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Abstract
In the southern cone of South America, inhabit a large diversity of Neotropical carnivores. Carnivore coprolites are a valuable
source of paleoecological and paleoparasitological information. The rock shelter Gruta del Indio (GI) is an emblematic
archeological and paleontological site located from Mendoza, Argentina. Several studies were conducted at this site, which
provided a stratified sequence spanning the last ∼31 ky BP. The aim of this workwas to study parasite remains found in coprolites
assigned to carnivores from GI, with the purpose of contributing to the paleoecological knowledge of the site. Twenty coprolites
were examined for parasites. Samples were rehydrated in a 0.5% water solution of trisodium phosphate, then homogenized,
filtered, and processed by spontaneous sedimentation. The macroscopic remains were separated and dried at room temperature
and were examined for diet analysis. All micromammal prey belonged to the Order Rodentia, and six histricomorphs could be
identified. Also, bird bones, plant, arthropod, and hair remains were found. Five coprolites contained parasite remains, and eight
nematode species were recovered. This is the first paleoparasitological study at this site, and the findings broaden the knowledge
of the biogeographic history of the gastrointestinal helminths found. The obtained results evidence the importance of carnivore
coprolite studies recovered from archeological contexts in the reconstruction of paleoecological scenarios. Also, the importance
of carnivores for the dispersion of their own parasites and the parasites of their prey are discussed. These parasitological findings
contribute with the study of the presence of potential parasitic zoonoses in the Holocene.
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Introduction

South America shelters a wide diversity of wildlife. Among
them, current terrestrial carnivores present a relatively high
diversity, with 40 out of 245 species of the Order Carnivora

(Hunter and Barrett 2018). Further, the paleontological studies
displayed that a rich diversity of carnivores inhabited the con-
tinent in the past (Prevosti and Forasiepi 2018).

In the southern cone of South America, inhabit a large
diversity of Neotropical carnivores (Bárquez et al. 2006;
Teta et al. 2018). Its presence in ancient times has been re-
corded in archeological and paleontological sites. Among the
zooarchaeological materials of carnivores registered through-
out time, the coprolites (mineralized or dehydrated scats) have
a great relevance. Carnivore coprolites are a valuable source
of paleoecological and paleoparasitological information (e.g.,
Bajdek et al. 2017; Beltrame et al. 2018a; Sianto et al. 2014).
The data obtained from paleoparasitological studies is partic-
ularly useful for understanding the biological cycles of para-
sites in the past, the biogeographical history of the species, and
the role played by the human and wildlife hosts through time
(Araújo and Ferreira 2000; Araújo et al. 2003). From
archeological sites of Argentina dated to the Pleistocene-
Holocene transition to the late Holocene, carnivore coprolites
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were examined from a paleoparasitological point of view and
a rich parasitic diversity were registered (e.g., Beltrame et al.
2018a, 2019a; Fugassa et al. 2009; Tietze et al. 2019).

The rock shelter Gruta del Indio (GI, thereafter) is an em-
blematic archeological and paleontological site located in the
Monte Desert of central western Argentina. Several researches
were conducted at this locality which provided a stratified
sequence spanning the last ∼31 ky BP (e.g., Lagiglia 1956,
1974; Semper and Lagiglia 1962–1968). GI has become one
of the most important sources of evidence to infer the early
human peopling of the CW Argentina and debate the possible
or controversial coexistence between humans and Pleistocene
megamammals (e.g., Borrero 2009; Forasiepi et al. 2010;
García 1999, 2003a, 2003b; García and Lagiglia 1999;
Neme and Gil 2008). Additionally, paleoenvironmental, pa-
leoecological, and taphonomic studies that involve
megamammals and micromammals were made (e.g., Dacar
et al. 2001; D'Antoni 1983; Fernández and Pardiñas 2018;
García et al. 2008; Martinez Carretero et al. 2013; Markgraf
1983; Zárate 2002). Despite the numerous research studies
that have been conducted, paleoparasitological studies were
not carried out at the present. The aim of the present work was
to study parasite remains found in coprolites assigned to car-
nivores from GI site, with the porpoise of contributing with
the paleoecological knowledge of the site.

Site context, material, and methods

Studied site

The archeological and paleontological site GI is located close
to the right margin of the Atuel river (Mendoza, Argentina)
(34°35′ S, 68° 22′ W) (Fig. 1). The site is a large rock shelter
whit 50 m wide and 12 m long that was eroded out of a
basaltic outcrop, 20 m above the alluvial plain of the Atuel
river (Semper and Lagiglia 1962–1968).

The regional vegetation belongs to the Monte Desert
(Abraham et al. 2009; Cabrera 1976), which is included in
the climatic region known as the South American Arid
Diagonal (Bruniard 1982). It is exposed to the action of the
Atlantic anticyclone, with a mean annual temperature about
15 °C and a mean annual precipitation ca. 350 mm. To the W
and not far fromGI, the regional landscape is characterized by
large basaltic plateaus and volcanos, allowing the northern
penetration of Patagonian biotic elements (Fernández 2012;
Roig et al. 2000).

