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Abstract

We study the stability of some classical string worldsheet solutions employed for computing the potential
energy between two static fundamental quarks in confining and non-confining gravity duals. We discuss
the fixing of the diffeomorphism invariance of the string action, its relation with the fluctuation orientation
and the interpretation of the quark mass substraction worldsheet needed for computing the potential energy
in smooth (confining) gravity background. We consider various dual gravity backgrounds and show by
a numerical analysis the existence of instabilities under linear fluctuations for classical string embedding
solutions having positive length function derivative L'(rg) > 0. Finally we make a brief discussion of 't Hooft
loops in non-conformal backgrounds.
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1 Introduction

The proof of confinement in non-abelian gauge theories from first principles remains to date unsolved. The
strong-coupling aspect of the phenomenon precludes from attacking it with standard QFT perturbative
techniques. Nevertheless a criteria for confinement was proposed long ago by Wilson [I]. The criteria states
that an area law behavior for the so called Wilson loop indicates confinement of the chromoelectric flux
tubes (QCD string). In particular, an area law behavior for a rectangular (infinite strip) spacetime contour
corresponding to a static quark-antiquark pair indicates a linear confining potential between quarks.

In the latest years, the gauge/string correspondence [2] has provided new insights into the confinement
phenomenon. The crucial observation is that the string aspect of the chromoelectric flux tube manifests
in the dual perspective by the appearance of a holographic dimension [2],[B]. A string theory prescription
for computing Wilson loops was proposed in [H]: the gauge theory loop is to be though at infinity in the
radial holographic coordinate and the Wilson loop for fundamental quarks is defined by an open string whose
endpoints lie on the loop at infinity. In the large N, limit (’t Hooft limit) the QCD string self-interactions
vanish [6] and the dual gravity prescription for computing the potential energy between quarks in a given
gauge theory amounts to finding a minimal surface in the corresponding gravity dual.

The canonical computation for the potential energy between a pair of fundamental static quarks (rectan-
gular loop) involves a U-shaped string extending in the holographic direction where the gauge theory quarks
separation L translates into the separation between the fixed open string endpoints located at infinity. As the
quarks separation varies, the string worldsheet explores the holographic direction, therefore, the minimum
radial position g reached by the string depend on the endpoints separation distance L. This procedure was
applied to a number of paradigmatic examples and gave results consistent with gauge theory expectations,
in particular a theorem stating sufficient conditions for confining backgrounds was proved in [§] (see [0 for
a review). Extensions to higher gauge group representations and 't Hooft loops were analyzed and proposed
in [@,[I0,[I, they involve higher dimensional D-branes with or without worldvolume gauge fields turned
on.

In many applications to dual gravity backgrounds the prescription H] has been applied at the classical
zeroth order level to establish confinement, phase transitions or transport properties [[,[I2], only recently
has the stability of some classical string embeddings been studied [I3],[I4],[I3] (see also [IT,[IS],[I9,20).
One of the motivations for the stability analysis, in generalized situations, has been the appearance of
multiple classical embedding solutions for given boundary conditions [I4],[I5], 2] (see also [22]) signaled by
the presence of extrema in the length function L(rg) (see [Z3] for related recent work). The presence of a
maximum separation length was interpreted as dual to the occurrence of screening. The aim of the present
work is to show that whenever one has a L'(rg) > 0 branch of solutions, they are unstable. We will confirm
this statement by explicitly showing the existence, in particular gravity backgrounds, of unstable (w? < 0)
modes for the L'(rg) > 0 branches. It is worth mentioning that this is a satisfying result since the expected
physical behavior for the L(rg) relation from the gauge/string correspondence is to have L'(rg) < 0. We will
mention briefly an analysis of 't Hooft loops computations in non-conformal gravity duals where instabilities
also arise.

Along the way we will discuss various aspects of the classical embeddings: the first one regards the
physical interpretation of the configuration employed for obtaining a finite potential energy between quarks
in smooth gravity backgrounds, the second regards the diffeomorphism invariance of the string action and
its relation to the possible gauge choices for the orientation of the in-plane fluctuations, the third one is
the relation between instabilities of the string embedding and the L(rg) relation between the separation of
the string endpoints at infinity L and the maximum depth reached by the string probe in the holographic
direction rg. It was proved in [IH] that the presence of an extremum in the L(rg) relation leads to the
existence of a zero mode for the longitudinal fluctuations, signaling an instability. We will confirm this fact
by explicitly computing the lowest fluctuation modes in a number of gravity duals examples.

The paper is organized as follows: in section 2] we review the prescription for computing Wilson loops
from gravity backgrounds. In section Bl we describe the backgrounds we will study and compute their length
and energy functions. In section @l we perform a quadratic fluctuations analysis and compute numerically
the lowest fluctuation modes. In section [B] we reanalyze the result of section Hl transforming the fluctuations
equations of motion into a Schrodinger problem. In section [l we briefly discuss the 't Hooft loop case and



in section [ we summarize our conclusions. We conclude with two appendices with technical details.

2 Wilson loops and string solutions

2.1 Static string U-shaped embeddings

The starting point for Wilson loop computations, in the large N, A ("t Hooft limit), from gravity duals with
metric g, is the Nambu-Goto actior[]

S = /dea\/nh. (1)
Here h = det hag, hag = gu0a X"0X" is the induced metric on the string worldsheet, d, = 0/9¢* with
&* = {r,0} the string worldsheet coordinates and X* run over the target space coordinates. A sign 7
accounts for possible Euclidean (n = +) and (timelike) Lorentzian (n = —) configurations. The class of
metrics we consider take the form

U
2wl

0% = —gy(r)de* + go(r)da? + g, (r)dr + gay (r,0)d0"de" (2)

The t,z; (i = 1,2, 3) coordinates represent the gauge theory coordinates, r is the bulk holographic coordinate
and 0, (a,b =1, ..,5) are additional angular coordinates parametrizing a compact 5d space X5. The potential
energy between quarks involves solving the NG action for (timelike) worldsheets corresponding to strings
whose endpoints at infinity lie on the loop to be computed, typically the endpoints are kept separated by a
constant distance L in one of the x; coordinates which we call = (see [ for a review). We start analyzing
static embeddings of the form ¢(7),z(c),r(c), with all other coordinates fixed to constantdd. Placing the
anzats into the action leads to the correct equations of motion, one therefore has

S = a4\ [0 ) (0. (0) 8 + 9,0 2)

-1 / dtdo /() (92 (1) &2 + 9,(1) 72)
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where ¢(r) = g:(r)g-(r) and f%(r) = g+(r)g.(r). The reparametrization invariance of ([l factorizes the
temporal extension of the loop 7 and reduces the Wilson loop computation to finding a geodesic in the
effective 2-dimensional geometry

dsgff = f2(r)da® + g*(r)dr?. (4)
The conserved charge associated to z-translations in (B is
2 2
12(r) (o) . -

V I2(r)E(0)? + g*(r)i(0)?
from which one obtains
g(r) 1 (o)
F) Py = A2

Reparametrization invariance guarantees that (Gl solves the r-equation of motion. Calling ro the point given
by f(ro) = A, ([6) can rewritten as [§]

(o) =+A (6)

dr— = f(r) \/J2(r) = f2(ro)
LGenerically one should take into account contributions from Bs background fields but for the ansatz we will consider they
do not contribute to ().

2Generalizations considering moving quarks on the boundary, relevant for QGP applications, are straightforward and
rephrased in terms of non-diagonal terms in the metric[I4],[20].




The boundary conditions at infinity for the string endpoints separation are Axz|,—o, = L. From () one
notices that the string reaches the boundary in an orthogonal way. Two natural gauge choices that appear
in the literature are: z(c) = o (x-gauge) or r(c) = o (r-gauge). The first choice (x-gauge) has the
benefit of providing a complete parametrization of the embedding r(z) when imposing = € [-L/2, L/2] and
r(£L/2) = oo (the tip of the string is conventionally chosen to be at (r,z) = (r9,0)). Making = — ¢,
equation () can be understood as a zero energy motion in a potential U(r) given by

F2(r)(£2(r) = f?(ro))
g*(r)f(ro)

the point r¢ is therefore easily seen to be the minimum value in the holographic coordinate reached by
the string. The second choice (r-gauge) gives a double valued z(r) relation when imposing r € [rg,c0) and
x(o0) = £L/2. Nevertheless in several examples leads to closed analytical expressions for x(r) and moreover,
when computing fluctuations around the static solution, drastically simplify the equations of motion since
no fluctuations in the metric components g,,, should be taken into account (see [B],[I3]). One should keep in
mind that the tip of the string is a special point in the r-gauge since we must patch there the two branches
corresponding to the + signs in (@) (see the following section).
Integrating (@) we arrive to the important L(ro) length function,

T = (TO) T
9= [ v S Y

Assuming that f(r), f'(r) > 0 the lower limit 7o in (@) is generically integrabld]. Note that a finite lhs in ()
demands that g/f? should decay at infinity faster than 1/r. In the following sections we will be interested
in the relation (@). The derivative L'(r) can be computed as follows [I3] (see also the recent work [B3]),

Ur) = (8)

(o) _ g(r) oy [ r)g(r)
2 J2(r) = f2(ro) HTOH(O)/TD (f2(r) = f2(ro))?
_ g(T) 'y > - (7‘) d 1
N f2(r) = f3(ro) HTOH( 0)/m T >dr< f?(r)—f%o))
F'(ro)g(r)
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where we have integrated by parts when passing from the second to the third line. Since the first term in
the rhs of the third line vanishes in all the backgrounds we consider, we obtain

L(ro)=2 | ar YR fl(roig @ i(g(r)> (10)

The energy of the ¢g configuration was proposed in [ to be given by the length of the string solution
@@ in the effective 2d metric (@),

g3 (r)i(o)? (11)
The expressions for the energy in the z- and r-gauges, using (@) are

L ER o Pr()

Ero) = 2ma! —L/2 e f(TO) (12
S PR (070 (13)
f2(r) = f3(ro)

3A zero f'(ro) = 0 leads to a ro-dependent logarithmic divergence in (@) (see [B3] for a generic discussion on divergences in
the length function).



