-physi
al (upper

urve in �g. 5). The rewarding result as we shall see is that string theory is wise: the left bran
h should not

be trusted sin
e it is unstable under small perturbations (see se
tion 4.2).

The last point to 
omment is that although, as we shall show, all the L′ < 0 region (1.177 < ρ0 <∞) is

stable under small perturbations, one expe
ts the lower 
urve in �gure 5 solution to be metastable whenever

Eqq̄ > 0 (0.754 < L̄ < 0.869 or 1.177 < ρ0 < 1.524). The reason for this is that the (referen
e) two straight

lines solution has Eqq̄ = 0 and is therefore the absolute stable minimum fro 0.754 < L̄ < 0.869 (see �g. 6).

Taking this last fa
t into a

ount [16℄ suggested to take L̄max ≃ 0.754 as the s
reening length.
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Figure 4: L(ρ0) relation (45): A maximum is ob-

served for ρ0 ≃ 1.177. The two bran
hes to the

left/right of the maximum at ρ0c ≃ 1.177 lead to

a double valued Vstring(L) relation in �g. 5.

0.2 0.4 0.6 0.8
L

-2.0

-1.5

-1.0

-0.5

V
-

String

Figure 5: Double valued Vstring(L) obtained

from (45) and (46) eliminating numeri
ally

ρ0. The upper 
urve 
orresponding to the left
bran
h in �g. 4 does not satisfy the 
onditions

(17).

1.5 2.0 2.5
Ρ0

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

E
-

q q
-

Figure 6: Ēqq̄(ρ0) relation for thermal N = 4 SYM. Eqn. (16) guarantees an extremum in Eqq̄(r0)
and L(r0) at the same value of r0. The 
urve 
uts the axis at ρ0m ≃ 1.524, for ρ0 > ρ0m the U-

shaped solution is an absolute minimum, for ρ0 < ρ0m the two straight strings (referen
e) solution

is the absolute minimum.

3.3 Malda
ena-Núñez ba
kground [25℄

The r ≈ 0 of this ba
kground is supposed to des
ribe qualitatively the IR regime of d = 4 N = 1 SYM

theory. The probe brane 
on�guration leading to this solution 
onsists of N D5-branes wrapped on a �nite

2-
y
le at the origin of the resolved 
onifold. When the ba
krea
tion of the D5 on the geometry is taken

into a

ount, a transition �op o

urs (see [30℄) leading to a geometry with a smoothly 
ollapsing S2
and a

�nite S3
at the origin as for the deformed 
onifold (see [31℄ for a review of the solution). The solution was

independently found in the 
ontext of gauged supergravity in [32℄.

The metri
 
an be written as [25℄

ds2 = α′Neφ
[

− dt2 + dxidxi + dr2 + e2h (dθ2 + sin2 θdϕ2) +
1

4
(wi − Ai)2

]

, (47)

where wi (i = 1, 2, 3) are the su(2) right-invariant forms

w1 + iw2 = e−iψ(dθ̃ + i sin θ̃ dϕ̃), w3 = dψ + cos θ̃ dϕ̃ , (48)

11



and Ai, φ, h are given by

A1 = −a(r) dθ , A2 = a(r) sin θ dϕ , A3 = − cos θ dϕ

a(r) =
2r

sinh 2r

e2h = r coth 2r − r2

sinh2 2r
− 1

4

e2φ = e2φ0
sinh 2r

2eh
. (49)

φ0 is an integration 
onstant whi
h sets the value of the dilaton φ at the origin (some authors write gs = eφ0
).

The t, xi, r 
oordinates are dimensionless and its s
ale is set by (α′N)
1
2
. The metri
 (47) is regular in the

r → 0 limit with the 2-sphere (θ, ϕ) smoothly 
ollapsing and the resulting topology of the spa
etime is of the

form M7 × S3
, 
ontrary to the 
ases dis
ussed before where the spa
etimes were of the form M5 ×X5

with

X5

ompa
t. The reason for this is that the ba
kground (47) models the 5+1 gauge theory on the wrapped

D5-branes. Nevertheless, one expe
ts to get an e�e
tive 3+1 theory at energies E < 1/RS2
, where RS2

is

the radius of the sphere wrapped by the D5.
The paradigmati
 stati
 U-shaped ansatz leads to f2(r) = g2(r) = e2φ and the separation length (9) and

energy (15) take the form

L̄(r0) = 2

∫ ∞

r0

eφ(r0)√
e2φ(r) − e2φ(r0)

dr (50)

Ēqq̄(r0) =
N

π

[∫ ∞

r0

e2φ(r)√
e2φ(r) − e2φ(r0)

dr −
∫ ∞

0

eφ(r)dr

]

. (51)

The expression for the energy (51) 
an be rewritten in an illuminating form [8℄

Ēqq̄(r0) =
N

π

[∫ ∞

r0

(

e2φ(r) + e2φ(r0) − e2φ(r0)√
e2φ(r) − e2φ(r0)

− eφ(r)
)

dr −
∫ r0

0

eφ(r)dr

]

=
N

π

[

eφ(r0)
L̄(r0)

2
+

∫ ∞

r0

dr(
√

e2φ(r) − e2φ(r0) − eφ(r))−
∫ r0

0

eφ(r)dr

]

. (52)

In the large L limit the string rea
hes the bottom of the bulk (r0 → 0, see �gure 7) and the last two terms

in (52) do not 
ontribute (see [8℄). In the large L̄≫ 1 limit we obtain reinserting units [25℄

Vstring(L) ≈
eφ0

2πα′L ⇒ Tstring =
eφ0

2πα′ . (53)

The ba
kground (47) is therefore predi
ting linear 
on�nement for large quarks separation in agreement with

its proposed d = 4 N = 1 SYM dual gauge theory. From the (
hromoele
tri
) string tension (53) we see that

the value of the dilaton at the origin φ0 relates to the dynami
ally generated s
ale of the dual gauge theory.

We plot in �gures 7 and 8 the L̄(r0) and Ē(r0) relations (50) and (51). The divergen
e L → ∞ at r0 → 0
in �g. 7 is due to

d
dr (e

2φ(r))
∣

∣

r=0
= 0 (see [33℄ for a re
ent dis
ussion).

The result for the potential Vstring(L) in �gure 9 is rewarding, but the linear behavior o

urs for 
on�gu-

rations having energies above zero. A 
on
ern arises as to whether we should trust the result for Vstring > 0
(see last paragraph of se
tion 3.2). The substra
tion in (51) 
orresponds to a pair of straight strings running

along the radial dire
tion with the remaining spatial 
oordinates kept �xed. Being the ba
kground regular,

the strings 
annot end at any point in the interior and the only possibility for a smooth referen
e solution

is to pla
e the string endpoints at antipodes on the ϕ 
oordinate and having both the same x1 
oordinate

(see the horizontal blue line in �g. 10 and the related dis
ussion in se
t. 3.1.2). We 
on
lude that although

the linear 
on�nement o

urs for 
on�gurations having Eqq̄ > 0, the solution is stable and it 
annot de
ay

to the referen
e Eqq̄ = 0 state sin
e the two 
on�gurations being 
ompared in (51) satisfy di�erent bound-

ary 
onditions. Figure 10 depi
ts the relevant worldsheets for the re
tangular Wilson loop 
omputations in

smooth gravity ba
kgrounds.

12
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Figure 9: Potential energy Vstring(L) for the qq̄ pair obtained for the Malda
ena-Nuñez solution

eliminating numeri
ally r0 from (50)-(51). Note the 
hange of behavior from Coulomb like to

linear.

3.4 Klebanov-Strassler ba
kground [26℄

This ba
kground des
ribes a N = 1 quiver gauge theory with bifundamental matter �elds transforming

under SU(N +M) × SU(N). The probe branes 
on�guration leading to this geometry is 
onstru
ted as:

N D3-branes in the apex of the singular 
onifold plus M D5-branes wrapped in the topologi
al S2
of the


onifold and sharing the remaining three dimensions with the D3. The solution is supported by a 
onstant

dilaton φ = φ0, whi
h 
an be set to have gs ≪ 1 everywhere (
ontrary to the MN solution). The N = 1 �ow

SU(N +M) × SU(N) → SU(M) realized through a 
as
ade of Seiberg dualities in the gauge theory (see

[34℄) manifests in the geometry in a varying 5-form �ux.