According to pollen sequence of GI, the Patagonian steppe
was replaced by Monte Desert during the Pleistocene-
Holocene boundary as a consequence of warmer and drier
conditions (D'Antoni 1983; Markgraf 1983). Nonetheless,
the small mammals and the plants contained in coprolites from
cavid and chinchillid rodents, and extinct equids recorded in

GI, indicated overall stability under Monte conditions since at
least 31 ky BP (Dacar et al. 2001; Fernández and Pardiñas
2018; García et al. 2008; Martinez Carretero et al. 2013).

The most recent cultural context, named “Atuel I”, is
represented by pictographs on the walls of the rock shelter
conducted by araucanized indigenous groups (Puelches
and Pehuenches) during historical times (Semper and
Lagiglia 1962–1968). The sedimentary profile shows four
natural layers. The uppermost level, Layer 1, is between
20 and 40 cm depth (exceptionally up to 60 cm) and
composed of yellowish brown loess-type sediment
(Semper and Lagiglia 1962–1968). It was associated to
“Atuel II” cultural context characterized by an incipient
agriculture (maize, cucurbit and beans), chronologically
placed between ca. 2.3 and 1.9 ky 14C BP (Semper and
Lagiglia 1962–1968). Layer 2 is between 40 and 100 cm
depth (defined on the left side of the rock shelter). It
presented the same type of sediment as above but friable.
It also displayed a tephra band of 5 cm thick. This layer
was linked to “Atuel III” preceramic cultural context
where the rock shelter was mainly used for funeral activ-
ities associated to cordage, basketry, and bone tools be-
tween ca. 3.8 and 2.3 ky 14C BP (Semper and Lagiglia
1962–1968). Layer 3 is between 70 and 110 cm depth
(defined on the right side of the rock shelter) and included
small fragments of basaltic rock fallen from the ceiling of
the rock shelter. The upper part of this layer chronologi-
cally placed between ca. 11 to 8 ky 14C BP was related to
the oldest cultural context so-called “Atuel IV”, allied
with extinct megafauna identified as Mylodon sp.,
Macrauchenia sp., and Hippidion sp. (García 2003a;
García and Lagiglia 1999; García et al. 2008; Semper
and Lagiglia 1962–1968). It is expected that the first oc-
cupations in GI were the consequence of short-term
events, associated with groups that would be exploring
the local landscape (Iniesta et al. 2020). The lower part
of Layer 3 range from ca. 31 to 11 ky 14C BP presents
megafauna remains assigned to Mylodon sp. and
Hippidion sp. (García 2003a; Garcia and Lagiglia 1999;
García et al. 2008; Long et al. 1998; Semper and Lagiglia
1962–1968), although they are not associated with human
occupation because these findings did not show tapho-
nomic evidences of human processing (Borrero 2009).
Layer 4 is 20 cm thick, which exhibits a dark sand and
gravel deposit with neither cultural nor faunal remains
(García et al. 2008; Martinez Carretero et al. 2013).

Although the remains of megamammals and micromammals
were analyzed in detail (e.g., Borrero 2009; Fernández and
Pardiñas 2018; Forasiepi et al. 2010; García 2003a, 2003b;
García et al. 2008; Martinez Carretero et al. 2013), there is a lack
of taphonomical knowledge about the medium and large-size
mammals recovered from GI (e.g., Semper and Lagiglia 1962–
1968). This makes it difficult or impossible to know the human
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paleo diets and the possible interactions between human and
fauna since the first occupations.

Methodology

Twenty coprolites assigned to carnivorous from GI were exam-
ined for parasites. The samples belong to three temporal units
(Layer 1 = ca. 2.3–1.9 ky 14C BP; Layer 2 = ca. 3.8–2.3 14C ky;
and Layer 3 = ca. 31–8 ky 14C BP) (Table 1). The examination
consisted of an external observation of feces (morphology, size,
and color) according to Chame (2003). Samples of 1 g of the
interior of each coprolite were processed by rehydration in 0.5%
water solution of trisodium phosphate (TSP) in plastic tubes for
72 h, followed by homogenization, filtered and processed by
spontaneous sedimentation (Lutz 1919). Sampleswere preserved
in 70% ethanol. Twenty slides of each sample were made with
one drop of sediment and one drop of glycerin and then were
examined at 100X and 400X using light microscopy. The recov-
ered parasitic remains were measured and photographed. Broken
eggs were discarded. Egg dimensions and morphologies were
compared with data from the literature.

Next, to study themacroscopic remains, each of the remaining
samples was rehydrated in 0.5% water solution of TSP in glass
containers for at least 72 h. Then, the sampleswere disaggregated
with a sterile scalpel, and the macroscopic remains were separat-
ed and dried at room temperature. Remains were observed under
a stereomicroscope for diet analysis. Taxonomic identifications
of micromammal were made on cranial and dental remains,
through comparisons against modern specimens belonging to

the mammal collection of Grupo de Estudios en Arqueometría
(FIUBA, Buenos Aires, Argentina) and specific literature (e.g.,
Fernández et al. 2011; Pearson 1995). Rodent taxonomy used
here follows Patton et al. (2015). Since fragmentary remains of
the caviomorph Ctenomys (tuco-tuco) are very difficult to iden-
tify at species level, they were characterized only to the generic
level.