The energy computed by expression ([I]) diverges due to the infinite extension of the strinﬂ. The inter-
pretation for this divergence is that [0} contains, in addition to the potential energy between quarks, the
self energy (mass) of the external quarks []. In order to obtain a meaningful quantity and get the poten-
tial between quarks we should compare ([[I)) with respect to a reference state taking care to substract a g
independent quantity. It is customary to take the length of a straight string stretching from infinity all the
way down to the interior of the bulk spacetime along the r coordinate, with all other coordinates set to
constants, as the “bare” quark mass. Calling r = r,,;, the minimum allowed value for the radial coordinate
in the geometry (@), either because of presence of a horizon (e.g. AdS in Poincare coordinates or thermal
BH backgrounds) or because the spacetime ends in a regular fashion (e.g. Witten AdS soliton, Maldacena
Nunez and Klebanov-Strassler backgrounds), the quark mass takes the for

mg = ﬁ /00 g(r)dr. (14)

Tmin

The potential energy between quarks obtained from () after substracting the quarks self energy (I4) is
Egq(ro) = E(ro) —2my

= L - 9(r)f(r) dr — - r dr].
o’ V VPO - P00) [, (1)

Eliminating 7o from (@ and ([I3) we obtain the gauge/string proposal for the potential energy between
quarks in the planar large 't Hooft limit Vstr;ng(L). In the following sections we will plot this relation in
several examples and analyze its functional form. For completeness we compute the derivative of [I3)), one

has
E(ro) = l_ o(r)f v N /“de(T)g(T)f(To)f’(To)]_

o/

V() = f2(ro) (f2(r) = f2(ro))*

Using the first line of ([I0) one obtains [13]

T="0

dE,q 1
dL  2mo/

) L) =

E‘;q (ro) = 2T

f(TO) ) (16)

where 7 in the last expression should be understood as the function r(L) obtained by inverting ([@).

We end this section quoting some conditions that must be satisfied by any potential pretending to describe
the interaction between physical quarks. The so called ‘concavity’ conditions proved in [24] are
dav d*V
— >0, — <0. 17
dL dL? — (17)
This conditions hold independently of the gauge group and the details of the matter sector. The physical
interpretation of ([I7) is that the force between the quark-antiquark pair is: (i) always attractive and (ii)
a non increasing function of their separation distance. From (@)),([IH),([I6) we find that the string proposal

Vetring (L) gives [22]

AVing _ dBggdro 1 PVering __1 (dL)_l F'(ro)

dL dro dL 271'0/*)6(740)7 dL?2 ~ 2mwa’ \drgy

= (18)
The first condition is always met in dual gravity backgrounds since by definition f(r) > 0. Although in
all our examples f/(r) > 0, the second condition might fail whenever L'(rq) is positive. We will present
cases where this non-physical behavior appears and show that precisely in those circumstances the string
embedding solution ([)-[@) is unstable under small perturbations. This last statement was the motivation
of the present work.

4The divergence in ([[3) is generically ro-independent, an additional ro-dependent divergence might appear in [@) and ()
whenever the string stretches to regions where f/(rg) = 0.

5See the discussion at the end of sections (1.2 and B3] regarding the interpretation of the reference state in smooth gravity
backgrounds.



2.2 Stability analysis of classical string embeddings

We will study in this section the stability of the classical solution (r¢ (o), za (o)) given by ([@)-@) under small
(linear) perturbations. A general fluctuation around the embedding solution can be written as

X" = (1,24q(0) 4+ dx1(7,0),022(T, 0), d23(T, 0), 70t () + 07 (T, 0),0% 4+ 60%(T,0)) . (19)

We can use the diffeomorphism invariance of the action to fix ¢ = 7 and forget about the t-equation of motion.
For the class of metrics considered in @), the dzo and dx3 fluctuations decouple and as expected satisty the
same equation of motion, the §6¢ fluctuations mix among themselves for generic compact manifolds and lead
to five eom (we will not analyze the angular fluctuations in the present work and we consistently set them
to zero), finally the dz; and dr fluctuations result mixed in two coupled equations.
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Figure 2: xz-gauge fixing: The dashed line rep-
resents the classical embedding we are per-
turbing. This is a physical gauge choice
all over the embedding solution, the plotted
(even) fluctuation changes the position of the
tip.

Figure 1: r-gauge fixing: The dashed line rep-
resents the classical embedding over which we
perturb. At the tip rq, the fluctuation is ori-
ented along the string, and therefore not phys-
ical.

It is easily shown that the r- and x1-equations of motion are proportional. The remaining diffeomorphism
should therefore be used to fix the orientation of the (o7, dx1) vector (in-plane fluctuation) at each point
of the solution (rq(0),zq(0)). After imposing a gauge constraint one equation describes the fluctuations
in the (r,z1)-plane and we end up with a well posed system of differential equations. The physical gauge
choice (n-gauge) would be to orient the fluctuation along the normal direction to the classical embedding
(ra(o),za(o)) and generically this means to account for fluctuations on both z; and r coordinates. Two other
natural possibilities considered in the literature correspond to fixing dz1(7,0) = 0 (z-gauge) or ér(7,0) =0
(r-gauge). The n- and z-gauge fixings, as mentioned in the previous section, parametrize the fluctuations
along the whole classical embedding but the equations of motion are lengthier because the dr fluctuations
result in additional contributions to the eom arising from changes in the metric [I8],[I5]. Note that at first
sight the n- and z-gauge fixings appear to allow for the oscillation of the tip, while the r-gauge fixing should
not (more on this in the following). We will choose to work in the r-gauge, this means fixing ér(r,0) = 0
and work with simpler equations defined on half of the embedding. It will then be mandatory to analyze
the boundary conditions to be imposed at the tip (rg,0) of the embedding in order to get a meaningful
solution. Moreover, since we are considering fluctuations along the x; coordinate, precisely at the tip the
dx1 fluctuation is oriented along the string worldvolume and not transverse to it: the dx1 fluctuation in the
r-gauge is therefore not physical at the tip of the embedding. The required additional analysis developed in
[I4],[13] will be discussed below. At last, another advantage of the r-gauge is that it gives closed expressions



for the linearized fluctuations equations of motion (see ([22)-([23))), the isometry along z; implies that upon
computing fluctuations over the classical solution ([@)-([@), we do not need the explicit analytic solution z(r),
what contribute to the equations of motion is its derivative () (as an example compare ([I3) with ([I14)).
We would like to quote the work [I4] where dr fluctuations in the dz; = 0 gauge fixing were considered over
(half) the classical embedding parametrized in the r-gauge (see below eqn. 27),[28)).

In the following we will be concerned with the equations of motion for the dz; fluctuations, they can be
obtained by placing the ansatz

t=71, w1 =zq(r)+ox1(t,r), x2=70dxa2(t,7), x3=20dx3(t,7), r=0, (20)

into the action (). Expanding to second order in the fluctuations one obtains

ra/ LB = L 21 (F2(r) = £2(r0)) (621)% = (f2(r) — £2(ro))?(041)?
£ = e [0 (200 - £200) 6017 — () — S0 66)
+2(r)R? (r)((832)% + (35)%) — f2(r) (f*(r) = f2(ro)) ((8d2)* + (643)%) | (21)

where h2(r) = g,(r)g-(r). The Euler-Lagrange equation for the dz; fluctuation is

A (20 = L) d | k0P = P
dr g(r)f(r) dr g(r)f(r)

] Sz1(r) =0, (22)

where we factorized the time dependence of the fluctuations as dz(t,r) = dz(r) e~**. The equations for the
fluctuations transverse to the (r, z1)-plane obtained from (ZI)) are

Mﬂ(f&)f%ﬂ—f%m[ﬁ>+wz W)/ (r)
dr g(r) dr) "7 ()P~ 2

Equations ([22)-([23) are differential equations of the Sturm-Liouville type defined for the half line r,;, <
ro < 17 < oo and we are interested in analyzing the existence of instabilities, in particular determining the
range of values of 7o for which w? < 0.

The boundary conditions to be imposed on the problem are Dirichlet, this means fluctuations keeping
the string endpoints fixed at the boundary dz;(7, 0)|,—cc = 0, but, the nature of the r-gauge parametrizing
only half of the (rq(0),zq(0)) embedding requires an additional analysis of boundary conditions at the tip
r =ro (singular point of [22)-([23)). We start by analyzing ([23), the expansion around the tip givesﬁ

Ao, (1) w2h?(ro) 1 N o () A~ fr— -
)+ gt v ()0 = S = ot GO (;

Here Cj; are arbitrary constants corresponding to the two independent solutions of the differential equa-
tion (23)), which once chosen determine the whole series expansion for dx.,(r). Physically they correspond
respectively to even and odd fluctuations around the tip once we patch them with the fluctuations around
the other half of the embedding, which obviously satisfy the same eom. A discrete set of eigenvalues w? is
expected if non-normalizable solutions exist in the large r-limit, we also expect the even solution to have the
lowest w? eigenvalue (see appendix [B).