The metri
 reads [26℄

ds2 = gsα
′M [h−

1
2 (r)(−dt2 + dxidxi) + h

1
2 (r)ds26] (54)

The deformed 
onifold metri
 ds6 
an be written

ds26 =
1

2
K(r)

[

(dr2 + (g5)2)

3K3(r)
+ cosh2

r

2
((g3)2 + (g4)2) + sinh2

r

2
((g1)2 + (g2)2)

]

, (55)

where

K(r) =
[sinh(2r) − 2r]

1
3

2
1
3 sinh r

(56)

13
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Figure 10: Geodesi
s employed for the 
omputation of re
tangular Wilson loops in smooth gravity ba
k-

grounds. The bla
k 
urved verti
al line depi
ts the U-shaped solution, the horizontal blue line is the smooth

referen
e state with respe
t to whi
h we 
ompare the energy of the bla
k line. The bla
k and blue 
on�gu-

rations satisfy di�erent boundary 
onditions.

and the gi de�ned by

g1 =
e1 − e3√

2
, g2 =

e2 − e4√
2

, g3 =
e1 + e3√

2
, g4 =

e2 + e4√
2

, g5 = e5, (57)

with

e1 = − sin θ1 dφ1, e2 = dθ1, e3 = − sinψ dθ2 + cosψ sin θ2 dφ2,

e4 = cosψ dθ2 + sinψ sin θ2 dφ2, e5 = dψ + cos θ1 dφ1 + cos θ2 dφ2. (58)

The 
oordinates in (54) are dimesionless, the gauge theory 
oordinates t, xi s
ale is set by
gsMα′

ℓcf
, and the

s
ale of the holographi
 
oordinate r is set by ℓcf . The h(r) fa
tor takes the form

h(r) = 2
2
3

∫ ∞

r

dx
x cothx− 1

sinh2 x
(sinh 2x− 2x)

1
3 . (59)

The ba
kground (54) is supported in part by a non-trivial Bµν but the embedding we are 
onsidering gets no

ontribution from it [27℄. The fun
tions in (4) are given by f2(r) = 1

h(r) , g
2(r) = 1

6K2(r) . The dimensionless

expressions for the length (9) and the energy (15) are

L̄(r0) = 2

∫ ∞

r0

dr√
6K(r)

h(r)
√

h(r0)− h(r)
. (60)

Ēqq̄(r0) =
gsM

π

[

∫ ∞

r0

dr√
6K(r)

√

h(r0)
√

h(r0)− h(r)
−
∫ r0

0

dr√
6K(r)

]

. (61)

In �gures 11 and 12 we have plotted these two last expressions. As in the MN 
ase a divergen
e is expe
ted

at r0 = 0 sin
e

dh(r)
dr

∣

∣

∣

r=0
= 0 Eliminating numeri
ally r0 from (60)-(61) we plot in �gure 13 the Vstring(L)

fun
tion. A linear relation for the intera
tion potential is observed for L≫ 1. Pro
eeding as in (52) we �nd

the 
on�ning string tension to be

Tstring =
1

2πα′
ℓ2cf

gsα′M
√
h0

, (62)

14



0 1 2 3 4 5
r00

2

4

6

8

10

12

14
L
-

Figure 11: L̄(r0) relation (60). KS solution.
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Figure 12: Ēqq̄(r0) relation (61). KS solution.

where h0 = h(0) ≃ 1.1398. As in the Malda
ena-Núñez 
ase, the dominant 
ontribution to the minimal

area (1), in the large L limit, 
omes from the r ≈ 0 region. Again, a 
on
ern arises regarding whether one

should trust the Eqq̄ > 0 
on�gurations, as dis
ussed at the end of the last se
tion and pi
tured in �g. 10

the Eqq̄ > 0 embeddings are 
lassi
ally stable.
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Figure 13: Vstring(L) relation for a re
tangular Wilson loop in the KS solution.

3.5 Generalized Malda
ena-Núñez solutions [28℄,[29℄

This 
lass of ba
kgrounds was obtained in [28℄ generalizing the solution des
ribed in se
tion 3.3. The

solutions were thoroughly dis
ussed in [29℄ an interpreted as dual to minimally supersymmetri
 gauge theories


ontaining irrelevant dimension six operators. The operator drasti
ally 
hanges the UV behavior of the

theories taking the solution `away' from the near horizon of the D5-branes whi
h generate the geometry.

The analysis in [29℄ shows that the solutions asymptote, for large r, four dimensional Minkowski times the

deformed 
onifold.

The generalized MN metri
 reads [28℄

ds2 = gsα
′N e4f(r)

[

− dt2 + dxidxi + dr2 + e2h(r) (dθ2 + sin2 θdϕ2)

+
e2g(r)

4

(

(w1 + a(r)dθ)2 + (w2 − a(r) sin θdϕ)2
)

+
e2k(r)

4
(w3 + cos θdϕ)2

]

. (63)
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Figure 14: L(ρ0) relation (68). General-

ized MN ba
kground with blue, violet, yel-

low and green 
urves 
orresponding to µ =
−1.8, −1.5, −1, −.8 (ρ∞ = 7). A minimum

quark separation length is observed.
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Figure 15: E(r0) relation (69). gMN ba
k-

ground 
olors as in �g. 14.

Making the 
hange of 
oordinates dρ ≡ e−k(r)dr, the fun
tions a, k and f satisfy

∂ρa =
−2

−1 + 2ρ coth 2ρ

[

e2k
(a cosh 2ρ− 1)2

sinh 2ρ
+ a (2ρ− a sinh 2ρ)

]

∂ρk =
2(1 + a2 − 2a cosh2ρ)−1

−1 + 2ρ coth 2ρ

[

e2ka sinh 2ρ (a cosh2ρ− 1) + (2ρ− 4a ρ cosh 2ρ+
a2

2
sinh 4ρ)

]

∂ρf = − 1

4 sinh2 2ρ

[

(1− a cosh 2ρ)2(−4ρ+ sinh 4ρ)

(1 + a2 − 2a cosh 2ρ)(−1 + 2ρ coth 2ρ)

]

, (64)

and the g(ρ), h(ρ) fun
tions in (63) are given by

e2g =
b cosh2ρ− 1

a cosh 2ρ− 1
, e2h =

e2g

4
(2a cosh 2ρ− 1− a2), with b(ρ) =

2ρ

sinh 2ρ
. (65)

The �rst two di�erential equations in (64) have a one parameter family of regular solutions. For small r one
�nds [28℄

a(ρ) = 1 + µρ2 + ..., e2k(ρ) =
4

6 + 3µ
− 20 + 36µ+ 9µ2

15(2 + µ)
ρ2 + .... (66)

with µ taking values in the interval (−2,− 2
3 ). Inserting (66) into the third equation of (64) and into (65)

one obtains

e2g(ρ) =
4

6 + 3µ
+ ..., e2h(ρ) =

4ρ2

6 + 3µ
+ ...., e2f(ρ) = 1 +

(2 + µ)2

8
ρ2 + ... (67)

The arbitrary 
onstant for f following from (64) was fa
tored out as gs in (63). The limit values for µ give

known solutions: the µ = − 2
3 
ase reprodu
es the MN solution of se
tion 3.3 with φ = 4f (k = const.), and

the 
ase µ = −2 
ase leads to 4-dimensional Minkowski spa
e times the deformed 
onifold (φ being 
onstant

in this 
ase). Finally, the ρ → ∞ limit of all solutions (ex
ept µ = − 2
3 ) asymptotes the deformed 
onifold

metri
 (see [28℄ for details).

The length (9) and energy (15) expressions are given by

L̄(ρ0) = 2

∫ ρ∞

ρ0

e4f(ρ0)√
e8f(ρ) − e8f(ρ0)

ek(ρ)dρ (68)
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Figure 16: Double valued Vstring(L) relation for
gMN ba
kground with µ = −1. The upper red

urve is the unphysi
al bran
h 
orresponding

to string embeddings to the right of the min-

imum in �gure 14. The 
urve does not rea
h

the origin, manifesting a minimum quark sep-

aration length.
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Figure 17: Normalized linear V̄string(L) rela-

tion for the physi
al (left) bran
hes of �gure

14. Colors as in �g. 14.

Ēqq̄(ρ0) =
Ngs
π

[∫ ρ∞

ρ0

e8f(ρ)√
e8f(ρ) − e8f(ρ0)

ek(ρ)dρ−
∫ ρ∞

0

e4f(ρ)ek(ρ)dρ

]

. (69)

Note that the radial integration in both expressions extends up to a �nite distan
e ρ∞. The reason, noted

in [28℄, being that (68) is UV divergent

8

. We should therefore have in mind that the string 
omputation


orresponds to probing the dual gauge theory with very massive for ρ∞ ≫ 1 (but not in�nite mass) quarks.

Moreover sin
e the string endpoints are �xed at a �nite radial distan
e it 
an be 
he
ked at the probe string

does not rea
h the gauge theory brane along a normal dire
tion.

In �gures 14 and 15 we plot numeri
al solutions of (68) and (69) for various values of µ. Figure (14) shows
that L(ρ0) attains a global minimum for all values of µ (ex
ept µ 6= − 2

3 ). In other words, no solution exists

for quarks separations L < Lmin. It is interesting to note that the minimum value for L is attained, for all

values of µ, in a rather small region in the ρ 
oordinate near the origin. Based on the 
on
avity 
onsiderations
dis
ussed at the end of se
tion 2.1 we expe
t the string worldsheets to the left of the minimum ρc to be

physi
ally meaningful (stable) and the ones to the right of ρc to be unphysi
al (unstable). We will show in

the following se
tion that this is in fa
t the 
ase by analyzing quadrati
 �u
tuations around the solutions.