The skeletal remains contained in the coprolites were
taphonomically studied following the four categories of diges-
tive corrosion (light, moderate, heavy, and extreme) on bones
(Andrews 1990) and teeth (Fernández et al. 2017). According
to Andrews (1990), the corrosion marks on the surfaces of
bones are observed on proximal epiphysis of femur and distal
epiphysis of the humerus. However, taking into account the
small sample size, the corrosion will be registered in all bones.
In case of the few remains of bird recovered from some cop-
rolites, the digestive corrosion was recorded following
Bochenski and Tomek (1997). Digestive corrosion is consid-
ered the greatest signature of predation of small mammals
recovered from archeological and paleontological sites (e.g.,
Andrews 1990; Fernández et al. 2017; Montalvo and
Fernández 2019).

Results

Table 1 presents the layer, dates, measurements, parasites, and
macroscopic remains of each studied coprolite. The macro-
scopic remains included in this table are as follows: plants

Fig. 1 a Geographic location from Gruta del Indio site, Mendoza, Argentina; b Outside rock shelter; b Inside rock shelter
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[(+) scarce, (++) poor, (+++) abundant, and (++++) very
abundant], exoskeletons of arthropods, hairs, and the verte-
brate prey identified of each examined coprolite. These re-
mains were indicative of a carnivorous or omnivorous diet.
After rehydration, all samples showed a dark coloration and
an intense odor, typical of carnivorous fecal material.

The morphology of the studied coprolites is shown in
Fig. 2. Seventeen samples presented skeletal remains such as
teeth, maxillae, mandibles, bone of extremities, and other di-
verse skeletal bones (Tables 1 and 2). In some cases, prey
identification was possible. All prey identified as
micromammal (˂ 1 kg) belonged to the Order Rodentia. The
histricomorphs include the lowland yellow-toothed cavy
Galea leucoblephara (Caviidae, Caviinae), the southern
mountain cavy Microcavia australis (Caviidae, Caviinae),
and the tuco- tuco Ctenomys sp . (Ctenomyidae ,
Ctenomyinae). The miomorph species contain the gray leaf-
eared mouse Graomys griseof lavus (Cr ice t idae ,
Sigmodontinae), the yellow-rumped leaf-eared mouse
Phyllotis xanthopygus (Cricetidae, Sigmodontinae), and the

drylands vesper mouse Calomys musculinus (Cricetidae,
Sigmodontinae). Bird bones of Passeriformes and other types
possibly belonging to a raptor bird were also found (Table 1).

Most coprolites contain all bones and teeth fractured and
digested (Table 2). Few skull remains were recorded, includ-
ing two fragments of maxillae (GI8) and one broken mandible
(GI7). Unidentified fragments were important in several cop-
rolites (GI2, GI5, GI8, GI9, GI12, GI14, GI16, and GI18). The
remains with evidence of digestive corrosion were mainly
assigned to light and moderate categories (Table 2), although
several coprolites had bones and teeth with heavy corrosion
(GI8, GI9, GI10, GI11, GI13, GI15, and GI18) and two cop-
rolites (GI11 and GI13) yielded bones with extreme digestion.

Microscopic observations revealed that five coprolites
contained remains of parasites. A total of eight nematode spe-
cies were recovered. The coprolites positive for parasites and
measurements of the eggs found are shown in Table 3.

Two different nematode eggs were found in coprolite GI1.
In one case, the egg was oblong and brown, with a thick and
striated wall, with a subterminal and notorious operculum, and

Fig. 2 General appearance of coprolites from Gruta del Indio site, Mendoza, Argentina. Bar: 1 cm
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Table 2 Breakage and categories of digestive corrosion in carnivore coprolites from Gruta del Indio site, Mendoza, Argentina