We now turn to the analysis of the in-plane dz; fluctuation. Expanding @22) around r = r¢ one finds

d %d&zl(r) w?h?(ro)
dr <(T —ro g ) " 2f(ro)f"(ro)

] 0xm(r) =0, m=23. (23)

1
ﬁ—FO(\/T - To).
(25)

A singular behavior appears for dz; at the tip and one might be tempted to cancel it by imposing C] = 0.
Nevertheless, as mentioned above one should take notice that the r-gauge fixing implies that, at the tip, dx;
is directed along the string worldsheet and not transverse to it, therefore in the r-gauge the displacement

Vr—rodri(r) =0 = dz1(r) =~ CH+C}

6We consider f(r) to be an increasing function of r having no zeroes except perhaps at the bottom of the bulk r = 7pip.



dx1 at the tip is not physical. In order to give a physical interpretation to the constants C'(’))1 in 23) we now
make a change from the r- to the z-gauge (cf. [I2],[I3]). The change of gauge on the ansatz 20) can be
implemented by a change of variables on the solution ([22) from r to a new variable which we call u. It can
be implemented perturbatively, to first order in the fluctuation the relation is [I3],

. dx1(t,r)

= At h A(t,r) = ———. 2

u=r+A(tr) wit (t,7) o0 (26)
This transformation performs the desired change of gauge since
x1 = wza(r)+ox1(t,r) = xa(u — AL, 7)) + dz1(t,7)
dxq(t, 1)

~ zqu) — o, (r) —1~=< t,r) =z 2

) = () T 2 4 8 () = ) (21)
0z (t,u)

~ oy 2

' ! wg(u) 28)

here 79 < u < oo. This is precisely the gauge fixing employed in [[4] mentioned above. The second term
on the rhs of [28) is interpreted as the r-direction fluctuation induced by the (r-gauge) zi-fluctuation. It
is now easy to see that it is finite. The asymptotic behavior [Z3)) and the expansion around the tip of (@),

/

xly(r) ~ (r —ro)~'/2, plugged in @8) gives
rary—a(Chvu—ro+ C1) +O(u—rp), (29)

with « a finite constant. The result ([29) shows that the physical ér fluctuation originated from the non-
physical divergent dx; fluctuation at the tip is manifestly finite. Therefore we interpret the (C})) C} in (25)
as the fluctuation that (do not) oscillates the tip position.

In the following sections we will show numerical solutions of ([22) for various gravity backgrounds deter-
mining the lowest eigenvalues leading to normalizable solutions. We will solve ([22) by a shooting method
integrating numerically from the tip 7o up to a large value r.,. The allowed values for w? will be obtained
imposing the numerical solution to be zero at » = ro,. The boundary conditions at the tip corresponding
to even solutions are C}, = 0 and C arbitrary, for numerical purposes we set C] = 1, its value sets the
normalization of the fluctuation. An even solution around the tip satisfies

dor(t,r) B ~ dx(t,r)
Txl s =0 where 5T(t,7") = —W . (30)

Using ([Z0) we can write B0) in terms of dz1(r). The boundary conditions for even solutions of (22)) are

implemented numerically as
déxy(r)

dr
Vr—rodzi(r)=1, 1 —rg. (31)

0Odd solutions Cj =1 and C{ = 0 are implemented as

dx1(r) + 2(r — ro)

=0, r—m

Sz (r) +2(r — ro)déa;(r) =1, r—mg

Vr—=rodzi(r) =0, 1 —rp. (32)

Summarizing, in general backgrounds, the functional relation of the classical solution (7)) between the z; and
r coordinates at the tip takes the form z2(r) &~ r — rg, and the asymptotic behavior of the z;-fluctuations
over it, in the r-gauge, is of the form ([25). Although a divergent piece appears in ([Z3), an appropriate change
of gauge shows that the divergent and non-divergent pieces correspond respectively to (physical) even and
odd fluctuations around the tip.




3 Gravity Backgrounds

In this section we compute the string embeddings (@) dual to rectangular Wilson loops for a a number of
paradigmatic gravity backgrounds. We review the AdSs x S H] and AdS5-Schwarzschild x S® [[] cases. Next
we perform the numerical analysis of the equations (@) and (&) for the Maldacena-Nufiez [25], Klebanov-
Strassler [26] and the generalized Maldacena-Nunez [2§] backgrounds. In all cases the geometry is supported
by some non-trivial p-form fluxes, but they will not be relevant for our computations.

3.1 AdS; x S°

This background is dual to N' = 4 SYM with G = SU(N) gauge group in the Coulomb phase. The
AdS curvature R relates to the gauge theory t Hooft coupling A as R* = o2\ and the flux of the 5-
form supporting the geometry N = [¢; F5 relates to the rank of the gauge group as N = Rank(G) (.
The conformal invariance of the gauge theory implies a Coulomb behavior for the potential V(L) ~ 1/L
between quarks. The novelty of the gravity computation is to compute the gauge coupling dependence of
the proportionality coefficient.

3.1.1 Poincare coordinates [H]

This coordinate system is supposed to describe the gauge theory formulated on R%!. The metric is written

as

d

ds* = dt* + dx;dx;) + R2 + R%dO2 . (33)

R2 (-
One finds f?(r) = r*/R*, ¢g(r) = 1. The radial coordinate range is 0 < r < oo, at r = 0 one finds a Killing
horizon. Equation (@) can be analytically solved in the r-gauge, one obtains

za(r) = :I:{cte—fToB<(:)4;%,%>}, ro <7 < 00 (34)

where B(z; a,b) is the incomplete beta function B(z; a, b) fo t2=1(1—¢)*~1dt. The boundary conditions fix
the constant in ([B4) and relate the parameters ro and L setting xq (ro) =0 and z¢(c0) = £L/2 one obtains

A,
2 (9m)3
L(ry) = R_B (i ;) fo (F[i)P . (35)

The energy ([[&) takes the form [4]

To

(K(~1)~ E(-1)) = - ‘ (36)

E = =
qa(T0) 2ol F[%]Q ’

mao!

here K (m), E(m) are the complete elliptic integrals of first and second kind. Eliminating r( from expressions
B3)-@B6) the AdS/CFT proposal for the interaction potential between fundamental quarks in the large ’t
Hooft coupling for the N' =4 SYM theory is [4]

(27)2 R?/o/ N _Q . (37)

‘/string(L) = _F[%]Al I I

An attractive Coulomb potential is obtained as expected from conformal invariance. The interesting result
is the VA = (¢2,,N)? dependence when compared with the perturbative A = g2 ,,N result. This suggests
that some renormalization of the charges takes place at strong coupling []. Note that in order to obtain
the negative quantity [B7) starting from a positive definite one (see eqn ([IdJ)), it was crucial to substract the
quark masses (4 .



3.1.2 Global coordinates

We discuss this example because it clarifies conceptual issues regarding the interpretation of the substraction
procedure ([[3) in smooth and complete gravity backgrounds (see sections B3 3.4 B3).

Computations performed in AdS global coordinates are supposed to represent the AV = 4 SYM gauge
theory defined on S3 x R. The AdS metric is now written as

ds® = R*[— cosh?p dt® + dp* + sinh®p dQ3] . (38)

All coordinates are dimensionless in this case with the AdS radius R setting the scale. We write the S°
metric as dQ3 = df? + sin291(d9§ + sin?Aadp?). Being ¢ a cyclic coordinate, the appropriate string ansatz

ist=17, p=p(o), ¢ =0, one obtains f2(p) = Lsinh*2p, g?(p) = cosh®p. The remaining angular variables

must be set to 6; = 7 (equator of S 3) in order to satisfy their eom. The conserved charge in the ¢ coordinate

leads to an effective one dimensional zero energy motion

A +U(p) =0, (39)
where g = dp/dyp and the potential U(p) = sinh?p (1 — Ssiirf‘}f’;;;) ) po is the minimum radial position reached

by the string when separating the string endpoints at infinity by Ap = ®. The ®(pp) relation [@) is computed

straightforwardly
e inh 2
®(po) =2 / ———dp. (40)
ro sinh p\/sinh 2p — sinh“2pg

Since the gauge theory is defined on a S there exists a maximum separation for the quarks and it corresponds
to placing them at antipodes on the equator of the S3. This results in the string reaching the origin ®(0) = 7
and leading to a smooth straight worldsheet (stretched along the radial r coordinate) parametrized by two
halves at ¢ = ¢ and ¢ = 7+ ¢ . The (divergent) energy ([I3)) of the configuration [BJ) is

R [ sinh”2
B(po) = 5 / : Sl (— (41)
T Jpy sinh p\/smh 2p — sinh*2pq

Substracting the quark masses as in ([I3]) leads to,

R e 2 cosh
Ey(po) = — / L 2coshp | dp —2sinhpg| , (42)
2ma’ 0 1— sinh22pg
sinh22p

which is finite and negative definite (see fig3l). The finite result ([@2) should be understood as resulting from
the comparison of (@I} wrt the aforementioned smooth reference state consisting in a straight string with
its endpoints at infinity at antipodes on the S® equator. We interpret this last configuration as the one
corresponding to “infinitely” separated quarks on S®. Note that the reference state and the configuration we
are analyzing satisfy different boundary conditions.

3.2 AdS;-Schwarzschild x S°

Finite temperature gauge theories are described by considering black hole (BH) solutions in the gravity duals
[B]. The near horizon geometry of N non extremal (black) D3-branes is therefore conjectured to describe
N =4 SYM at finite temperature. As explained in [B], the appropriate BH background for describing the
gauge theory on R3! involves a delicate infinite mass limit of the AdSs-Schwarzschild BH resulting irﬁ,

T2

"R

2

4
—(1- %)dt‘z +dwidas| + 2

1
ds? - 1—4dr2 + R2d02. (43)

i
Py

"The limit results in the metric depending on only one scale, contrary to the finite mass case where one has two parameters:
the temperature (BH mass) and the AdS radius. This last geometry was shown to exhibit a phase transition (Hawking-Page),
which was interpreted as dual to the confiniement/deconfinement phase transition in N’ =4 on S [A.
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Figure 3: Viping(®) obtained from @) and @2). For small angular separations
between the string endpoints & < 1 one finds the expected Coulomb behavior
V ~ VA/(R®). For larger separations the solution deviates due to the compact-
ness of the S3.