Negative eigenvalues appear for the L′(ρ0) > 0 bran
h of solutions.

We �nally plot in �gures (16) and (17) the Vstring(L) relation for the generalized MN ba
kgrounds where

a linear 
on�ning behavior is observed. Figure (16) shows the double valued Vstring(L) relation for µ = −1,
the upper red bran
h (unphysi
al) 
orresponds to the string 
on�gurations to the right of the minimum in

�g. (14). In �gure 17 we show the Vstring(L) relation for the physi
al bran
hes of �gure 14 for several values

of µ. Pro
eeding as in (52) one �nds that all solutions lead to a µ-independent string tension

Tstring =
gs

2πα′ . (70)

4 Stability Analysis

In this se
tion we study, for the ba
kgrounds presented in the previous se
tion, the eigenvalue problem given

by the equation of motion (22) for in-plane �u
tuations in the r-gauge. We are interested in sear
hing

for unstable modes. For the reasons dis
ussed at the end of se
tion 2.1, our aim is to show that negative

8

See [33℄ for a dis
ussion on divergen
es when 
omputing the length fun
tion L(r0).
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eigenvalues (ω2 < 0) appear for string 
on�gurations belonging to regions where L′(r0) > 0. We study even

solutions, this means that we 
hoose C′
1 = 1 and C′

0 = 0 in (25) as the initial 
ondition at the tip

9

. We

numeri
ally implement this 
onditions as (see (31))

δx1(r) + 2(r − r0)
dδx1(r)

dr
= 0, r → r0

√
r − r0 δx1(r) = 1 , r → r0 . (71)

Solving numeri
ally, the allowed eigenvalues ω2
for (22) are obtained by demanding δx1(r) to be a normal-

izable solution

δx1(r) = 0 , r → ∞. (72)

For 
ompleteness we re
all now the relation between zero modes for in-plane modes and 
riti
al points of

the L(r0) fun
tion [15℄. The zero mode solution of (22) 
an be immediately written down

δx
(0)
1 (r) = C

∫ ∞

r

dr̄
g(r̄)f(r̄)

(f2(r̄)− f2(r0))
3
2

+ C′
(73)

where C′, C are integration 
onstants, C′ = 0 to get a normalizable solution and we set C′ = 1. Integrating
by parts in (73) and using (10) one obtains

δx
(0)
1 (r) = −

∫ ∞

r

dr̄
g(r̄)

f ′(r̄)

d

dr̄

(

1
√

f2(r̄)− f2(r0)

)

=
g(r)

f ′(r)
√

f2(r) − f2(r0)
+

L′(r)

2f ′(r)
. (74)

Expanding this last expression around the tip r = r0 one has

δx
(0)
1 (r) =

g(r0)√
2(f ′(r0))

3
2

1√
r − r0

+
L′(r0)

2f ′(r0)
+O

(√
r − r0

)

. (75)

Generi
ally the �rst fa
tor in the rhs of (75) is non-zero, so a ne
essary and su�
ient 
ondition for obtaining

an even zero mode solution (see (71)) requires the se
ond term in (75) to 
an
el, equivalently r0 must be a


riti
al point of the L(r0) length fun
tion [15℄.

4.1 AdS5

The in-plane �u
tuations equation of motion (22) for the AdS spa
etime in Poin
are 
oordinates (33) takes

the form

[

d

dr

(

(r4 − r40)
3
2

r2
d

dr

)

+ ω2R4

√

r4 − r40
r2

]

δx1(r) = 0 0 < r0 ≤ r <∞ . (76)

Dilatation invarian
e implies that one should be able to fa
tor out the r0 dependen
e. Making r = r0 ρ one
obtains

[

d

dρ

(

(ρ4 − 1)
3
2

ρ2
d

dρ

)

+
ω2R4

r20

√

ρ4 − 1

ρ2

]

δx1(ρ) = 0 . (77)

The asymptoti
 behavior (ρ→ ∞) of (77) reads

[

d

dρ

(

ρ4
d

dρ

)

+
ω2R4

r20

]

δx1(ρ) ≈ 0 , ρ≫ 1 , (78)

whose solutions are

δx1(ρ) ≈ α0 +
α1

ρ3
, ρ≫ 1 , (79)

9

Even solutions 
orrespond to arbitrary C′

1
at the tip, its value �xes the normalization of the solution.
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Figure 18: Lowest numeri
al eigenvalue ω2
of

(76) giving a normalizable solution as a fun
-

tion of r0.
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Figure 19: Properly normalized lowest eigen-

values of �g. 18 as a fun
tion of r0 (see (77)).

with α0, α1 integration 
onstants. The behavior (79) implies that normalizable solutions (α0 = 0) will be
found only for parti
ular (dis
rete) values ω2

n.

As a test for our shooting method, we have numeri
ally integrated (76) for di�erent values of r0 and

determined the minimum ω2
eigenvalues leading to a normalizable solution. In �gure 18 we plot these ω2

as a fun
tion of r0. They are positive for all values of r0, signaling the stability of the U-shaped string


on�guration. In �g. 19 we show the expe
ted r0-independen
e of the mode when properly normalized (see

(77)). In the following table we show the �rst eigenvalues 
orresponding to even boundary 
onditions at the

tip.

ω2
nR

4/r20
n = 1 3.450

n = 3 22.113

n = 5 52.325

n = 7 94.558

n = 9 148.845

In se
tion 5 we prove the stability of the 
on�guration by transforming the di�erential equation (76) into a

S
hrodinger like one (see appendix A).

4.2 Non-Extremal D3-branes

The in-plane �u
tuation equation of motion (22) for the ba
kground (43) takes the form

[

d

dρ

(

(ρ4 − ρ40)
3
2

√

ρ4 − 1

d

dρ

)

+
ω2R4

µ2

ρ4
√

ρ4 − ρ40
(ρ4 − 1)

3
2

]

δx1(ρ) = 0 , 1 < ρ0 ≤ ρ <∞ . (80)

The ba
kground (43) asymptotes AdS and therefore the asymptoti
 (ρ → ∞) behavior of the solutions of

(80) is given by (79). As in the 
ase of the last subse
tion, we expe
t to �nd a dis
rete set of eigenvalues

leading to normalizable solutions.

We plot in �gure 20 the lowest eigenvalue we found when numeri
ally solving (80) looking for normalizabe

solutions. A zero mode appears pre
isely at the 
riti
al point of the length fun
tion L(ρ0), that is for

ρ0 ≃ 1.177 (see �g. 4), in agreement with (75).

We 
on
lude that the (left) bran
h in �gure 4 having L′(ρ0) > 0 is unstable under linear perturbations.

Finally, note that the numeri
al analysis indi
ates that solutions on the (right) bran
h in �gure 4 having

L′(ρ0) < 0 are stable under linear perturbations. Nevertheless, as dis
ussed at the end of se
tion 3.2 one

expe
ts the solutions with 1.177 < ρ0 < 1.524 to be metastable, de
aying to a pair of free quarks.
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Figure 20: Lowest ω2
eigenvalue of (80) giving a normalizable solution as a fun
tion of ρ0. A zero mode

appears for ρ0 ≃ 1.177. The 
lassi
al solutions with ρ0 < 1.177 are unstable against linear perturbations.

4.3 Malda
ena-Núñez ba
kground

The in-plane �u
tuation equation of motion for the Malda
ena-Núñez ba
kground (47) takes the following

form (22)

[

d

dr

(

(e2φ(r) − e2φ(r0))
3
2

e2φ(r)
d

dr

)

+ ω̄2
√

e2φ(r) − e2φ(r0)

]

δx1(r) = 0 , 0 < r0 ≤ r <∞ . (81)

where ω̄2 = ω2α′N . We now 
ompute the asymptoti
 behavior of (81) to see whether we should expe
t a

quantized spe
trum or not. In the r → ∞ limit the equation of motion for δx1(r) reads

[

d

dr

(

err−
1
4
d

dr

)

+ ω̄2err−
1
4

]

δx1(r) = 0 , r ≫ 1 , (82)

where we used that e2φ(r) → e2rr−
1
2
for r ≫ 1. This last equation 
an be written as

[

d2

dr2
+

(

1− 1

4r

)

d

dr
+ ω̄2

]

δx1(r) = 0 , r ≫ 1 .