Fracture Digestive corrosion

Absent Light Moderate Heavy Extreme

N % N % N % N % N % N %

GI2 Incisor (n=5) 5 100 0 0 3 60 2 40 0 0 0 0

Vertebra (n=2) 0 0 0 0 1 50 1 50 0 0 0 0

Metapodial (n=2) 2 100 2 100 0 0 0 0 0 0 0 0

Fragment indet. (n=19) 19 100 9 47 5 26 5 26 0 0 0 0

Femur (n=1) 1 100 0 0 1 100 0 0 0 0 0 0

GI5 Humerus* (n=1) 1 100 0 0 1 100 0 0 0 0 0 0

Fragment indet. (n=9) 9 100 0 0 5 56 4 44 0 0 0 0

GI7 Mandible (n=1) 1 100 0 0 0 0 1 100 0 0 0 0

Molar (n=2) 0 0 0 0 0 0 2 100 0 0 0 0

GI8 Maxilar (n=2) 2 100 0 0 2 100 0 0 0 0 0 0

Incisor (n=2) 2 100 0 0 2 100 0 0 0 0 0 0

Molar (n=6) 0 0 0 0 2 33 4 67 0 0 0 0

Vertebra (n=2) 0 0 0 0 2 100 0 0 0 0 0 0

Femur (n=1) 1 100 0 0 1 100 0 0 0 0 0 0

Tibia (n=1) 1 100 0 0 0 0 0 0 1 100 0 0

Fragment indet. (n=7) 7 100 0 0 2 29 5 71 0 0 0 0

GI9 Incisor (n=1) 1 100 0 0 0 0 1 100 0 0 0 0

Fragment indet. (n=5) 5 100 0 0 0 0 4 80 1 20 0 0

GI10 Vertebra (n=2) 1 50 0 0 0 0 2 100 0 0 0 0

Scapula (n=1) 1 100 0 0 0 0 1 100 0 0 0 0

Fragment indet. (n=9) 9 100 0 0 2 23 4 44 3 33 0 0

G11 Molar (n=3) 2 67 0 0 0 0 2 67 1 33 0 0

G12 Molar (n=1) 1 100 0 0 1 100 0 0 0 0 0 0

Fragment indet. (n=8) 8 100 0 0 0 0 0 0 0 0 8 100

GI13 Incisor (n=3) 3 100 0 0 3 100 0 0 0 0 0 0

Molar (n=5) 2 40 0 0 0 0 5 100 0 0 0 0

Vertebra (n=1) 0 0 1 100 0 0 0 0 0 0 0 0

Femur (n=1) 1 100 0 0 0 0 0 0 0 0 1 100

Tibia (n=1) 1 100 0 0 0 0 1 100 0 0 0 0

Astragalus (n=1) 0 0 1 100 0 0 0 0 0 0 0 0

Metapodial (n=3) 0 0 0 0 3 100 0 0 0 0 0 0

Tibiotarsus* (n=1) 1 100 0 0 – – – – – – – –

Tarsometatarsus* (n=1) 1 100 0 0 – – – – – – – –

Fragment indet. (n=40) 40 100 10 25 15 37.5 11 27.5 4 10 0 0

G14 Fragment indet. (n=4) 4 100 0 0 4 100 0 0 0 0 0 0

GI15 Astragalus (n=1) 0 0 0 0 1 100 0 0 0 0 0 0

Matapodial (n=2) 2 100 0 0 0 0 1 33 2 67 0 0

Phalange (n=6) 5 83 0 0 2 33 4 67 0 0 0 0

GI16 Fragment indet.* (n=8) 8 100 0 0 – – – – – – – –

GI18 Vertebra (n=1) 1 100 0 0 0 0 0 0 1 100 0 0

Tibia (n=1) 1 100 0 0 0 0 0 0 1 100 0 0

Fragment indet. (n=2) 2 100 0 0 0 0 2 100 0 0 0 0

GI20 Incisor (n=2) 2 100 0 0 2 100 0 0 0 0 0 0

Molar (n=1) 0 0 0 0 1 100 0 0 0 0 0 0

*Bird remains, all with evidence of digestive corrosion in the category of rounded (sensu Bochenski and Tomek 1997)
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was embryonated. The measurements were 137.5 μm in
length and 62.5 μm in width. The identity of egg was attrib-
uted to the genus Helminthoxys sp. (Oxyurida, Oxyuridae)
(Fig. 3a). The other egg was oval with a thick and smooth
wall and was embryonated. The measurements were 55 μm
in length and 30 μm in width. The egg was assigned to
Physaloptera sp. (Spirurida: Physalopteridae) (Fig. 3b).

A nematode egg was found in coprolite GI2. The egg pre-
sented an oblong shape, with a thick and smoothwall, and was
embryonated. The measurements were 57.5 μm in length and
35 μm in width. The egg was identified as a spirurid
(Spirurida) (Fig. 3c).

Eggs of parasites assigned to two species of nematodes
were found in coprolite GI9. Some eggs (n = 3) had a round
shape, with a thick and mamillated wall, and were embryonat-
ed (Fig. 3d). The average measurements were 45.8 μm in long
and 36.6 μm in wide. The eggs were assigned to Toxascaris
leonina (Ascaridida: Ascarididae). Nematode eggs (n = 83)
with an oblong shape, with thin walls, and the presence of
operculum on one side was also found. The average measure-
ments were 71.3 μm in long and 39.5 μm in wide. The eggs
were attributed to an indeterminate oxyurid (Oxyuride:
Oxyuridae) (Fig. 3e).