The BH horizon is located at » = p and its temperature is T = %w. It is convenient to work with
dimensionless coordinates, scaling r = up, t = R?/ut and o = R?/uy one obtains

1 1
ds®> = R% | — <p2 — ?) dt? + p*dy;dy; + mdpQ +d0Z| . (44)

02

The scale of the dimensionless gauge theory coordinates #,y; in @) is set by R?/u and one finds f2(p) =
pt—1, ¢?(p) =1 and p = 1 as the horizon location. The expressions for the dimensionless ¢g separation
length (@) and potential energy ([[3) can be analytically computed [I5 00 22]

_ (2m)% /pr —1 (3 15 1)

Lp = F T a 45

(po) NEE: 2B\ p g (45)
_ R? (27) % 1 111
E,2(po) = 1— 1 pooFi (-2, —=, =~ 46
qq(Po) ol 21“[%]2 P02 1( Bk 4’4’p3> ( )

Here pg > 1 is the minimum radial position reached by the string and the minimum radial value 7,,;, in
(@3 was taken to be the horizon location 7., = u. One can easily check that in the small temperature
limit LT < 1 (corresponding to po > 1) one recovers the zero temperature behavior [Ba)-B1). We have
plotted in figures [ and [@ the behavior of the length ([@3) and the energy ([@6) as functions of pg. In figure
we plotted the relation Viying(L) obtained from (@2)-[8) by eliminating po, the result is a double valued
function.

Figure @ shows a maximum L, ~ 0.869 at pg. ~ 1.177 which implies that no smooth solution connecting
the pair of quarks exists for L > L.. The only existing solution for L > L. corresponds to two straight
strings reaching the horizon. This configuration, used for the substraction in ([T, is interpreted as the one
corresponding to a pair of free quarks. The existence of a maximum in the L(rg) relation in BH backgrounds
has been interpreted as the gravity dual of thermal bath screening [I6]. Figure @ also shows the existence
of two branches of solutions for each string endpoints separation distance L < L.. The left branch (L’ > 0)
leads to a potential Viting (L) not satistying the conditions (I7) and it should therefore be non-physical (upper
curve in fig. Bl). The rewarding result as we shall see is that string theory is wise: the left branch should not
be trusted since it is unstable under small perturbations (see section [2]).

The last point to comment is that although, as we shall show, all the L’ < 0 region (1.177 < pg < 00) is
stable under small perturbations, one expects the lower curve in figure [ solution to be metastable whenever
E,; >0 (0.754 < L < 0.869 or 1.177 < py < 1.524). The reason for this is that the (reference) two straight
lines solution has E,; = 0 and is therefore the absolute stable minimum fro 0.754 < L < 0.869 (see fig. [).
Taking this last fact into account [I8] suggested to take L. ~ 0.754 as the screening length.
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Figure 4: L(po) relation @3): A maximum is ob- from {3) and {6) eliminating numerically
served for pg ~ 1.177. The two branches to the po. The upper curve corresponding to the left

left /right of the maximum at po. ~ 1.177 lead to branch in fig. @ does not satisfy the conditions
a double valued Viring (L) relation in fig. @.
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Figure 6: F,(po) relation for thermal N' =4 SYM. Eqn. (IB) guarantees an extremum in E,q(ro)
and L(rg) at the same value of 7. The curve cuts the axis at po,, ~ 1.524, for pg > pon, the U-
shaped solution is an absolute minimum, for py < po., the two straight strings (reference) solution
is the absolute minimum.

3.3 Maldacena-Nunez background [25]

The r =~ 0 of this background is supposed to describe qualitatively the IR regime of d = 4 N' = 1 SYM
theory. The probe brane configuration leading to this solution consists of N D5-branes wrapped on a finite
2-cycle at the origin of the resolved conifold. When the backreaction of the D5 on the geometry is taken
into account, a transition flop occurs (see [B0]) leading to a geometry with a smoothly collapsing S? and a
finite S at the origin as for the deformed conifold (see [BIJ for a review of the solution). The solution was
independently found in the context of gauged supergravity in [B2].

The metric can be written as [23]

1 . .
ds®> = o/ Ne? [ — dt* + daidx; + dr® + 2" (d6* + sin® 0dp?) + 1 (w* — Az)ﬂ , (47)
where w® (i = 1,2, 3) are the su(2) right-invariant forms

w' +iw? = e W (df 4+ isinfdp), w®=dy + cosfdp, (48)

11



and A%, ¢, h are given by
Al = —a(r)df, A% = a(r)sinfdp, A = —cosfdyp

2r
a(r) = sinh 2r
2
1
e = rcoth2r — T72 - =
sinh” 2r 4
inh 2
e2¢ — 200 Sl;ehT (49)

$o is an integration constant which sets the value of the dilaton ¢ at the origin (some authors write g, = e%°).
The t,z;,r coordinates are dimensionless and its scale is set by (O/N)%. The metric {7) is regular in the
r — 0 limit with the 2-sphere (6, ¢) smoothly collapsing and the resulting topology of the spacetime is of the
form My x S3, contrary to the cases discussed before where the spacetimes were of the form M3z x X? with
X°® compact. The reason for this is that the background [@T) models the 5+1 gauge theory on the wrapped
D5-branes. Nevertheless, one expects to get an effective 3+1 theory at energies £ < 1/Rg2, where Rg= is
the radius of the sphere wrapped by the D5.

The paradigmatic static U-shaped ansatz leads to f2(r) = g2(r) = €% and the separation length (@) and
energy (I3 take the form

L=z [ (50)
" R /e2¢(7‘ _ e2¢(7‘0
20 (r) 0
_ _ o(r)
Eqq(ro) {/ =550 dr ; e dr} . (51)

The expression for the energy (BIl) can be rewritten in an illuminating form [§]

oo 2¢ s 2¢ T _ 2¢ T T
/ e ()—|-e (o) e (0)_e¢(T) dr_/oe‘i’(r)dr
ro e29(r) — e26(ro) 0

|:e¢(ro)@ 4 / dr (1 /e2¢(r) — e2¢(ro) — e¢(r)) _ / 0 ed’(r)dr] . (52)

To 0

Eqq(ro)

A= 2=z

In the large L limit the string reaches the bottom of the bulk (ro — 0, see figure ) and the last two terms
in (B2) do not contribute (see [{]). In the large L > 1 limit we obtain reinserting units [25]
e®o e®o

—/L = Tstring -

‘/string (L) ~ 2

- (53)
The background ([@7]) is therefore predicting linear confinement for large quarks separation in agreement with
its proposed d = 4 N =1 SYM dual gauge theory. From the (chromoelectric) string tension ([53) we see that
the value of the dilaton at the origin ¢ relates to the dynamically generated scale of the dual gauge theory.

We plot in figures [ and B the L(ro) and E(rg) relations (B0) and (GI). The divergence L — oo at 79 — 0
in fig. @is due to (e 2¢(T))‘T_ =0 (see B3] for a recent discussion).

The result for the potential Veging(L) in figure @is rewarding, but the linear behavior occurs for configu-
rations having energies above zero. A concern arises as to whether we should trust the result for Viying > 0
(see last paragraph of section[3.2). The substraction in (Il corresponds to a pair of straight strings running
along the radial direction with the remaining spatial coordinates kept fixed. Being the background regular,
the strings cannot end at any point in the interior and the only possibility for a smooth reference solution
is to place the string endpoints at antipodes on the ¢ coordinate and having both the same z; coordinate
(see the horizontal blue line in fig. [0 and the related discussion in sect. B.I2). We conclude that although
the linear confinement occurs for conﬁguratlons having E,3 > 0, the solution is stable and it cannot decay
to the reference E4; = 0 state since the two configurations being compared in (Bl satisfy different bound-
ary conditions. Figure [I0] depicts the relevant worldsheets for the rectangular Wilson loop computations in
smooth gravity backgrounds.
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Figure 9: Potential energy Viuing(L) for the ¢g pair obtained for the Maldacena-Nuflez solution
eliminating numerically ro from (GO)-(GI). Note the change of behavior from Coulomb like to
linear.

3.4 Klebanov-Strassler background [26]

This background describes a A" = 1 quiver gauge theory with bifundamental matter fields transforming
under SU(N 4+ M) x SU(N). The probe branes configuration leading to this geometry is constructed as:
N D3-branes in the apex of the singular conifold plus M D5-branes wrapped in the topological S? of the
conifold and sharing the remaining three dimensions with the D3. The solution is supported by a constant
dilaton ¢ = ¢, which can be set to have g; < 1 everywhere (contrary to the MN solution). The A" = 1 flow
SU(N + M) x SU(N) — SU(M) realized through a cascade of Seiberg dualities in the gauge theory (see
B4]) manifests in the geometry in a varying 5-form flux.
The metric reads [26]

ds® = goo/M [h™2 (r)(—dt? + da;da;) + h? (r)ds?] (54)

The deformed conifold metric dsg can be written

(dr* + (4°)%)

dsg = —K(r) K0

+eosh® 5 ((6)7 + (%)) +sinh® £ (6)° + (@) (59)

where )
sinh(2r) — 2r]3
K () = SRRz 27

23 sinhr
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Figure 10: Geodesics employed for the computation of rectangular Wilson loops in smooth gravity back-
grounds. The black curved vertical line depicts the U-shaped solution, the horizontal blue line is the smooth
reference state with respect to which we compare the energy of the black line. The black and blue configu-
rations satisfy different boundary conditions.

and the g; defined by

with

61 = —sin91 d¢1; 62 = d@l, 63 = —sin1/1d92 —|—COS1/) sin92 d¢2,
et = cos1p dfy + sinp sin By doo, e’ = dip 4 cos b, dgy + cos Oy dos. (58)

The coordinates in (B4) are dimesionless, the gauge theory coordinates ¢, z; scale is set by gs}ff O‘,, and the
scale of the holographic coordinate r is set by £.;. The h(r) factor takes the form

sinh? x

> ha—1
h(r) = 2% / a2 L (i or — 20)t) (59)

The background (B4) is supported in part by a non-trivial B, but the embedding we are considering gets no
contribution from it [27]. The functions in @) are given by f2(r) = h(lr), g*(r) = GK;Z(T)' The dimensionless

expressions for the length ([@) and the energy ([[3) are

= B < dr h(r)
Hro) = 2/ro VBK (r) /h(ro) — h(r)

(60)

5 (r _gsM  dr h(ro) [ dr
Faalro) =2 l/ VEK() Vitro) A o %Km]' (o1

In figures 1] and 2] we have plotted these two last expressions. As in the MN case a divergence is expected

at rg = 0 since %(Tr) = 0 Eliminating numerically ry from (@0)-(6Il) we plot in figure the Vigring (L)
0

r=
function. A linear relation for the interaction potential is observed for L >> 1. Proceeding as in ([B2) we find
the confining string tension to be

1 e,

LI 62
2ma! gsa'M+/hy (62)

Tstring =
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Figure 11: L(ro) relation @0). KS solution. Figure 12: E,4(ro) relation (GI). KS solution.

where hg = h(0) ~ 1.1398. As in the Maldacena-Nunez case, the dominant contribution to the minimal
area (), in the large L limit, comes from the r ~ 0 region. Again, a concern arises regarding whether one
should trust the F,; > 0 configurations, as discussed at the end of the last section and pictured in fig.
the F,q > 0 embeddings are classically stable.