The r−1
term 
an be omitted in the large r limit and the asymptoti
 solution to (81) is then

δx1(r) ≃ e−
1
2 r(β0 e

rα + β1 e
−rα) , r ≫ 1 , (83)

where α =
√
1−4ω̄2

2 . From (83) it follows that any ω̄2 > 0 lead to normalizable solutions, the spe
trum

of stable in-plane �u
tuation is therefore 
ontinuum. In the ω̄2 ≤ 0 
ase (α ≥ 1
2 ) β0 must be set to zero

and we have the possibility of getting a dis
rete spe
trum of negative eigenvalues. Our numeri
al analysis


ould not �nd any normalizable negative eigenmodes, suggesting the stability of the 
lassi
al 
on�guration

in agreement with the 
on
avity 
ondition (17).

In the se
tion 5 we show that negative eigenvalues does not exist from the study of a S
hrodinger equation

analysis of (81) (see appendix A).

4.4 Klebanov-Strassler ba
kground

The equation of motion for the in-plane �u
tuation in this 
ase takes the form

[

d

dr

(

K(r)

h(r)

(

1− h(r)

h(r0)

)
3
2 d

dr

)

+ ω̄2 1

6K(r)

√

1− h(r)

h(r0)

]

δx1(r) = 0 , 0 < r0 ≤ r <∞ , (84)
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with ω̄2
dimensionless and K(r) and h(r) given by (56) and (59) respe
tively. From the r → ∞ limit of

K(r) and h(r) one obtains

[

d

dr

(

er

r

d

dr

)

+ ω̄2 e
r
3

2
4
3

]

δx1(r) = 0 , r ≫ 1 , (85)

whi
h gives

[

d2

dr2
+

(

1− 1

r

)

d

dr
+ ω̄2 re

− 2
3 r

2
4
3

]

δx1(r) = 0 , r ≫ 1 . (86)

In the large r limit the r−1
and the last term in (86) 
an be omitted and the in-plane �u
tuation asymptoti
s

turns to be

δx1(r) ≃ α0 + α1e
−r , r ≫ 1 . (87)

The integration 
onstant α0 must be set to zero to obtain normalizable solutions and we therefore expe
t

to get a dis
rete eigenvalue spe
trum. In �gure (21) we plot the lowest eigenvalue of (84) we have found
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Figure 21: Numeri
al solution for the lowest ω2
leading to a normalizable solution as a fun
tion of r0 for the

Klebanov-Strassler ba
kground. No negative eigenvalues where found.

numeri
ally leading to a normalizable solution as a fun
tion of r0. We have not found numeri
ally any

negative eigenvalues. In se
tion 5 we will prove the stability of the 
lassi
al solution transforming (84) to a

S
hrodinger like equation and showing that no negative modes 
an appear (see appendix A).

4.5 Generalized Malda
ena-Núñez

The equation of motion for the in-plane �u
tuation δx1(ρ) in the ba
kgrounds (63) takes the form

[

d

dρ

(

(e8f(ρ) − e8f(ρ0))
3
2

e8f(ρ)+k(ρ)
d

dρ

)

+ ω̄2ek(ρ)
√

e8f(ρ) − e8f(ρ0)

]

δx1(ρ) = 0 , 0 < ρ0 ≤ ρ <∞ . (88)

In the µ = − 2
3 
ase (k(ρ) = const.) the equation (81) for the Malda
ena-Nuñez ba
kground is re
overed

(from now on we 
onsider µ 6= − 2
3 ). In the large ρ limit the gMN solutions asymptote the deformed 
onifold

and the f fun
tion approa
hes a 
onstant f∞, the asymptoti
 behavior is then given by

[

e−k(ρ)
d

dρ

(

e−k(ρ)
d

dρ

)

+ ω̄2 e8f∞

e8f∞ − e8f(ρ0)

]

δx1(ρ) = 0 , ρ≫ 1 . (89)

Returning to the original r variable in (63) (dr = ek(ρ)dρ) one obtains

[

d2

dr2
+ ω̃2

]

δx1(r) = 0 , r ≫ 1 . (90)
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Figure 22: Lowest ω2
eigenvalue of (88) lead-

ing to a normalizable solution as a fun
tion of

ρ0. Negative (unstable) modes are found pre-


isely for the 
lassi
al embeddings satisfying

L′(ρ0) > 0. Colors as in �g. 14.
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Figure 23: Zoom of �gure 22 near the ori-

gin. The lowest eigenvalues are positive for

L′(ρ0) < 0 solutions. A zero mode appears

pre
isely for the 
riti
al values of the length

fun
tion L(ρ0) (see �g. 14).

whose solutions are plane waves e±iω̃r for ω̄2 > 0 and real exponentials e±ω̃r for ω̄2 < 0 
ase. We 
on
lude

that no normalizable solutions exist for ω̄2 > 0. A word of 
aution, as dis
ussed in se
tion 3.5 the gauge theory

brane must be pla
ed at a �nite distan
e ρ∞, therefore for (88) de�ned on ρ0 ≤ ρ ≤ ρ∞ positive eigenvalues

will exist. In the ω̄2 < 0 
ase the possibility for negative eigenmodes exists and in fa
t we �nd normalizable

negative mode solutions pre
isely for the 
lassi
al solutions region where the 
onvexity 
ondition (17) is not

satis�ed. In the �gures 22 and 23 we plot the minimal eigenvalues leading to normalizable solutions we found

numeri
ally as a fun
tion of r0. We found 
omplete agreement with �gure 14: no instabilities are found for


lassi
al solutions satisfying L′(r0) < 0, on the other hand, we �nd negative (unstable) modes for the right

bran
h 
urve (L′(r0) > 0 solutions) in �gure 14. These results are gratifying sin
e unstable modes are found

pre
isely for the 
lassi
al embeddings whi
h do not satisfy the 
onditions (17). In the following se
tion we

review this results by transforming the equation into a S
hrodinger like problem.

5 S
hrodinger Potentials Analysis

In this se
tion we analyze the �u
tuation equation of motion (22) transforming it to a S
hrodinger like

equation (see appendix A). From the form of the potential it is possible in some 
ases to show that no negative

eigenvalues 
an appear and therefore to prove the stability of the 
orresponding 
lassi
al embeddings.

5.1 AdS5

The S
hrodinger potential (107) for the equation (77) takes form [15℄

V (ρ) = 2
ρ4 − 1

ρ2
, ρ ∈ [1,∞) , (91)

here ρ should be understood as ρ = ρ(y). The 
hange of variables (105) leading to the S
hrodinger equation

(106) 
an be analyti
ally 
omputed

y(ρ) = y0 −
1

4
B

(

1

ρ4
;
1

4
,
1

2

)

, (92)

with y0 =
Γ[ 14 ]

2

4
√
2π
. The half line ρ ∈ [1,∞) of the original Sturm-Liouville problem, under the 
hange of

variables (92), maps to the �nite interval y ∈ [0, y0], the potential (91) diverging at y0. We have therefore

obtained a S
hrodinger problem de�ned on a �nite interval with 
anoni
al boundary 
onditions (see (108)-

(109)) hen
e a dis
rete spe
trum will result, moreover, sin
e the potential (91) is positive de�nite a standard
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Figure 24: S
hrodinger potential (91) for in-

plane �u
tuations in AdS the positive de�-

nite property of it guarantees that no negative

eigenmodes exist.
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Figure 25: V (ρ, ρ0) (eqn.(93)) for di�erent ρ0
values. The blue line 
orresponds to ρ0 = 1.1,
the green to the 
riti
al value ρ0 = 1.177 and

the red, bla
k lines to ρ0 = 1, 2. The region

where the potential is negative diminishes as

ρ0 in
reases. Negative eigenmodes 
ease to

exist for ρ0 ≥ 1.177

QM argument tell us that no negative eigenvalue solutions exist. We 
on
lude that the AdS embedding

given by (34) is stable under linear perturbations. Figure 24 shows a plot of the potential (91) as a fun
tion

of ρ, the true variable for the S
hrodinger problem is y given by (92) and it amounts to a res
aling of the

horizontal axis in �g. 24 mapping ρ = ∞ to a �nite distan
e.

5.2 AdS5-S
hwarzs
hild

The S
hrodinger potential (107) for the in-plane �u
tuation equation (80) takes form [15℄

V (ρ, ρ0) = 2
ρ8(ρ4 − ρ40)− ρ40(4ρ

4 − 1)− 3ρ4

ρ6(ρ4 − 1)
, 1 < ρ0 ≤ ρ <∞ . (93)

The behavior of this potential for di�erent values of r0 is shown in �gure 25. Unlike the AdS5 × S5

ase,

there exist regions where the potential be
omes negative, this is in agreement with the results of se
tion

4.2 where negative eigenmodes where found. The potential starts from a negative value at ρ0 given by

V (ρ0, ρ0) = −8/ρ20. As ρ0 in
reases the negative region gets dimmer and the negative modes 
ease to

exist at the 
riti
al value, found numeri
ally in se
tion 4.2, ρ0c ≃ 1.177 whi
h pre
isely 
oin
ides with the


riti
al value of the length fun
tion L(ρ0). We 
on
lude that the 
lassi
al embeddings satisfying L′(ρ0) > 0
are unstable under linear perturbations (see also [15℄ for a perturbative analysis of the eigenvalues). The


lassi
al unstable solutions L′(ρ0) > 0 have regularized energy Eqq̄ greater than zero (see �g. 6), sin
e the

referen
e 
on�guration satis�es the same boundary 
onditions, the natural 
andidate for the de
ay pro
ess

is the referen
e (free quarks) state.