In coprolite GI10, parasite eggs attributed to three species
of nematodes were found. Some eggs (n = 8) were lemon-
shaped, with smooth surface and plug-shaped structures at
their ends. The eggs were assigned to Trichuris sp.
(Trichinellida: Trichuridae) (Fig. 3g). Themeasurements were
69.7 μm in long and 33.1 μm in wide. Eggs with an oblong
shape, thick-walled, embryonated, with one rounded pole and
the other one sharp were also observed. The presence of
plaques was observed at the sharp end of the egg. The mea-
sures were 132.5 μm in length and 72.5 μm in width. The
eggs were assigned to Heteroxynema (Cavioxyura) viscaciae

(Oxyuroidea, Heteroxynematidae) (Fig. 3f). Another egg,
with a round shape, thick-walled, with mamillated surface,
and embryonated, was found. The measurements were
47.5 μm in long and 35 μm in wide. The egg was assigned
to T. leonina (Ascaridida: Toxocaridae) (Fig. 3d).

Coprolite GI15 presented two nematode species. Some
eggs (n = 5) were lemon-shaped, with smooth surface and
polar plugs. The measurements were 59.5 μm in length and
33 μm in width. The eggs were assigned to Trichuris sp.
(Trichinellida: Trichuridae) but were attributed to another spe-
cies to that found in sample GI10 (Fig. 3h). Finally, one ob-
long egg (n = 1), with thin walls and with an operculum on
one side, was also observed Fig. 3e). The measurements were
57.5 μm in length and 37.5 μm in width. This egg can be
attributed to an indeterminate species of oxyurid, similar to
that found in GI 9.

Discussion

From an ecological approach, due to the wide home range and
the trophic level, carnivores are keystone species. Carnivores
play a critical role in the dispersion of parasite species of their
prey (e.g., micromammals, reptiles, birds) and their own par-
asites in the environment, through the dispersion of diverse
infectious stages through the scats (Moleón et al. 2015; Vieira
et al. 2008). Besides, carnivores have an important role in the
maintenance and spread of many zoonotic parasitic diseases
(Otranto and Deplazes 2019).

Carnivore scats can be identified based on morphological
characteristics and usually contain remains of their prey such
as hairs, feathers, and bones (Montalvo et al. 2007; Palacios
2007). The constrictions are one of the morphological charac-
teristics of the carnivore scats and allow differentiate between

Table 3 Parasitic remains, quantity, and measurements of the eggs found in carnivore coprolites from Gruta del Indio site, Mendoza, Argentina

Coprolite Eggs (n) Size (μm) Parasite eggs

Length Width

Min Max Med Min Max Med

GI1 1 137.5 62.5 Helminthoxys sp. (Oxyurida: Oxyuridae)

1 57.5 35 Physaloptera sp. (Spirurida: Physalopteridae)

GI2 1 55 30 Spirurid (Spirurida)

GI9 3 42.5 50 45,8 35 37,5 36,6 Toxascaris leonina (Ascaridida: Ascarididae)

83 62.5 77.5 71,3 32,5 45 39,5 Oxyurid (Oxyurida: Oxyuridae)

GI10 8 62.2 77.5 69.7 35 40 33.1 Trichuris sp. (Trichinellida: Trichuridae)

1 132.5 72.5 Heteroxynema viscaciae (Oxyurida, Heteroxynematidae)

1 47.5 35 Toxascaris leonina (Ascaridida: Ascarididae)

GI15 5 52.5 65 59,5 30 35 33 Trichuris sp. (Trichinellida: Trichuridae)

1 57.5 37.5 Oxyurid (Oxyurida: Oxyuridae)
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canid and felid scats. In general, the felid scats present marked
and close constrictions, with strangulations and well-defined
segments and one of the extremities especially tapered (Fig. 2,
e.g., GI9, GI10, GI13, and GI16), while the canid scats have
separated and less marked constrictions with a characteristic
pointed end (Fig. 2, e.g., GI11, GI15, GI18, and GI19). The
diameter of the scats also allows to identify large felids from
small and medium-carnivorous. The measurements of the
small and medium-sized carnivore scats range from 11 to
18 mm in diameter, while for large felid scats, the average
diameter is 25 mm or more (Palacios 2007; Chame 2003).

From South America, large felid scats with diameters greater
than 2.5 cm can be identified as belonging to jaguar, Panthera
onca, or puma, Puma concolor (Chame 2003). Their scats are
usually deposited in rock shelters and caves where these large
felids frequently have its lairs and latrines (Martín and Borrero
1997; Martín 2008; Montalvo et al. 2007). In the particular
cases of the coprolites GI9 and GI10, their morphology and
size suggested that correspond to a large carnivore.
P. concolor is the only large size carnivore inhabiting current-
ly in this area, although P. onca lived in the area until histor-
ical times (Lehaman-Nitsche 1907). Morphometric patterns