L L L
0.5 1.0 1 20 25 3.0 35

Figure 13: V;tring(L) relation for a rectangular Wilson loop in the KS solution.

3.5 Generalized Maldacena-Nunez solutions [28],[29]

This class of backgrounds was obtained in [28] generalizing the solution described in section The
solutions were thoroughly discussed in 9] an interpreted as dual to minimally supersymmetric gauge theories
containing irrelevant dimension six operators. The operator drastically changes the UV behavior of the
theories taking the solution ‘away’ from the near horizon of the D5-branes which generate the geometry.
The analysis in [29] shows that the solutions asymptote, for large r, four dimensional Minkowski times the
deformed conifold.

The generalized MN metric reads [28]

ds> = gsa/N et { — dt? + dxgda; + dr? + €27 (d6? + sin® 0dp?)

29(r) 2k(r)

+— (w1 + a(r)dd)® + (wa — a(r) sinfdep)?) + (w3 + cos Bdp)?| . (63)
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k(r)

Making the change of coordinates dp = e~ "\")dr, the functions a, k and f satisfy

-2 (acosh2p —1)? )
dpa = 2k 2p — asinh2
rd 1+ 2pcoth2p [e snhz, T ¢(2p—asinh2p)
2(1 +a% -2 h2p)~1 2
Ok = ( —’—_? n 2;22(;; 2pp) [e%a sinh 2p (acosh2p — 1) + (2p — 4a pcosh 2p + % sinh 4p)
1 (1 — acosh2p)?(—4p + sinh 4p)
Of = ——— 5 , (64)
4sinh®2p | (1 + a? — 2acosh2p)(—1+ 2pcoth2p)
and the g(p), h(p) functions in (G3J) are given by
bcosh2p —1 e29 . 2p
= —" = _—(2acosh2p—1—d* th b(p) = :
¢ Tacoshzp-1 ¢ 7 (2acosh2p a?), with blp) = 255 (63)
The first two differential equations in ([64) have a one parameter family of regular solutions. For small r one
finds 28]
4 20 + 361 + 9u?
a(p) =14 pp? ..y 2O OOt I o (66)

T 6+3u  15(2+p)

with 4 taking values in the interval (—2,—2). Inserting (B8) into the third equation of (&) and into (G3)
one obtains

4 4p? (2+ p)?
2(p) — __* 2h(p) — _*P 2f(p) — 1 4 L2 TTH) 2 67
e 6+3M+"" e 5 3u+""’ e + g 7 + ... (67)

The arbitrary constant for f following from (64) was factored out as gs in ([B3)). The limit values for p give
known solutions: the p = —% case reproduces the MN solution of section with ¢ = 4f (k = const.), and
the case yu = —2 case leads to 4-dimensional Minkowski space times the deformed conifold (¢ being constant
in this case). Finally, the p — oo limit of all solutions (except u = —%) asymptotes the deformed conifold
metric (see [28] for details).

The length [@) and energy (I3 expressions are given by

Poo e4f(po)
L(po) =2

o8F(p) — 87 (p0)

e* P dp (68)

PO
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imum in figure [4 The curve does not reach @4 Colors as in fig. [4

the origin, manifesting a minimum quark sep-
aration length.

_ Ny, Poo e8£(p) k Poo A
Eyg(po) = - [ =t Dy — /O AP0 <p>dp} _ (69)
Note that the radial integration in both expressions extends up to a finite distance po,. The reason, noted
in 28], being that (68) is UV divergentﬁ. We should therefore have in mind that the string computation
corresponds to probing the dual gauge theory with very massive for po, > 1 (but not infinite mass) quarks.
Moreover since the string endpoints are fixed at a finite radial distance it can be checked at the probe string
does not reach the gauge theory brane along a normal direction.

In figures[I4l and [[Al we plot numerical solutions of (G8]) and (@) for various values of u. Figure ([4) shows
that L(pp) attains a global minimum for all values of u (except u # —%) In other words, no solution exists
for quarks separations L < L. It is interesting to note that the minimum value for L is attained, for all
values of y, in a rather small region in the p coordinate near the origin. Based on the concavity considerations
discussed at the end of section 1] we expect the string worldsheets to the left of the minimum p. to be
physically meaningful (stable) and the ones to the right of p. to be unphysical (unstable). We will show in
the following section that this is in fact the case by analyzing quadratic fluctuations around the solutions.
Negative eigenvalues appear for the L’(pg) > 0 branch of solutions.

We finally plot in figures (I6) and (7)) the V;tring(L) relation for the generalized MN backgrounds where
a linear confining behavior is observed. Figure (I0) shows the double valued Viging(L) relation for p = —1,
the upper red branch (unphysical) corresponds to the string configurations to the right of the minimum in
fig. ([@d). In figure [ we show the Viying (L) relation for the physical branches of figure [[d] for several values
of u. Proceeding as in (B2) one finds that all solutions lead to a p-independent string tension

Tstring = g—s . (70)

2ma!

4 Stability Analysis

In this section we study, for the backgrounds presented in the previous section, the eigenvalue problem given
by the equation of motion 22) for in-plane fluctuations in the r-gauge. We are interested in searching
for unstable modes. For the reasons discussed at the end of section 2] our aim is to show that negative

8See [B3] for a discussion on divergences when computing the length function L(ro).
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eigenvalues (w? < 0) appear for string configurations belonging to regions where L'(rg) > 0. We study even
solutions, this means that we choose C{ = 1 and C{ = 0 in ([25) as the initial condition at the tipﬁ. We
numerically implement this conditions as (see (&1I))

doxy(r)
dr
Vr—rodri(r)=1, r—=rp. (71)

Solving numerically, the allowed eigenvalues w? for [Z2)) are obtained by demanding dz;(r) to be a normal-
izable solution

dx1(r) 4+ 2(r — ) =0, r—ro

dx1(r) =0, r — 00. (72)

For completeness we recall now the relation between zero modes for in-plane modes and critical points of
the L(rg) function [I5]. The zero mode solution of [22) can be immediately written down

520 = o [ gr 9(Nf(T) Lo
0= | i

where C’, C' are integration constants, C’ = 0 to get a normalizable solution and we set C' = 1. Integrating
by parts in ([3) and using ([I0) one obtains

o 7 1
53:50) (ry = - / dr gl(7:) i,
v L) AT\ ) = o)
A0
FINFP(r) = fP(ro) -~ 21'(r)

Expanding this last expression around the tip » = ry one has

9(ro) G
V2(f'(ro))2 VT =10 2f'(r0)
Generically the first factor in the rhs of [73)) is non-zero, so a necessary and sufficient condition for obtaining

an even zero mode solution (see [[Il)) requires the second term in ([7H) to cancel, equivalently ro must be a
critical point of the L(rp) length function [IH].

5w§0) (r)= + 0O ( r— To) ) (75)

4.1 AdS;

The in-plane fluctuations equation of motion ([Z2) for the AdS spacetime in Poincare coordinates [B3)) takes

the form .
d (r4—7"3)§ d 94 7“4—7°(31
|J17“ ( r2 dr r2 dzi(r) =0 0<ry<r< ) (76)

Dilatation invariance implies that one should be able to factor out the rg dependence. Making r = ¢ p one

obtains
l d <M d ) T w*RY 7vp4—1] dz1(p) =0. (77)

dp p?  dp g p?

The asymptotic behavior (p — oo) of (1) reads

d d w?R*
[d—p (p4d—p) +T—2} Sri(p)~0, >, (79)
0
whose solutions are o
6x1(p)%ao+p—§, p>1, (79)

9Even solutions correspond to arbitrary C! at the tip, its value fixes the normalization of the solution.
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Figure 18: Lowest numerical eigenvalue w? of
([[@) giving a normalizable solution as a func- Figure 19: Properly normalized lowest eigen-
tion of ro. values of fig. [] as a function of ry (see (D).

with ap, a; integration constants. The behavior ([[[9) implies that normalizable solutions (ag = 0) will be
found only for particular (discrete) values w?.

As a test for our shooting method, we have numerically integrated (Z6)) for different values of ry and
determined the minimum w? eigenvalues leading to a normalizable solution. In figure I8 we plot these w?
as a function of r9. They are positive for all values of ry, signaling the stability of the U-shaped string
configuration. In fig. we show the expected rp-independence of the mode when properly normalized (see
[@D). In the following table we show the first eigenvalues corresponding to even boundary conditions at the
tip.

w2RY/r2
n=1 3.450

n=3 22113
n=>5 52.325
n="7 94.558
n=9 148.845

In section [l we prove the stability of the configuration by transforming the differential equation (7)) into a
Schrodinger like one (see appendix [A]).