For 
ompleteness we quote that sin
e the asymptoti
s of this ba
kground 
oin
ides with the previous


ase, the S
hrodinger equation for in-plane �u
tuations results de�ned on a �nite interval. The spe
trum of

stable �u
tuations is therefore dis
rete.

5.3 Malda
ena-Núñez

The S
hrodinger potential for (81) takes the form

V (r, r0) =
e−2φ(r)

4

(

(e2φ(r) − 3e2φ(r0))φ′2(r) + 2(e2φ(r) + e2φ(r0))φ′′(r)
)

, 0 < r0 ≤ r <∞ . (94)
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Figure 26: S
hrodinger potential (94). The

blue, bla
k, red and green lines 
orresponds

to r0 = 0.2, 0.7, 1, 2. The minimum of the

potential be
omes negative for r0 ≥ 1.1605.
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Figure 27: Potential (94) as a fun
tion of r0.
The potential asymptoti
ally tends to V∞ = 1

4
in agreement with (83). For r0 < 1.1605 is

positive negative and for r0 ≥ 1.1605 
ontains
negative regions. Near the tip the potential


an be approximated asymptoti
ally (for large

r0) by V (r) ≃ − 1
2 + 3

2 (r − r0)

As before r should be understood as r = r(y) and 
ontrary to the last two 
ases the 
hange of variables (105)

give a S
hrodinger problem in y 
oordinates de�ned on the half line y ∈ [0,∞). Figures 26 and 27 show

the S
hrodinger potential (94) for di�erent values of r0. We should 
onfront these �gures with the results

in se
tion 4.3. The out
ome of that se
tion, for all values of r0, was that a 
ontinuum spe
trum results

for ω2 > 0 and numeri
ally no negative normalizable modes were found. We �rst address the 
ontinuum

spe
trum for ω2 > 0. Figure 26 shows that the potential is positive de�nite for r0 ≤ 1.1605 and asymptotes

the value V∞ = 1
4 . One might therefore 
on
lude no solutions for 0 < ω̄2 < Vmin, a dis
rete spe
trum for

Vmin < ω̄2 < 1
4 (if possible) and a 
ontinuum, but not normalizable, spe
trum for ω̄2 > 1

4 , all in 
ontradi
tion

with the mentioned results. The agreement is a
hieved when taking into a

ount the fa
tor (PQ)−
1
4
that

relates the solution of the S
hrodinger equation Ψ with the �u
tuation δx1 (see appendix A eqn. (105))

δx1 =
e

φ(r)
2

(e2φ(r) − e2φ(r0))
1
2

Ψ ≃ e−
r
2Ψ , r → ∞ . (95)

The e−
r
2
fa
tor makes all ω̄2 > 0 solutions of the S
hrodinger problem satisfy the δx1|r=∞ = 0 whether or

not they normalizable as Ψ(y) solutions (asymptoti
ally one has y ≃ r). However, for ω̄2 < 0 solutions the

fa
tor is not enough for making the (diverging) solutions satisfy the boundary 
ondition. We 
on
lude that

for all r0 a 
ontinuum spe
trum results for ω̄2 > 0.
The remaining point to be addressed is the possibility of bound states for − 1

2 < ω̄2 < 0 in the limit

of large r0. As seen from �gure 27, asymptoti
ally, the potential starts from V (r0) ≃ − 1
2 and the linear

approximation one obtains is V (r) ≃ − 1
2 + 3

2 (r − r0). The relation between the r and y 
oordinates (105)

in the same limit is (r − r0) ≃ y2/2. All these leads to a harmoni
 os
illator in y 
oordinates with bound

state energy above zero. We therefore 
on
lude that no bound states exist. We �nd a 
omplete agreement

between the S
hrodinger analysis and the numeri
al results of se
tion 4.3.

The results are appealing sin
e if instabilities were found, no obvious 
andidate for the de
ay is available

(
f. se
tion 5.5).
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Figure 28: S
hrodinger potential (96). The blue, bla
k, red and green lines 
orresponds to r0 = 0.2, 0.7, 1, 2.
The potential is positive de�nite and therefore no negative (unstable) eigenvalue modes result.
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Figure 29: S
hrodinger potential (97) for dif-

ferent ρ0 values and µ = −1. The blue,

bla
k, red and green lines 
orrespond to ρ0 =
0.2, 0.7, 1, 2 respe
tively.
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Figure 30: S
hrodinger potential for ρ0 = 0.2
and di�erent values of the parameter µ. The

blue, red, brown and green lines 
orrespond to

µ = −1.8, −1.5, −1, −0.8.

5.4 Klebanov-Strassler

The potential for the Klebanov-Strassler in-plane �u
tuation (84) reads

V (r, r0) = − 3K(r)

8h3(r)h(r0)
[4h(r)(h(r) + h(r0))h

′(r)k′(r)

−k(r)(3h(r) + 7h(r0))h
′2(r) + 4h(r)(h(r) + h(r0))h

′′(r))
]

(96)

The asymptoti
 behavior of the P,Q fun
tions in this 
ase lead to a S
hrodinger problem de�ned on a �nite

y interval (see appendix A). Figure (28) shows the form of the potential for various r0 values. The potential
is positive de�nite and therefore no (unstable) ω2 < 0 solutions exist. The �nite interval on whi
h the

S
hrodinger problem is de�ned implies a dis
rete set of eigenvalues. We �nd 
omplete agreement with the

results of se
tion 4.4.

5.5 Generalized Malda
ena-Núñez

The S
hrodinger potential for in-plane �u
tuations in the generalized MN solutions (88) 
an be written as

V (ρ, ρ0) =
2

e8f(ρ)+2k(ρ)

(

2(e8f(ρ) − e8f(ρ0))f ′2(ρ) + (e8f(ρ) + e8f(ρ0))(f ′′(ρ)− k′(ρ)f ′(ρ))
)

(97)

25



The asymptoti
 behavior of the P,Q fun
tions (see appendix A and eqn. (89)) leads to a S
hrodinger

problem formulated on the half line y ∈ [0,∞). Figure (29) shows the behavior of the potential for di�erent
values of ρ0 and a �xed value of µ = −1. The potential be
omes negative above some 
riti
al value ρ∗
and asymptotes V∞ = 0 in 
on
ordan
e with (89) and the existen
e of negative (unstable) modes found

numeri
ally in se
tion 4.5. The (PQ)−
1
4
fa
tor relating the S
hrodinger wave fun
tion Ψ to the �u
tuation

δx1 approa
hes a 
onstant at in�nity, therefore not 
hanging the asymptoti
s of the Ψ solutions (
f se
t.

5.3). Figure 30 shows the S
hrodinger potential, for a �xed value of ρ0 = 0.2, for di�erent values of µ. The
minimum of the potential de
reases as the µ approa
hes − 2

3 . As already mentioned the original MN solution

(47) is not 
ontinuosly 
onne
ted with the generalized 
lass of solutions (63). Agreement with the numeri
al

results of se
tion 5.5 is found but it is no 
lear to us whi
h is the �nal state of the de
ay.

6 't Hooft loop

The ele
tromagneti
 dual to Wilson lines in Yang-Mills theories are the 't Hooft lines [35℄. In four dimensions,

the me
hanism for 
on�nement is supposed to be due to magneti
 monopole 
ondensation (dual Meissner

e�e
t), the analysis in [35℄ 
on
luded that a s
reened monopole potential between a mm̄ pair should be

observed when 
on�nement is due to a dual Meissner e�e
t. A generalization of this idea is dyon 
on�nement

and goes under the name of oblique 
on�nement.

The string pres
ription for 
omputing 't Hooft loops in the MN and KS solutions was proposed in the

same papers [25℄-[26℄ (see [36℄ and also [31℄ where a te
hni
al issue, 
orre
ting the proposed 2-
y
le in [25℄,

was pointed out) and 
onsists in wrapping a probe D3-brane on the same 2-
y
le on whi
h the D5-branes
leading to the ba
krea
ted geometry were wrapped (see also [9℄). The out
ome of the 
onstru
tion is an

e�e
tive D1-brane (string) whi
h is analyzed in 
omplete analogy with the probe fundamental string we have

been dis
ussing in previous se
tions. The important di�eren
e with respe
t to the Wilson loop 
ase is that

the 't Hooft loop in generi
 non S-dual theories is sensible to the internal �ve dimensional manifold.

6.1 Malda
ena-Núñez
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Figure 31: The length fun
tion for the ef-

fe
tive string as a fun
tion of r0 in the

Malda
ena-Núñez t Hooft loop 
ase.
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Figure 32: The energy of the monopole-

antimonopole pair as a fun
tion of the sep-

aration length.