Fig. 3 Helminth eggs found in
carnivore coprolites from Gruta
del Indio site, Mendoza,
Argentina: a Helminthoxys sp.
(Oxyurida: Oxyuridae) Bar:
40 μm; b Physaloptera sp.
(Spirurida: Physalopteridae) Bar:
20 μm; c indet. Spirurid
(Spirurida) Bar: 20 μm; d
Toxascaris leonina (Ascaridida:
Ascarididae) Bar: 20 μm; e indet.
Oxyurid (Oxyurida: Oxyuridae)
Bar: 30 μm; f Heteroxynema
viscaciae (Oxyurida:
Heteroxynematidae) Bar: 40 μm;
g Trichuris sp. (Trichinellida:
Trichuridae) Bar: 20 μm; h
Trichuris sp. (Trichinellida:
Trichuridae). Bar: 20 μm
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cannot distinguish puma scats from jaguar ones due to their
similar characteristics (Emmons 1997). The scats of large car-
nivores can sometimes be totally white as a result of high
calcium content as a consequence of the ingestion of bones
(Palacios 2007). In sample GI9, it can be observed the whitish
coloration (Fig. 2). In the high Andean areas of Argentina and
southern Chile, a high consumption of ungulates and camelids
along with medium-sized preys has been recorded as a sub-
stantial part of the diet of big felids (Cajal and Lopez 1987;
Franklin et al. 1999). A higher consumption of small rodents
was recorded in protected areas in southern Chile, in
Argentinean Patagonia (histricomorph and myomorph ro-
dents) and in the Paraguayan Chaco. Nonetheless, the impor-
tance of rodents in terms of biomass consumed is minor
(Montalvo et al. 2007). The bone material of the largest mam-
mals included in the diet of big felids is represented by un-
identifiable fragments, which indicate extensive bone break-
age with strong evidence of digestion such as thinning, super-
ficial degradation, polishing of prominent areas, and presence
of holes. The small mammals, on the other hand, are the ones
that show the greatest integrity in the entire total sample,
which suggests that the prey was swallowed entirely without
chewing (Montalvo et al. 2007). This explains the findings of
coprolites G9 and GI10, which mainly include bones of small
mammals from light to heavy digestive corrosion (Table 2).
P. concolor is a broad-spectrum opportunistic predator, and its
diet varies with the seasons and between each individual. It
feeds on lizards, hares, rodents, birds, and even large herbi-
vores, such as guanacos, increasing the weight of their prey
with the latitude increase (Rau and Jiménez 2002; Walker
et al. 2010). Given the wide distribution and habitat diversity
of P. onca, this carnivore is an opportunistic predator whose
diet reflects the available prey community of a particular area
(Hayward et al. 2016). The diet is diverse, with at least 85
species listed as prey, with a range from more than 200 kg
to small rodents (Weckel et al. 2006). In this study, Ctenomys
sp. and indeterminate Rodentia bones remains were found,
understanding this finding as part of this carnivore diet.
Also, arthropod remains, vegetal tissues, and hairs were ob-
served. These findings suggest an omnivorous diet of these
felids.

The other coprolites analyzed in this study could be
assigned to small or medium-sized carnivores based on char-
acteristics morphological, taphonomic, and diet (Tables 1 and
2, Fig. 2). The diameter sizes of these scats are smaller than
those of the big carnivores mentioned above (Table 1). Also,
several of the samples present a whitish coloration (Fig. 2,
GI2, GI8, GI11, GI13, and GI19), linking this with the con-
sumption of prey that provide high-calcium content. Among
the small carnivores species inhabiting the study area, may
include the wild cats Leopardus colocolo and Leopardus
geoffroyi, the skunk Conepatus chinga, and the Pampas gray
fox Lycalopex gymnocercus, which feed mainly on rodents

(Redford and Eisenberg 1992; Wilson and Reeder 2005).
These small carnivores yield bone and tooth modifications
with high proportion of breakage and digestive corrosion, em-
bracing all the proposed categories, because their chews crush
their prey before ingesting it, contrary to what is observed in
large carnivores like P. concolor (see Montalvo and
Fernández 2019, and references therein). In coincidence, the
skeletal remains contained in the smaller studied coprolites
were severely broken and digested (Table 2).

This is the first paleoparasitological study from Atuel river
basin. Paleoparasitological examinations of samples revealed
the presence of eight nematode species. Two species of the
genus Trichuris sp. were found in this study. Trichurid para-
sites, commonly known as “whipworms”, are found world-
wide, but at a higher frequency in tropical and subtropical
environments. This nematode has a direct life cycle, where
the host acquires the infection by ingestion of eggs from the
soil. They host various mammals and marsupial hosts, for
example, ruminants, rodents, primates (including humans),
canids, minks, wolves, foxes, jackals, coatis, skunks, ferrets,
weasels, raccoons, pumas, cats, seals, pigs, and horses
(Anderson 2000). This parasite is located in the caecum and
colon of the host. The larval stages of Trichuris sp. cause
hemorrhages and local edema, causing bacterial infections.
They are expelled abroad along with feces, and their embry-
onic development takes place in the external environment
(Anderson 2000). Previous studies in Holocene environments
from Patagonia reported Trichuris spp. in coprolites of ro-
dents, deer, camelids, megamammals, and carnivores
(Fugassa et al. 2009, 2010; Sardella et al. 2010; Beltrame
et al. 2017, 2018b, 2020. among others). So, this finding ex-
tends the past distribution of Trichuris sp. to the studied area.