4.2 Non-Extremal D3-branes
The in-plane fluctuation equation of motion [22) for the background [@3) takes the form

[i ((P4—Pé)g d) +w2R4p4\/p4—p% 521(p) = 0

dp dp) " (pr—1)i

1<po<p<oo. (80)

Vpt—1 dp

The background @3] asymptotes AdS and therefore the asymptotic (p — oo) behavior of the solutions of
[®0) is given by (). As in the case of the last subsection, we expect to find a discrete set of eigenvalues
leading to normalizable solutions.

We plot in figure ROl the lowest eigenvalue we found when numerically solving ([B0) looking for normalizabe
solutions. A zero mode appears precisely at the critical point of the length function L(pg), that is for
po =~ 1.177 (see fig. H), in agreement with ([73)).

We conclude that the (left) branch in figure @ having L’(po) > 0 is unstable under linear perturbations.
Finally, note that the numerical analysis indicates that solutions on the (right) branch in figure @ having
L'(po) < 0 are stable under linear perturbations. Nevertheless, as discussed at the end of section one
expects the solutions with 1.177 < py < 1.524 to be metastable, decaying to a pair of free quarks.
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Figure 20: Lowest w? eigenvalue of [®0) giving a normalizable solution as a function of pg. A zero mode

appears for pp ~ 1.177. The classical solutions with py < 1.177 are unstable against linear perturbations.

4.3 Maldacena-Ntunez background

The in-plane fluctuation equation of motion for the Maldacena-Nufiez background (1) takes the following

form (22

d (ew(r) _ 62¢(T0))% d o
[5 ( 22001 5 + @2/ e20(r) — e26(r0) | §zq (r) =0, 0<ry<r<oo. (81)

where ©? = w?a’N. We now compute the asymptotic behavior of I to see whether we should expect a
quantized spectrum or not. In the r — oo limit the equation of motion for dz;(r) reads

d T, d —27“7% _
[ﬂ(er 5)—}-&)67‘ ]5901(7“)—0, r>1, (82)

IS

where we used that e2¢(") — 2792 for r >> 1. This last equation can be written as

d? 1\ d
1— — ) == +&° = 1.
[ = —|—< 4r> = w } dx1(r)=0, r>

The r~! term can be omitted in the large r limit and the asymptotic solution to &) is then
0wy (r) ~ e_%r(ﬁo e+ Bre "), r>1, (83)

where o = —”_24@2. From (&3) it follows that any @? > 0 lead to normalizable solutions, the spectrum
of stable in-plane fluctuation is therefore continuum. In the @? < 0 case (a > %) Bo must be set to zero
and we have the possibility of getting a discrete spectrum of negative eigenvalues. Our numerical analysis
could not find any normalizable negative eigenmodes, suggesting the stability of the classical configuration
in agreement with the concavity condition (7).

In the section [ we show that negative eigenvalues does not exist from the study of a Schrodinger equation

analysis of [BI) (see appendix [A]).

4.4 Klebanov-Strassler background

The equation of motion for the in-plane fluctuation in this case takes the form

la% (K(T) (1_ h(?‘)>2i> +@26 1 1— h(r)‘|6;v1(7°)20, 0<ro<r<oo, (84)

h(r) h(ro) dr K(r) h(ro)
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with ©? dimensionless and K (r) and h(r) given by (B6) and (E3) respectively. From the r — oo limit of
K(r) and h(r) one obtains

d (e’ d 72e§
|:% (75)4‘&) 2—§:| dx1(r) =0, r>1, (85)
which gives
d? 1\ d re” i’
R 1——) — N = 1.
ldrz * ( r) T ] om(r) =0, r> (86)

In the large r limit the 7—! and the last term in (88) can be omitted and the in-plane fluctuation asymptotics
turns to be
0x1(r) = ap + are™", r>1. (87)

The integration constant oy must be set to zero to obtain normalizable solutions and we therefore expect
to get a discrete eigenvalue spectrum. In figure 2I) we plot the lowest eigenvalue of ([84) we have found

10 L L L L L L
0.0 05 10 L5 20 25 3.0

Figure 21: Numerical solution for the lowest w? leading to a normalizable solution as a function of ry for the
Klebanov-Strassler background. No negative eigenvalues where found.

numerically leading to a normalizable solution as a function of ro. We have not found numerically any
negative eigenvalues. In section Bl we will prove the stability of the classical solution transforming (B4) to a
Schrodinger like equation and showing that no negative modes can appear (see appendix [A]).

4.5 Generalized Maldacena-Nunez

The equation of motion for the in-plane fluctuation dx1(p) in the backgrounds (63]) takes the form

8f(p) — ¢8F(p0))3
ld <(€ e )2 i) +w26k(P)1/eSf(p)_e8f(po)‘| Sz1(p) =0, 0<py<p<cc. (88)

dp e3f()+k()  dp

In the = —2 case (k(p) = const.) the equation ®I) for the Maldacena-Nuiiez background is recovered

(from now on we consider p # —%) In the large p limit the gMN solutions asymptote the deformed conifold
and the f function approaches a constant f.., the asymptotic behavior is then given by

d d e8fe
—k(p) = [ o=F(p) 2 520 —
[e a0 <e dp> +w =y — esf(po)] dz1(p) =0, p>1. (89)

Returning to the original r variable in [B3) (dr = e*(”)dp) one obtains

2
[% +@2] Sx1(r) =0, r>1. (90)
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Figure 22: Lowest w? eigenvalue of (&) lead- Figure 23: Zoom of figure 22 near the ori-

ing to a normalizable solution as a function of gin. The lowest eigenvalues are positive for
po. Negative (unstable) modes are found pre- L’(po) < 0 solutions. A zero mode appears
cisely for the classical embeddings satisfying precisely for the critical values of the length
L'(pg) > 0. Colors as in fig. I4 function L(po) (see fig. [4).

whose solutions are plane waves e**“" for @? > 0 and real exponentials e=*" for @? < 0 case. We conclude
that no normalizable solutions exist for @? > 0. A word of caution, as discussed in section[B3 the gauge theory
brane must be placed at a finite distance po, therefore for [B8) defined on py < p < po positive eigenvalues
will exist. In the ©? < 0 case the possibility for negative eigenmodes exists and in fact we find normalizable
negative mode solutions precisely for the classical solutions region where the convexity condition ([IT) is not
satisfied. In the figures 221and B3l we plot the minimal eigenvalues leading to normalizable solutions we found
numerically as a function of rg. We found complete agreement with figure [4} no instabilities are found for
classical solutions satisfying L'(r¢) < 0, on the other hand, we find negative (unstable) modes for the right
branch curve (L'(rg) > 0 solutions) in figure [4 These results are gratifying since unstable modes are found
precisely for the classical embeddings which do not satisfy the conditions ([IT). In the following section we
review this results by transforming the equation into a Schrodinger like problem.

5 Schrodinger Potentials Analysis

In this section we analyze the fluctuation equation of motion ([22)) transforming it to a Schrodinger like
equation (see appendix[A]). From the form of the potential it is possible in some cases to show that no negative
eigenvalues can appear and therefore to prove the stability of the corresponding classical embeddings.

5.1 AdS;
The Schrodinger potential (I07) for the equation () takes form [IH]

pt -1
p?

Vip) =2 p € [L,00), (91)
here p should be understood as p = p(y). The change of variables [I03) leading to the Schrodinger equation
(@06 can be analytically computed

1 1 11
y(p) = yo — ZB (E71,§> ) (92)

. r[i?
with Yo = Wor s
variables ([@2)), maps to the finite interval y € [0, yo], the potential ([@I) diverging at yo. We have therefore
obtained a Schrodinger problem defined on a finite interval with canonical boundary conditions (see ([I08)-

(I09)) hence a discrete spectrum will result, moreover, since the potential (@) is positive definite a standard

The half line p € [1,00) of the original Sturm-Liouville problem, under the change of
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Figure 25: V(p, po) (eqn.([@3)) for different po
values. The blue line corresponds to pg = 1.1,
the green to the critical value py = 1.177 and
the red, black lines to pg = 1, 2. The region
where the potential is negative diminishes as
po increases. Negative eigenmodes cease to
exist for po > 1.177

Figure 24: Schrodinger potential (@) for in-
plane fluctuations in AdS the positive defi-
nite property of it guarantees that no negative
eigenmodes exist.

QM argument tell us that no negative eigenvalue solutions exist. We conclude that the AdS embedding
given by ([B4) is stable under linear perturbations. Figure 24l shows a plot of the potential [@I) as a function
of p, the true variable for the Schrodinger problem is y given by ([@2) and it amounts to a rescaling of the
horizontal axis in fig. 24 mapping p = oo to a finite distance.

5.2 AdSs-Schwarzschild
The Schrodinger potential (I07) for the in-plane fluctuation equation ([BQ) takes form [I5]

*(p" = pg) — po(4p* — 1) — 3p*
pS(p* = 1) ’

The behavior of this potential for different values of r¢ is shown in figure Unlike the AdS5 x S° case,
there exist regions where the potential becomes negative, this is in agreement with the results of section
where negative eigenmodes where found. The potential starts from a negative value at pg given by
V(po,po) = —8/pt. As po increases the negative region gets dimmer and the negative modes cease to
exist at the critical value, found numerically in section 2], pg. ~ 1.177 which precisely coincides with the
critical value of the length function L(pg). We conclude that the classical embeddings satisfying L'(pg) > 0
are unstable under linear perturbations (see also [IT] for a perturbative analysis of the eigenvalues). The
classical unstable solutions L'(pg) > 0 have regularized energy E,; greater than zero (see fig. [l), since the
reference configuration satisfies the same boundary conditions, the natural candidate for the decay process
is the reference (free quarks) state.

For completeness we quote that since the asymptotics of this background coincides with the previous
case, the Schrodinger equation for in-plane fluctuations results defined on a finite interval. The spectrum of
stable fluctuations is therefore discrete.