The embedding manifold for the D3 in the metri
 (47) is [36℄

10

M4 = [t, x, r(x), θ = θ̃, ϕ = 2π − ϕ̃, ψ = π] . (98)

10

The remaining 
oordinates are set to 
onstants. The value of the ψ 
oordinate is �xed by demanding the S2
to be of

minimal volume.
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The indu
ed metri
 on M4 results in

ds2ind = α′Neφ
[

− dt2 + (1 + ŕ2)dx2 + (e2h +
1

4
(1− a)2) (dθ2 + sin2 θdϕ2)

]

, (99)

and the expressions (49) for a, h give

VS2(r) ≡ 1

4
(1 − a(r))2 + e2h(r) = r tanh r . (100)

Note that the S2
sphere smoothly 
ollapses at the origin. Integrating the DBI a
tion

11

SDBI = −TD3

∫

d4σe−φ
√
gind (101)

over the internal manifold (S2
θϕ) and the time 
oordinate one obtains

Seff = 4πTD3T (α′N)2
∫

eφ r tanh r
√

1 + ŕ2 dx . (102)

The important di�eren
e wrt the previous Wilson loop 
al
ulation in the Malda
ena-Núñez ba
kground (see

se
t. 3.3) resides in the f(r) and g(r) fun
tions in (50)-(51) being multiplied by the 2-sphere volume (100).

In �gures 31 we plot the behavior of the length fun
tion (9) as a fun
tion of r0. The length fun
tion

is an in
reasing fun
tion of r0 and from the previous dis
ussions we therefore expe
t the embedding to be

unstable. The instability of the embedding 
an be easily seen in the Malda
ena-Núñez 
ase sin
e a �u
tuation

along the x1-dire
tion depending only on t, r is de
oupled from the angular ones (
onsistent �u
tuation).

The δx1 equation of motion results in (22) with f(r) = g(r) = h(r) = r tanh r eφ(r). The asymptoti
s of

the �u
tuation is the same as in the Wilson loop 
ase, nevertheless the behavior drasti
ally 
hanges near

the origin sin
e f(r) goes to zero. As seen in �gure 33 negative eigenvalues exist for all r0 values. For


ompleteness we plot in �gure 34 the S
hrodinger potential asso
iated with the in-plane �u
tuation equation

of motion.

In �gure 32 we plot the energy as a fun
tion of the endpoints separation length L. The energy of the


on�guration is positive for all L, this fa
t and the instability of the 
on�guration suggests that the stable


on�guration for given boundary 
onditions is the one 
orresponding to two �straight lines�. Contrary to

the Wilson loop 
ase the �straight lines� (used as referen
e state for regularizing the energy) 
an end at the

origin sin
e they 
orrespond to wrapped D3 on the topologi
al S2
of (47) whi
h smoothly 
ollapses at the

origin.

6.2 Klebanov-Strassler

This 
ase again involves wrapping a D3 over a topologi
al S2
inside (54) (for its parametrization see the

appendix A of [37℄). There are important di�eren
es with respe
t to the MN 
ase, in the present 
ase the H3

supporting the KS geometry 
ontributes to the string a
tion (1), and moreover it leads to the entanglement

of the angular and the in-plane �u
tuations. The di�erent UV behavior wrt the MN is the reason for the

length fun
tion L(r0) having a priori stable regimes (see �gure 35). The behavior of V̄ (L̄) shows the potential
is s
reened for large L and this agrees with the linear 
on�nement potential for the Wilson loop 
ase (see [9℄

for a related example). The analysis of the present 
ase is analogous to the one in se
t. 3.2, summarizing

when the 
on�guration energy be
omes positive, the two �straight lines� solution be
omes favored. As for the

MN 
ase this be
omes possible without a horizon in this 
ase due to the D3 being wrapped over a smoothly


ollapsing S2
at the origin. We did not attempt the analysis of the 
oupled �u
tuations equations of motions

to 
he
k for instabilities on the left bran
h of �g. 35.

11

Pla
ing the gauge �xed ansatz (98) into the a
tion (101) give the 
orre
t equation of motion for r(x) whi
h 
oin
ides with

(7).
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Figure 33: Lowest numeri
al eigenvalue ω2
for

in-plane �u
tuations depending only on t, r 
o-
ordinates as a fun
tion of r0 in the Malda
ena-

Núñez 't Hooft loop 
ase.
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Figure 34: S
hrodinger potential for in-plane

�u
tuations depending on t, r-
oordinates as a
fun
tion of r0 in the Malda
ena-Núñez t Hooft

loop 
ase. Blue, bla
k and red lines 
orre-

spond to r0 = 0.2, 0.7, 1.
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Figure 35: Length fun
tion L(r0) for the ef-

fe
tive string as a fun
tion of r0 in KS ba
k-

ground.
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Figure 36: The energy of the monopole-

antimonopole pair as a fun
tion of the sep-

aration length.

7 Con
lusions

In this work we have analyzed the string proposal for 
omputing re
tangular Wilson loops via string embed-

dings in gravity ba
kgrounds and we have studied their stability under linear perturbations.

The string pres
ription involves solving for a minimal open string worldsheet whose endpoints lie on the

loop to be 
omputed lo
ated at a �xed value of the holographi
 radial dire
tion. When the endpoints are

moved to in�nity a divergent area results and a regularization is mandatory in order to get a meaningful

answer. In se
tion 2 we have reviewed this pres
ription and showed how a �nite value is obtained. We have


hosen to regularize the a
tion by the standard pro
edure originally proposed in [4℄. This is interpreted as

saying that the Nambu-Goto worldsheet area 
omputation in
ludes the intera
tion energy plus the self energy

(mass) of the external quarks. Within this interpretation we reprodu
ed the well known results for AdS and

thermal AdS. The regularization was in fa
t responsable for turning the original positive area into a negative

attra
tive potential energy. When turning to smooth ba
kgrounds (AdS in global 
oordinates, MN and KS) a

puzzle arises sin
e the straight strings running along the radial dire
tion used in the substra
tion pres
ription

must end somewhere in the bulk. We 
on
luded that the 
orre
t interpretation for the substra
tion pro
edure

is that we are 
omparing the string `Wilson loop' worldsheet with respe
t to a referen
e state 
onsisting in a

straight string worldsheet whose endpoints lie at antipodes of a 
ompa
t dire
tion (pi
tori
ally represented
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in �g. 10). It then follows that the referen
e state in general satis�es di�erent boundary 
onditions than the

worldsheet used in 
omputing the expe
tation value for the re
tangular Wilson loop. This last observation is

wel
omed for the MN and KS 
ases where the linear 
on�ning relation o

urs for worlsheets having positive

regularized energies (see �gs. 9 and 13): if the referen
e state satis�ed the same boundary 
onditions as

the `Wilson loop' worldsheet, the observed linear behavior should not be 
onsidered sin
e the referen
e state

(Eqq̄ = 0) would have been the lowest energy one (
f. last paragraph of se
t. 3.2), but from the previous

analysis we see that this is not the 
ase. We would like to re
all an observation in [9℄ stating that the relation

between Wilson loops and strings in gravity duals (at the semi
lassi
al level)

〈W 〉 ≃ e−A (103)

is s
hemati
 sin
e the addition of boundary terms to the Nambu-Goto a
tion does not 
hange the minimal

area 
hara
ter of the solutions but turns the value of the 
lassi
al a
tion into something di�erent than the

area. In [9℄ this arbitrariness was used to make a Legendre transform of the Nambu-Goto a
tion showing

that the resulting quantity, for the 
ase of loops in AdS, is free from the linear divergen
es arising from the

behavior of the worldsheet near the boundary of AdS.

We also dis
ussed the 
on
avity 
onditions (17) that must be satis�ed by any potential pretending to

des
ribe the intera
tion between physi
al quarks. Generi
 gravity duals have positive and in
reasing f(r)
fun
tions, so the 
on
avity 
onditions are not satis�ed when the length fun
tion is an in
reasing fun
tion of

the minimal radial position rea
hed by the string r0. In se
tion 3 we performed the analysis of the length

and potential fun
tions L(r0) and Vstring(L) for di�erent ba
kgrounds and showed that some of them lead to

embedding solutions where the 
on
avity 
ondition fails.

Based on previous work [14℄-[15℄ we studied linear �u
tuations around the embedding to test the stability

of the 
lassi
al embedding. We 
on
luded that whenever the solution leads to an unphysi
al potential, not

satisfying the 
onditions (17) there exist unstable modes under linear �u
tuations. In the 
ourse of the

analysis we dis
ussed the di�erent gauge �xings that 
an be imposed and its relation with the di�eomorphism

of the Nambu-Goto a
tion. Three natural gauge �xings where dis
ussed and we 
hose to work in the r-gauge
sin
e it lead to simpler 
losed expressions for the �u
tuations equations of motion (see eqn. (21)). The

r-gauge leads to singular behavior in the �u
tuation at the tip of the embedding, but reviewing [15℄ we

showed that nevertheless they are physi
al on
e an appropriate gauge transformation is performed.