False parasitism (or pseudoparasitism) occurs when a par-
asite which does not normally utilize a host for the perpetua-
tion of its lifecycle is found in that host incidentally. In the
case of carnivores, due to the fact that they are top predators,
pseudoparasitism is a common finding, as their prey (e.g.,
small mammals, reptiles, and birds) may be infected by such
parasites.

The finding of Oxyuroidea eggs in carnivore coprolites is
associated with consumption of parasitized prey, due to the
fact that carnivores are not natural oxyurid hosts. Oxyurid
species are monoxenic parasites that live in the posterior third
of the digestive tract of various vertebrates and arthropods
(Anderson 2000). Infection occurs when eggs are ingested
with contaminated food or water. They are incubated in the
small intestine and subsequently develop into their adult state
by moving into the colon (Adamson 1989; Anderson 2000;
Petter and Quentin 1976). The Heteroxynematidae family in-
cludes species that evolved in sciuromorph rodents,
caviomorphs, and myomorph. The eggs found in coprolite
GI10 were assigned to H. viscaciae, parasite of the mountain
vizcacha L. viscacia (Caviomorpha: Chinchillidae) (Hugot
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and Sutton 1989a). Therefore, the finding of this parasite in
coprolites assigned to P. concolor or P. onca is associated
with a pseudoparasitism, due to the ingestion of L. viscacia,
giving information about possible trophic relationships be-
tween these felids and L. viscacia in samples dated to 3800–
2300 years B.P. The presence of H. viscaciae from Patagonia
has been reported in the current samples of L. viscacia from
Chubut province (Hugot and Sutton 1989a) and in ancient
samples from archeological and paleontological sites
(Beltrame et al. 2012, 2016, 2019b). Furthermore, it was
found in felid coprolites assigned to P. concolor or P. onca
from Cueva Galpón, an initial late Holocene mortuary site
from northeast Patagonia (Beltrame et al. 2019a).

The genus Helminthoxys includes ten nominal species, all
of them parasites of neotropical caviomorphs (Hugot and
Sutton 1989b). Several studies have demonstrated the high
specificity of these oxyurids with the host, with a parallel
relationship with their phylogeny (Hugot 2003). A recent
study documented the presence ofHelminthoxys effilatus from
the Cueva Peligro archeological site, Chubut, for the last
1200 years in samples assigned to M. australis (Beltrame
et al. 2019b). Furthermore, the presence of Helminthoxys
caudatus in coprolites samples assigned to M. australis from
the Somuncurá Plateau Protected Natural Area (Patagonia,
Argentina) was also reported (Beltrame et al. 2018b). Due to
the fact that the host range of this genus seems to be strictly
restricted to the Hystricognath (Hugot 2003), the presence in
carnivore samples could be associated with the predation of
histricomorphs.

Additionally, unidentified oxyurids also were found in two
carnivore coprolites studied. The morphometry of the eggs
found is similar to that of Enterobius vermicularis
(Oxyuridae, Oxyurida), which is known as a human parasite.
One possible explication to the presence of this parasite in
carnivore coprolites could be related to coprophagy, in close
contact with humans and their feces. A recent study (Lino
et al. 2018) reports the presence of E. vermicularis in pre-
Columbian coprolites from Brazil, associated possibly with
foxes and raccoons. However, future studies are needed in
order to confirm the oxyurid species found.

Parasitic species of the family Ascarididae (“ascarids”)
cause among the most widespread and important zoonotic
infections Ascaridae eggs are released in large numbers
through the feces of the hosts. In favorable environmental
conditions, they develop in infectious larvae. It also contrib-
utes to the existence of parathenic hosts, mostly rodents, an
important item of carnivore diet that may have larval stages.
Parathenic hosts ingested by a carnivore transmit the larvae
and then mature in the wall and lumen of the intestine of the
definitive host. Eggs become infectious in the soil (Anderson
2000). The definitive hosts of T. leonina are both feline and
canine species, usually found in the small intestine of cats,
dogs, lions, mountain lion, tigers, foxes, coyotes, jackals,

and other wild felids and canids around the world (Levine
1968; Strube et al. 2013). Current studies in South America
have found the presence of T. leonina in wild and domestic
felines from Brazil (Vieira et al. 2008), in different fox species
from Chile (Acosta-Jamett et al. 2018; Aguilera 2001;
Jiménez et al. 2012; Okulewicz et al. 2012) and in
P. concolor from Argentina (Moleón et al. 2015), among
others. In this study, T. leonina eggs in samples assigned to
P. concolor or P. onca were found and provide the evidence
of the presence of this specie in ancient times from this study
area. These findings are important to discuss the possible role
of carnivores as potential agents of transmission of zoonotic
parasites in the past.