V(p,po) =27

l1<po<p<oo. (93)

5.3 Maldacena-Nunez

The Schrodinger potential for ([BI) takes the form

o= 20(r)

Vr,rg) = 1

((e2¢(r) — 3620002 (1) + 2(e22() + e2¢(ro))¢"(7«)) , O0<rg<r<oo. (94)
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- Figure 27: Potential [@4) as a function of ro.
The potential asymptotically tends to Vo, = %
in agreement with [B3). For ro < 1.1605 is
positive negative and for ro > 1.1605 contains
negative regions. Near the tip the potential
can be approximated asymptotically (for large
o) by V(r) ~ —3 + 2(r —ro)

Figure 26: Schrodinger potential [@4)). The
blue, black, red and green lines corresponds
to ro = 0.2, 0.7, 1, 2. The minimum of the
potential becomes negative for rq > 1.1605.

As before r should be understood as r = r(y) and contrary to the last two cases the change of variables (03]
give a Schrodinger problem in y coordinates defined on the half line y € [0,00). Figures 28 and 21 show
the Schrodinger potential ([@4) for different values of ro. We should confront these figures with the results
in section The outcome of that section, for all values of rg, was that a continuum spectrum results
for w? > 0 and numerically no negative normalizable modes were found. We first address the continuum
spectrum for w? > 0. Figure B@ shows that the potential is positive definite for 7o < 1.1605 and asymptotes
the value V, = i. One might therefore conclude no solutions for 0 < @? < Vjuin, & discrete spectrum for
Vinin < @? < % (if possible) and a continuum, but not normalizable, spectrum for @? > 1, all in contradiction
with the mentioned results. The agreement is achieved when taking into account the factor (PQ)’% that
relates the solution of the Schrodinger equation ¥ with the fluctuation dz; (see appendix [Aleqn. (I0H))
&(r)
e 2

= Ur~e 20 .
0xy (e2¢(T)—e2¢(T0))% e 22V, r—oo (95)

The e~ % factor makes all @? > 0 solutions of the Schrodinger problem satisfy the 6x1|,—so = 0 whether or
not they normalizable as ¥(y) solutions (asymptotically one has y ~ r). However, for @? < 0 solutions the
factor is not enough for making the (diverging) solutions satisfy the boundary condition. We conclude that
for all 7o a continuum spectrum results for &2 > 0.

The remaining point to be addressed is the possibility of bound states for —% < @? < 0 in the limit
of large ro. As seen from figure BT asymptotically, the potential starts from V(rg) =~ —% and the linear
approximation one obtains is V(r) ~ —1 + 2(r — ro). The relation between the r and y coordinates (03]
in the same limit is (r — 79) ~ y?/2. All these leads to a harmonic oscillator in y coordinates with bound
state energy above zero. We therefore conclude that no bound states exist. We find a complete agreement
between the Schrodinger analysis and the numerical results of section 3]

The results are appealing since if instabilities were found, no obvious candidate for the decay is available

(cf. section B3).
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Figure 28: Schrodinger potential ([@6]). The blue, black, red and green lines corresponds to ro = 0.2, 0.7, 1, 2.
The potential is positive definite and therefore no negative (unstable) eigenvalue modes result.
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Figure 29: Schrodinger potential ([@7) for dif- Figure 30: Schrodinger potential for py = 0.2

ferent po values and. po= —1. The blu% and different values of the parameter . The
black, red and green lines correspond to pg = blue, red, brown and green lines correspond to
0.2, 0.7, 1, 2 respectively. p=-18,-15, -1, —0.8

5.4 Klebanov-Strassler
The potential for the Klebanov-Strassler in-plane fluctuation (&) reads

V) = gt B B0) + RO ()

—k(r)(3h(r) + Th(ro))h'*(r) + 4h(r)(h(r) + h(ro))h" (r))] (96)
The asymptotic behavior of the P, @ functions in this case lead to a Schrodinger problem defined on a finite
y interval (see appendix [A]). Figure [28) shows the form of the potential for various 7o values. The potential
is positive definite and therefore no (unstable) w? < 0 solutions exist. The finite interval on which the

Schrodinger problem is defined implies a discrete set of eigenvalues. We find complete agreement with the
results of section [£.4]

5.5 Generalized Maldacena-Nunez
The Schrodinger potential for in-plane fluctuations in the generalized MN solutions (8]) can be written as

Vip,p0) = —somamy (20 = 100) 72(0) 4 (870 1 S (7(5) ~ K (o)) (97
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The asymptotic behavior of the P,Q functions (see appendix [A]l and eqn. (BJ)) leads to a Schrodinger
problem formulated on the half line y € [0, 00). Figure ([29) shows the behavior of the potential for different
values of pg and a fixed value of 4 = —1. The potential becomes negative above some critical value p.
and asymptotes Voo = 0 in concordance with ([89) and the existence of negative (unstable) modes found
numerically in section The (PQ)’i factor relating the Schrodinger wave function ¥ to the fluctuation
dx1 approaches a constant at infinity, therefore not changing the asymptotics of the ¥ solutions (cf sect.
B3). Figure B0 shows the Schrodinger potential, for a fixed value of py = 0.2, for different values of u. The
minimum of the potential decreases as the u approaches —%. As already mentioned the original MN solution
D) is not continuosly connected with the generalized class of solutions ([G3]). Agreement with the numerical

results of section is found but it is no clear to us which is the final state of the decay.

6 ’t Hooft loop

The electromagnetic dual to Wilson lines in Yang-Mills theories are the 't Hooft lines [B3]. In four dimensions,
the mechanism for confinement is supposed to be due to magnetic monopole condensation (dual Meissner
effect), the analysis in [BY] concluded that a screened monopole potential between a mim pair should be
observed when confinement is due to a dual Meissner effect. A generalization of this idea is dyon confinement
and goes under the name of oblique confinement.

The string prescription for computing ’t Hooft loops in the MN and KS solutions was proposed in the
same papers [25]-[26] (see [BO] and also [BI] where a technical issue, correcting the proposed 2-cycle in 23],
was pointed out) and consists in wrapping a probe D3-brane on the same 2-cycle on which the D5-branes
leading to the backreacted geometry were wrapped (see also [@]). The outcome of the construction is an
effective D1-brane (string) which is analyzed in complete analogy with the probe fundamental string we have
been discussing in previous sections. The important difference with respect to the Wilson loop case is that
the "t Hooft loop in generic non S-dual theories is sensible to the internal five dimensional manifold.

6.1 DMaldacena-Nunez
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Figure 31: The length function for the ef- Figure 32: The energy of the monopole-
fective string as a function of rg in the antimonopole pair as a function of the sep-
Maldacena-Nuifiez t Hooft loop case. aration length.

The embedding manifold for the D3 in the metric @7) is 6

My =[t,z,r(x),0 =0,0 =21 — @b =7]. (98)

10The remaining coordinates are set to constants. The value of the v coordinate is fixed by demanding the S? to be of
minimal volume.
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The induced metric on My results in
42, = o/ Ne® | = di? + (1 +2)da® + (> + 3(1 — 0)?) (d6° + sin® 0| (99)
and the expressions [@9) for a, h give
(1 —a(r)? + €™ = rtanhr. (100)
Note that the S? sphere smoothly collapses at the origin. Integrating the DBI actionf]
Sppr = —TD3/d4ae_¢\/gm (101)

over the internal manifold (Sgw) and the time coordinate one obtains

Setp = 4rTp3T (a/N)? / e? rtanhrv/1 + 72 dx . (102)

The important difference wrt the previous Wilson loop calculation in the Maldacena-Nuifiez background (see
sect. B3)) resides in the f(r) and g(r) functions in (B0)-EI) being multiplied by the 2-sphere volume ([I00).

In figures BIl we plot the behavior of the length function (@) as a function of 7. The length function
is an increasing function of 7y and from the previous discussions we therefore expect the embedding to be
unstable. The instability of the embedding can be easily seen in the Maldacena-Ninez case since a fluctuation
along the x;-direction depending only on ¢, 7 is decoupled from the angular ones (consistent fluctuation).
The 6z, equation of motion results in @2) with f(r) = g(r) = h(r) = rtanhre?™. The asymptotics of
the fluctuation is the same as in the Wilson loop case, nevertheless the behavior drastically changes near
the origin since f(r) goes to zero. As seen in figure negative eigenvalues exist for all ry values. For
completeness we plot in figure B4l the Schrodinger potential associated with the in-plane fluctuation equation
of motion.

In figure B2 we plot the energy as a function of the endpoints separation length L. The energy of the
configuration is positive for all L, this fact and the instability of the configuration suggests that the stable
configuration for given boundary conditions is the one corresponding to two “straight lines”. Contrary to
the Wilson loop case the “straight lines” (used as reference state for regularizing the energy) can end at the
origin since they correspond to wrapped D3 on the topological S? of (@) which smoothly collapses at the
origin.

6.2 Klebanov-Strassler

This case again involves wrapping a D3 over a topological S? inside () (for its parametrization see the
appendix A of [BT]). There are important differences with respect to the MN case, in the present case the Hs
supporting the KS geometry contributes to the string action ([IJ), and moreover it leads to the entanglement
of the angular and the in-plane fluctuations. The different UV behavior wrt the MN is the reason for the
length function L(rq) having a priori stable regimes (see figure[33). The behavior of V(L) shows the potential
is screened for large L and this agrees with the linear confinement potential for the Wilson loop case (see [9
for a related example). The analysis of the present case is analogous to the one in sect. B2l summarizing
when the configuration energy becomes positive, the two “straight lines” solution becomes favored. As for the
MN case this becomes possible without a horizon in this case due to the D3 being wrapped over a smoothly
collapsing S? at the origin. We did not attempt the analysis of the coupled fluctuations equations of motions
to check for instabilities on the left branch of fig.