In se
tion 4 we perform the stability analysis for the solution reviewed in se
tion 3. We showed by a

numeri
al analysis that the AdS5 ×S5
, Malda
ena-Núñez and Klebanov-Strassler are stable. On other hand

for thermal AdS and the generalized Malda
ena-Núñez ba
kgrounds of se
t. 3.5 we found unstable modes in

agreement with the behavior of the L(r0) relation. This last 
ase is rather pathologi
al sin
e the loop 
annot

be pla
ed at in�nity and moreover we found that a minimum separation exists beyond whi
h no smooth

solution 
onne
ting the string endpoints exists. In se
tion 5 transforming the Sturm-Liouville �u
tuation

equations of motion into a S
hrodinger like equation we reanalyzed the problem, �nding 
omplete agreement

with the results obtained in se
tion 4. We 
on
lude that the regions where we �nd unstable modes 
oin
ide

with the regions where the 
on
avity 
ondition fails.

In the last se
tion we performed the previous analysis for the 
ase of monopole-antimonopole intera
tion

in the non-
onformal gravity duals of Malda
ena-Núñez and Klebanov-Strassler. We dis
ussed the 't Hooft

loop string pres
ription given by wrapping a D3 on the topologi
al S2
present in the geometries. The MN


ase was shown to be unstable for all r0 values. A �u
tuation analysis was feasible sin
e a de
oupled equation

for the in-plane �u
tuation 
ould be found were an unstable mode was shown to exist by a numeri
al analysis.

The KS presented a behavior similar to thermal AdS with presumably stable and unstable regions, but a

the �u
tuation analysis lead to 
oupled �u
tuations equations of motion whi
h we did not analyze.

We 
on
lude that the analysis of Wilson/'t Hooft loops in given gravity ba
kground by looking at the

value of the f2
at the origin should be supplemented with an analysis of the L(r0) relation.
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A Sturm-Liouville to S
hrödinger

Equations (22)-(23) are of the Sturm-Liouville type

[

− d

dr

(

P (r, r0)
d

dr

)

+ U(r, r0)
]

Φ(r) = ω2Q(r, r0)Φ(r), r0 ≤ r <∞ (104)

the fun
tions P (r, r0) and Q(r, r0) 
an be read o� from (22)-(23), U(r, r0) = 0 in both 
ases. The 
hange of

variables

y =

∫ r

r0

√

Q

P
dr, Φ(r) = (PQ)

− 1
4 Ψ(y) (105)

transforms (104) to a S
hrödinger like equation

[

− d2

dy2
+ V

]

Ψ = ω2Ψ, 0 ≤ y ≤ y0 . (106)

Here y0 =
∫∞
r0
dr
√

Q
P whi
h may be �nite or in�nite depending on the nature of Q,P and one 
an 
he
k that

(105) is integrable at the lower limit giving y ∼ √
r − r0. The potential V is given by

V =
U

Q
+

[

(PQ)−
1
4
d2

dy2

]

(PQ)
1
4

=
U

Q
+

[

P
1
4

Q
3
4

d

dr

(
√

P

Q

d

dr

)]

(PQ)
1
4

(107)

The points r = r0 and r = ∞ map to y = 0 and y = y0 respe
tively. The boundary 
onditions to be imposed

on the solutions of (106) are [15℄:

• In�nity: string endpoints �xed

12

δx|r=∞ = 0 ⇒ Ψ|y=y0 = 0 (108)

• Tip r = r0: for both in-plane δx1 and transverse �u
tuations δxm one obtains from (24),(31),(32)

Even solutions : dΨ
dy

∣

∣

∣

y=0
= 0

Odd solutions : Ψ|y=0 = 0 .
(109)

B Exa
t spe
trum for transverse �u
tuations in AdS5 × S5

We review here the solution of [13℄ for the exa
t spe
trum of the longitudinal �u
tuations in the AdS5 × S5

ba
kground and 
ompare it with our numeri
al results using the shooting te
hnique des
ribed at the end of

se
tion 2.2.

The AdS metri
 is written in Poin
are 
oordinates

ds2 =
R2

z2
(−dt2 + dxidxi + dz2) +R2dΩ2

5 . (110)

A x-gauge �xed ansatz t = τ, x = xcl, z = zcl(x) leads to

(

dzcl
dx

)2

=
z40 − (zcl)

4

(zcl)4
. (111)

12

See however a loophole in the Malda
ena-Núñez 
ontext (se
t. 5.3) when imposing (108).
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The solution to (111) with the string endpoints separated by a distan
e L is (34)-(35).

xcl(z) = ±z0
[

(2π)
3
2

2Γ[ 14 ]
2
− 1

4
B

(

z4

z40
;
3

4
,
1

2

)

]

(112)

where z0 = zcl(0) = (Γ[ 14 ]
2/(2π)

3
2 )L is the maximal radial distan
e rea
hed by the string (tip of the string).

Flu
tuations around the solution (112) in the transverse xm (m = 2, 3) 
oordinates de
ouple, writing
Xµ = (t, xcl(σ), δxm(t, σ), zcl(σ)) the equations to linear order are [13℄,[17℄

x−gauge :

[

∂2t −
z4cl(x)

z40
∂2x

]

δxm(t, x) = 0 (113)

r−gauge :

[

∂2t − (1− z4

z40
) ∂2z +

2

z
∂z

]

δxm(t, z) = 0 m = 2, 3 . (114)

As mentioned in se
tion 2.1, note that the x-gauge equation of motion (113) depends expli
itly on the 
lassi
al

solution zcl(x). The equations are related by the 
hange of variables given in (112). Writing δxm = e−iwtf(z)
in (114) and 
alling z̃ = z/z0 one obtains [17℄

[

(1− z̃4)∂2z̃ −
2

z̃
+ ξ2

]

f(z̃) = 0, 0 ≤ z̃ ≤ 1 , (115)

where ξ = z0ω. The 
hange of variables [38℄

f(z̃) =
√

1 + ξ2z̃2F (q)

q(z̃) = ±2

∫ 1

z̃

t2

(1 + (ξt)2)
√
1− t4

dt (116)

transforms equation (115) into a simple harmoni
 os
illator

d2F

dq
+

1

4
ξ2(ξ4 − 1)F = 0, q ∈ [−q∗, q∗] (117)

where q∗ = q(0). The boundary 
onditions at in�nity δxm(t, 0) = 0 have been mapped to F (q∗) = 0, and
quantize the frequen
ies in (117) leading to

ωnz0

√

ω4
nz

4
0 − 1

∫ 1

0

t2dt

(1 + w2
nz

2
0)
√
1− t4

=
nπ

2
, n = 1, 2, ... (118)

The following table shows the 
omparison between the exa
t eigenvalues (118) and our numeri
al 
al
ulation

of eigenvalues of (115) with z0 = 1.

Exa
t Numeri


ω1 2.203 2.226

ω2 3.467 3.492

ω3 4.697 4.735

ω4 5.914 5.959

ω5 7.125 7.181

ω6 8.332 8.396

ω7 9.537 9.612

ω8 10.741 10.823

The odd (even) eigenvalues where obtained solving (115) with the even (odd) boundary 
onditions dis
ussed

after (24).

31



Referen
es

[1℄ K. G. Wilson, Phys. Rev. D 10 (1974) 2445.

[2℄ J. M. Malda
ena, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113℄

[arXiv:hep-th/9711200℄. S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Phys. Lett. B 428 (1998)

105 [arXiv:hep-th/9802109℄. E. Witten, Adv. Theor. Math. Phys. 2 (1998) 253 [arXiv:hep-th/9802150℄.

[3℄ A. M. Polyakov, Nu
l. Phys. Pro
. Suppl. 68 (1998) 1 [arXiv:hep-th/9711002℄. A. M. Polyakov, Int. J.

Mod. Phys. A 14 (1999) 645 [arXiv:hep-th/9809057℄.

[4℄ S. J. Rey and J. T. Yee, Eur. Phys. J. C 22 (2001) 379 [arXiv:hep-th/9803001℄. J. M. Malda
ena, Phys.

Rev. Lett. 80, 4859 (1998) [arXiv:hep-th/9803002℄.

[5℄ E. Witten, Adv. Theor. Math. Phys. 2 (1998) 505 [arXiv:hep-th/9803131℄.

[6℄ G. 't Hooft, Nu
l. Phys. B 72, 461 (1974).

[7℄ J. Sonnens
hein, arXiv:hep-th/0003032.

[8℄ Y. Kinar, E. S
hreiber and J. Sonnens
hein, Nu
l. Phys. B 566 (2000) 103 [arXiv:hep-th/9811192℄.