Physaloptera sp. and one unidentified spirurid were found.
These parasites are located in the digestive tract of amphib-
ians, reptiles, birds, and mammals. They have indirect life
cycles and were described in mountain lion, lynx, badger,
raccoon, fox, skunk, and coyote, around the world, and are
very common in cats (Ramos et al. 2010). The life cycle in-
cludes intermediate hosts (orthoptera and coleoptera) or
parathenic hosts, such as reptiles and amphibians (Anderson
2000). Carnivores can become infected after eating organisms
with infective larvae. The adult stage is found in the esopha-
gus, in the gastric mucosa, and in the small intestine
(Anderson 2000; Ortlepp 1922) and produces gastritis, edema,
and ulcers (Naem and Asadi 2013). In some cases, were found
in humans (Mohamadain and Ammar 2012). Physaloptera sp.
has been identified in prehistoric coprolites belonging to ca-
nids from archeological sites from Patagonia (Beltrame et al.
2018a; Fugassa et al. 2006; Fugassa et al. 2018) and human
coprolites from the archeological site Cueva de los Muertos
Chiquitos from Mexico (Cleeland et al. 2013). In this study,
the presence of Physalopteridae provides information on the
possible presence of zoonotic diseases to which ancient pop-
ulations were exposed.

Zoonoses, any disease or infection that is naturally trans-
missible from vertebrate or invertebrate animals to humans
and vice versa, are currently considered one of the most im-
portant threats for Public Health worldwide. In the past, nu-
merous zoonoses also were present (Beltrame et al. 2018a,
2019a; Sianto et al. 2009; Tietze et al. 2019). Today, carni-
vores have important public health relevance due to their po-
tential impact in the epidemiology of many zoonotic parasitic
diseases (Otranto and Deplazes 2019). Nevertheless, carni-
vores also acted like zoonotic parasite reservoirs in ancient
times (Beltrame et al. 2018a). Some parasitic taxa such as
T. leonina and Physalopthera sp. found in this work are con-
sidered potentially zoonotic (Mohamadain and Ammar 2012;
Okulewicz et al. 2012), although its presence in humans is
very rare. In the other hand, the presence of the zoonotic
specie E. vermicularis must be confirmed. Egg resistance to
both chemical and climatic factors influences egg viability in
the environment over long periods of time. Soil type, ambient
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temperature, and humidity are the main factors that determine
the time it takes an egg to develop to the infective stage
(Sommerfelt et al. 2006). There are strong cultural and bio-
logical evidences of the presence of hunter-gatherers from the
early Holocene of GI (Period Atuel IV, 11–8 ky 14C BP) and
late Holocene (Period Atuel III, 3.8–2.3 ky 14C BP and Period
Atuel II, 2.3–1.9 ky 14C BP) (e.g., Fernández and Pardiñas
2018; Lagiglia 2002; Neme and Gil 2008; Semper and
Lagiglia 1962–1968). The archeological resolution allowed
to show temporal ranges where humans and carnivores were
found together in Layer 1 (Atuel 2), Layer 2 (Atuel III), and
upper Layer 3 (Atuel IV). Although it is not a direct indication
of the synchronic occupation of the site, it provides evidences
of their presences from GI. In this way, the possibility of
exposure to zoonotic diseases in humans due to environmental
contamination with eggs of zoonotic species can be related.
Therefore, it can be inferred that the hunter-gatherers that
inhabited the area in the past were potentially exposed to these
parasitic diseases.

The six histricomorph rodents found in carnivore coprolites
were previously recorded from sieved sediments of GI,
reflecting Monte Desert biome typically linked to drier and
warmer conditions (Fernández and Pardiñas 2018). All the
identified rodent species prey was present through the
Holocene. The prey recorded in the carnivore coprolites was
in relation to the availability through the Holocene registered
by Fernández and Pardiñas (2018). Additionally, the finding
of H. viscacia eggs displays the presence of L. viscacia. This
suggests that the carnivore coprolites are a good tool to com-
plement studies on rodent diversity.

Conclusion

The rock shelter GI is an emblematic archeological and pale-
ontological site where numerous researches were performed.
This is the first paleoparasitological study in this site.
Therefore, the present findings broaden the knowledge of
the biogeographic history of the gastrointestinal helminths
found. Results in the present study evidence the importance
of carnivore coprolite studies in the reconstruction of paleo-
ecological scenarios. The paleoparasitological studies of car-
nivore coprolites are an important source of knowledge
concerning the parasites diversity in ancient times.
Additionally, it contributes with the identification of the par-
asites of the prey consumed by these top predators and im-
proves the knowledge of pas t food webs . The
paleoparasitological findings suggest the importance of carni-
vores for the dispersion of their own parasites and also the
parasites of their prey. In the other hand, when the parasite
species found have the potential to infect humans, the parasi-
tological findings contribute with the study of the presence of
parasitic zoonoses in the Holocene. This is the case of the taxa

T. leonina and Physaloptera sp. found in this study, consid-
ered potentially zoonotic. Finally, we believe it is relevant to
continue expanding the number of paleoparasitological stud-
ies, to provide complementary information to previous studies
carried out in the studied region.
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