L1 Placing the gauge fixed ansatz [@8) into the action [[OI) give the correct equation of motion for r(z) which coincides with

@.
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Figure 34: Schrodinger potential for in-plane
fluctuations depending on ¢, r-coordinates as a
function of g in the Maldacena-Nunez t Hooft
loop case. Blue, black and red lines corre-
spond to rg = 0.2, 0.7, 1.

Figure 33: Lowest numerical eigenvalue w? for
in-plane fluctuations depending only on ¢, r co-
ordinates as a function of r¢ in the Maldacena-
Nunez 't Hooft loop case.
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Figure 35: Length function L(rg) for the ef- Fig}lre 36: Th? energy of ‘the monopole-
fective string as a function of ry in KS back- antimonopole pair as a function of the sep-
ground. aration length.

7 Conclusions

In this work we have analyzed the string proposal for computing rectangular Wilson loops via string embed-
dings in gravity backgrounds and we have studied their stability under linear perturbations.

The string prescription involves solving for a minimal open string worldsheet whose endpoints lie on the
loop to be computed located at a fixed value of the holographic radial direction. When the endpoints are
moved to infinity a divergent area results and a regularization is mandatory in order to get a meaningful
answer. In section [2l we have reviewed this prescription and showed how a finite value is obtained. We have
chosen to regularize the action by the standard procedure originally proposed in []. This is interpreted as
saying that the Nambu-Goto worldsheet area computation includes the interaction energy plus the self energy
(mass) of the external quarks. Within this interpretation we reproduced the well known results for AdS and
thermal AdS. The regularization was in fact responsable for turning the original positive area into a negative
attractive potential energy. When turning to smooth backgrounds (AdS in global coordinates, MN and KS) a
puzzle arises since the straight strings running along the radial direction used in the substraction prescription
must end somewhere in the bulk. We concluded that the correct interpretation for the substraction procedure
is that we are comparing the string ‘Wilson loop’ worldsheet with respect to a reference state consisting in a
straight string worldsheet whose endpoints lie at antipodes of a compact direction (pictorically represented
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in fig. [Q). It then follows that the reference state in general satisfies different boundary conditions than the
worldsheet used in computing the expectation value for the rectangular Wilson loop. This last observation is
welcomed for the MN and KS cases where the linear confining relation occurs for worlsheets having positive
regularized energies (see figs. [@ and @3): if the reference state satisfied the same boundary conditions as
the ‘Wilson loop’ worldsheet, the observed linear behavior should not be considered since the reference state
(Eq = 0) would have been the lowest energy one (cf. last paragraph of sect. B.2), but from the previous
analysis we see that this is not the case. We would like to recall an observation in [9] stating that the relation
between Wilson loops and strings in gravity duals (at the semiclassical level)

(W) ~e 4 (103)

is schematic since the addition of boundary terms to the Nambu-Goto action does not change the minimal
area character of the solutions but turns the value of the classical action into something different than the
area. In [@ this arbitrariness was used to make a Legendre transform of the Nambu-Goto action showing
that the resulting quantity, for the case of loops in AdS, is free from the linear divergences arising from the
behavior of the worldsheet near the boundary of AdS.

We also discussed the concavity conditions ([T that must be satisfied by any potential pretending to
describe the interaction between physical quarks. Generic gravity duals have positive and increasing f(r)
functions, so the concavity conditions are not satisfied when the length function is an increasing function of
the minimal radial position reached by the string rg. In section Bl we performed the analysis of the length
and potential functions L(ro) and Vaing(L) for different backgrounds and showed that some of them lead to
embedding solutions where the concavity condition fails.

Based on previous work [I4]-[I5] we studied linear fluctuations around the embedding to test the stability
of the classical embedding. We concluded that whenever the solution leads to an unphysical potential, not
satisfying the conditions ([I7) there exist unstable modes under linear fluctuations. In the course of the
analysis we discussed the different gauge fixings that can be imposed and its relation with the diffeomorphism
of the Nambu-Goto action. Three natural gauge fixings where discussed and we chose to work in the r-gauge
since it lead to simpler closed expressions for the fluctuations equations of motion (see eqn. (ZI))). The
r-gauge leads to singular behavior in the fluctuation at the tip of the embedding, but reviewing [I5] we
showed that nevertheless they are physical once an appropriate gauge transformation is performed.

In section [ we perform the stability analysis for the solution reviewed in section Bl We showed by a
numerical analysis that the AdSs x S°, Maldacena-Nuifiez and Klebanov-Strassler are stable. On other hand
for thermal AdS and the generalized Maldacena-Nunez backgrounds of sect. we found unstable modes in
agreement with the behavior of the L(ry) relation. This last case is rather pathological since the loop cannot
be placed at infinity and moreover we found that a minimum separation exists beyond which no smooth
solution connecting the string endpoints exists. In section [O] transforming the Sturm-Liouville fluctuation
equations of motion into a Schrodinger like equation we reanalyzed the problem, finding complete agreement
with the results obtained in section @l We conclude that the regions where we find unstable modes coincide
with the regions where the concavity condition fails.

In the last section we performed the previous analysis for the case of monopole-antimonopole interaction
in the non-conformal gravity duals of Maldacena-Nunez and Klebanov-Strassler. We discussed the 't Hooft
loop string prescription given by wrapping a D3 on the topological S? present in the geometries. The MN
case was shown to be unstable for all r¢ values. A fluctuation analysis was feasible since a decoupled equation
for the in-plane fluctuation could be found were an unstable mode was shown to exist by a numerical analysis.
The KS presented a behavior similar to thermal AdS with presumably stable and unstable regions, but a
the fluctuation analysis lead to coupled fluctuations equations of motion which we did not analyze.

We conclude that the analysis of Wilson/’t Hooft loops in given gravity background by looking at the
value of the f2 at the origin should be supplemented with an analysis of the L(rq) relation.
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A Sturm-Liouville to Schrodinger

Equations [22)-([23) are of the Sturm-Liouville type

[— dir (P(r, TO)%) + Uf(r, ro)}@(r) =w?Q(r,m0)®(r), 710 <7 <00 (104)

the functions P(r,r9) and Q(r,79) can be read off from @2)-@3), U(r,r9) = 0 in both cases. The change of

variables
v @ dr. B(r) = (PQ)* ¥(y) (105)

transforms ([I04)) to a Schrodinger like equation

d2
|:—d—y2+V]\IJ_w2\I/, 0<y<uyop. (106)

Here yo = f:)o dry/ % which may be finite or infinite depending on the nature of @), P and one can check that
(03} is integrable at the lower limit giving y ~ /7 — ro. The potential V' is given by

U 1 d? 1
Vo= G |eot D] e
U |Pid P d 1
— §+ _Q%5<’/§5> (PQ) (107)

The points r = rg and » = co map to y = 0 and y = yo respectively. The boundary conditions to be imposed
on the solutions of (I06) are [IH:

e Infinity: string endpoints fixed?
02|r=co = 0= ¥|y=y, =0 (108)

e Tip r = ry: for both in-plane dz; and transverse fluctuations dz,, one obtains from 24)),3T),B2)

Even solutions : %~ =0
Yly=0 (109)
Odd solutions : W[, _,=0.

B Exact spectrum for transverse fluctuations in AdSs x S°

We review here the solution of [[3] for the exact spectrum of the longitudinal fluctuations in the AdS5 x S°
background and compare it with our numerical results using the shooting technique described at the end of
section

The AdS metric is written in Poincare coordinates

R2
ds? — ?(_dﬁ + daidz; + dz?) + R%d0? . (110)

A z-gauge fixed ansatz t = 7,2 = 2, 2 = zq(x) leads to

() -

12See however a loophole in the Maldacena-Ntfiez context (sect. B3] when imposing (I08).
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The solution to (I1I)) with the string endpoints separated by a distance L is ([B4)-(35).

(27)2 g (281
2U[3]2 4 \z3 4’2

where zg = zq(0) = (F[%]Q/(27T)%)L is the maximal radial distance reached by the string (tip of the string).
Fluctuations around the solution (II2) in the transverse z,, (m = 2,3) coordinates decouple, writing
XH# = (t,xa(0),02m(t,0), za(0)) the equations to linear order are [I3],[I7]

xa(z) = %20 (112)

4
w—gauge : {af - Z'Z—Ef’) 35} Stm(t, ) =0 (113)
0
24 2
r—gauge : {83 -(1- ?) 02 + B 82} Oz (t,2) =0 m=2,3. (114)
0

As mentioned in section 2T} note that the z-gauge equation of motion (II3) depends explicitly on the classical
solution zq (). The equations are related by the change of variables given in ([12). Writing dz,, = et f(2)
in (I1I4) and calling Z = z/zo one obtains [I7]

{(1 —zH02 - % +§2] f(2)=0, 0<z<1, (115)

where & = zow. The change of variables B8]

f(Z) = V1+€22F(q)

1 2
t
g(Z) = 42 / dt 116
® z (L4 (&) v1i—tt (116)
transforms equation ([I3)) into a simple harmonic oscillator
°F 1 5, .,
i “1)F=0 — 117
g tagE -1 A (117)

where ¢, = ¢(0). The boundary conditions at infinity dz,,(t,0) = 0 have been mapped to F(g.) = 0, and
quantize the frequencies in ([I17) leading to

t2dt nw

1
4.4 _ = — = 11
Wn 20\ Wi g 1/0 AT w2 ii 5 M 1,2, (118)

The following table shows the comparison between the exact eigenvalues (I18) and our numerical calculation
of eigenvalues of (I1H) with 2z = 1.

Exact | Numeric
w1 2.203 2.226
wa 3.467 3.492
w3 4.697 4.735
Wy 5.914 5.959
ws 7.125 7.181
we 8.332 8.396
wr || 9.537 9.612
ws || 10.741 | 10.823

The odd (even) eigenvalues where obtained solving ([I5)) with the even (odd) boundary conditions discussed

after (24)).
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