[9℄ D. J. Gross and H. Ooguri, Phys. Rev. D 58 (1998) 106002 [arXiv:hep-th/9805129℄.

[10℄ C. P. Herzog and I. R. Klebanov, Phys. Lett. B 526, 388 (2002) [arXiv:hep-th/0111078℄.

[11℄ J. Gomis and F. Passerini, JHEP 0608, 074 (2006) [arXiv:hep-th/0604007℄; JHEP 0701, 097 (2007)

[arXiv:hep-th/0612022℄.

[12℄ S. S. Gubser, Phys. Rev. D 74 (2006) 126005 [arXiv:hep-th/0605182℄.

[13℄ I. R. Klebanov, J. M. Malda
ena and C. B. Thorn, JHEP 0604 (2006) 024 [arXiv:hep-th/0602255℄.

[14℄ J. J. Friess, S. S. Gubser, G. Mi
halogiorgakis and S. S. Pufu, JHEP 0704 (2007) 079

[arXiv:hep-th/0609137℄.

[15℄ S. D. Avramis, K. Sfetsos and K. Siampos, Nu
l. Phys. B 769, 44 (2007) [arXiv:hep-th/0612139℄.

S. D. Avramis, K. Sfetsos and K. Siampos, Nu
l. Phys. B 793 (2008) 1 [arXiv:0706.2655 [hep-th℄℄.

K. Sfetsos and K. Siampos, JHEP 0808 (2008) 071 [arXiv:0807.0236 [hep-th℄℄.

[16℄ S. J. Rey, S. Theisen and J. T. Yee, Nu
l. Phys. B 527 (1998) 171 [arXiv:hep-th/9803135℄.

A. Brandhuber, N. Itzhaki, J. Sonnens
hein and S. Yankielowi
z, Phys. Lett. B 434 (1998) 36

[arXiv:hep-th/9803137℄.

[17℄ C. G. Callan and A. Guijosa, Nu
l. Phys. B 565 (2000) 157 [arXiv:hep-th/9906153℄.

[18℄ Y. Kinar, E. S
hreiber, J. Sonnens
hein and N. Weiss, Nu
l. Phys. B 583 (2000) 76

[arXiv:hep-th/9911123℄.

[19℄ S. Forste, D. Ghoshal and S. Theisen, JHEP 9908 (1999) 013 [arXiv:hep-th/9903042℄.

[20℄ N. Drukker, D. J. Gross and A. A. Tseytlin, JHEP 0004 (2000) 021 [arXiv:hep-th/0001204℄.

[21℄ P. C. Argyres, M. Edalati and J. F. Vazquez-Poritz, JHEP 0701 (2007) 105 [arXiv:hep-th/0608118℄.

[22℄ A. Brandhuber and K. Sfetsos, Adv. Theor. Math. Phys. 3 (1999) 851 [arXiv:hep-th/9906201℄.

[23℄ F. Bigazzi, A. L. Cotrone, C. Nunez and A. Paredes, Phys. Rev. D 78 (2008) 114012 [arXiv:0806.1741

[hep-th℄℄. F. Bigazzi, A. L. Cotrone, A. Paredes and A. V. Ramallo, JHEP 0903 (2009) 153

[arXiv:0812.3399 [hep-th℄℄.

[24℄ C. Ba
has, Phys. Rev. D 33 (1986) 2723.

32

http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/9802109
http://arxiv.org/abs/hep-th/9802150
http://arxiv.org/abs/hep-th/9711002
http://arxiv.org/abs/hep-th/9809057
http://arxiv.org/abs/hep-th/9803001
http://arxiv.org/abs/hep-th/9803002
http://arxiv.org/abs/hep-th/9803131
http://arxiv.org/abs/hep-th/0003032
http://arxiv.org/abs/hep-th/9811192
http://arxiv.org/abs/hep-th/9805129
http://arxiv.org/abs/hep-th/0111078
http://arxiv.org/abs/hep-th/0604007
http://arxiv.org/abs/hep-th/0612022
http://arxiv.org/abs/hep-th/0605182
http://arxiv.org/abs/hep-th/0602255
http://arxiv.org/abs/hep-th/0609137
http://arxiv.org/abs/hep-th/0612139
http://arxiv.org/abs/0706.2655
http://arxiv.org/abs/0807.0236
http://arxiv.org/abs/hep-th/9803135
http://arxiv.org/abs/hep-th/9803137
http://arxiv.org/abs/hep-th/9906153
http://arxiv.org/abs/hep-th/9911123
http://arxiv.org/abs/hep-th/9903042
http://arxiv.org/abs/hep-th/0001204
http://arxiv.org/abs/hep-th/0608118
http://arxiv.org/abs/hep-th/9906201
http://arxiv.org/abs/0806.1741
http://arxiv.org/abs/0812.3399


[25℄ J. M. Malda
ena and C. Nunez, Phys. Rev. Lett. 86 (2001) 588 [arXiv:hep-th/0008001℄.

[26℄ I. R. Klebanov and M. J. Strassler, JHEP 0008, 052 (2000) [arXiv:hep-th/0007191℄.

[27℄ A. Loewy and J. Sonnens
hein, JHEP 0108 (2001) 007 [arXiv:hep-th/0103163℄.

[28℄ R. Casero, C. Nunez and A. Paredes, Phys. Rev. D 73 (2006) 086005 [arXiv:hep-th/0602027℄. R. Casero,

C. Nunez and A. Paredes, Phys. Rev. D 77 (2008) 046003 [arXiv:0709.3421 [hep-th℄℄.

[29℄ C. Hoyos-Badajoz, C. Nunez and I. Papadimitriou, Phys. Rev. D 78 (2008) 086005 [arXiv:0807.3039

[hep-th℄℄.

[30℄ C. Vafa, J. Math. Phys. 42 (2001) 2798 [arXiv:hep-th/0008142℄.

[31℄ M. Bertolini, Int. J. Mod. Phys. A 18, 5647 (2003) [arXiv:hep-th/0303160℄; E. Imeroni,

arXiv:hep-th/0312070; A. Paredes, arXiv:hep-th/0407013.

[32℄ A. H. Chamseddine and M. S. Volkov, Phys. Rev. Lett. 79 (1997) 3343 arXiv:hep-th/9707176;

A. H. Chamseddine and M. S. Volkov, Phys. Rev. D 57 (1998) 6242 arXiv:hep-th/9711181.

[33℄ C. Nunez, M. Piai and A. Rago, arXiv:0909.0748 [hep-th℄.

[34℄ M. J. Strassler, arXiv:hep-th/0505153.

[35℄ G. 't Hooft, Nu
l. Phys. B 138 (1978) 1.

[36℄ M. Bertolini and P. Merlatti, Phys. Lett. B 556 (2003) 80 [arXiv:hep-th/0211142℄.

[37℄ C. P. Herzog, I. R. Klebanov and P. Ouyang, arXiv:hep-th/0108101.

[38℄ R. C. Brower, C. I. Tan and C. B. Thorn, Phys. Rev. D 73 (2006) 124037 [arXiv:hep-th/0603256℄.

33

http://arxiv.org/abs/hep-th/0008001
http://arxiv.org/abs/hep-th/0007191
http://arxiv.org/abs/hep-th/0103163
http://arxiv.org/abs/hep-th/0602027
http://arxiv.org/abs/0709.3421
http://arxiv.org/abs/0807.3039
http://arxiv.org/abs/hep-th/0008142
http://arxiv.org/abs/hep-th/0303160
http://arxiv.org/abs/hep-th/0312070
http://arxiv.org/abs/hep-th/0407013
http://arxiv.org/abs/hep-th/9707176
http://arxiv.org/abs/hep-th/9711181
http://arxiv.org/abs/0909.0748
http://arxiv.org/abs/hep-th/0505153
http://arxiv.org/abs/hep-th/0211142
http://arxiv.org/abs/hep-th/0108101
http://arxiv.org/abs/hep-th/0603256

	Introduction
	Wilson loops and string solutions
	Static string U-shaped embeddings
	Stability analysis of classical string embeddings

	Gravity Backgrounds
	AdS5S5
	Poincare coordinates maldawilson
	Global coordinates

	AdS5-SchwarzschildS5
	Maldacena-Núñez background mn
	Klebanov-Strassler background ks
	Generalized Maldacena-Núñez solutions cnp,hn

	Stability Analysis
	AdS5
	Non-Extremal D3-branes
	Maldacena-Núñez background
	Klebanov-Strassler background
	Generalized Maldacena-Núñez

	Schrodinger Potentials Analysis
	AdS5
	AdS5-Schwarzschild
	Maldacena-Núñez 
	Klebanov-Strassler
	Generalized Maldacena-Núñez

	't Hooft loop
	Maldacena-Núñez
	Klebanov-Strassler

	Conclusions
	Sturm-Liouville to Schrödinger
	Exact spectrum for transverse fluctuations in AdS5S5

