Exploring the Throughput-Fairness Trade-off
on Asymmetric Multicore Systems

Juan Carlos Saez', Adrian Pousa?, Fernando Castro!,
Daniel Chaver®, and Manuel Prieto-Matias®

! Computer Science School, Complutense University, Madrid, Spain
{jcsaezal,fcastror,dani02,mpmatias}@ucm.es
2 Instituto de Investigacion en Informatica LIDI, UNLP, Argentina
apousa@lidi.info.unlp.edu.ar

Abstract. Symmetric-ISA (instruction set architecture) asymmetric-
performance multicore processors (AMPs) were shown to deliver higher
performance per watt and area than symmetric CMPs (Chip Multi-
Processors). Previous work has shown that this potential of AMP sys-
tems can be realizable thanks to the OS scheduler. Existing scheduling
schemes that deliver fairness and priority enforcement on AMPs do not
cater to the fact that applications in a multiprogram workload may de-
rive different benefit from using fast cores in the system. As a result, they
are likely to perform thread-to-core mappings that degrade the system
throughput. To address this limitation, we propose Prop-SP, a schedul-
ing algorithm that aims to improve the throughput-fairness trade-off on
AMPs. Our evaluation on real hardware, and using scheduler implemen-
tations on a general-purpose OS, reveals that Prop-SP delivers a better
throughput-fairness trade-off than state-of-the-art schedulers for a wide
variety of multi-application workloads.

Keywords: asymmetric multicore, scheduling, operating systems.

1 Introduction

Single-ISA asymmetric CMPs combine several core types with the same
instruction-set architecture but different features such as clock frequency or mi-
croarchitecture. Previous work has demonstrated that asymmetric designs lead
to a more efficient die area usage and a lower power consumption than sym-
metric CMPs [12]. Notably, combining just two core types simplifies the design
and is enough to obtain most benefits from AMPs [13]. Major hardware players
appear to be following this trend, as suggested by the recent ARM big. LITTLE
processor [2] or the Quick-TA Intel prototype system [5].

Despite their benefits, AMPs pose significant challenges to the system soft-
ware. One of the main challenges is to efficiently distribute fast-core cycles among
the various applications running on the system. This task can be accomplished by
the OS scheduler [18,11] or by the VM hypervisor on virtual environments [14].
Most existing proposals have focused on maximizing the system throughput

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part II, LNCS 8806, pp. 326-337, 2014.
© Springer International Publishing Switzerland 2014

Exploring the Throughput-Fairness Trade-off on AMPs 327

[13,21,18,11]. To make this possible the scheduler needs to map to fast cores pre-
dominantly application threads that use those cores efficiently since they derive
performance improvements (speedup) relative to running on slow cores [13]. Fur-
ther throughput gains can be achieved by using fast cores to accelerate sequential
phases of parallel programs [19,10].

Other important goals such as delivering fairness or priority enforcement
on AMPs have drawn less attention from the research community. Previously-
proposed OS-level schemes that deliver fairness on AMPs attempt to allocate a
fair heterogeneous CPU share to the various applications. This can be accom-
plished by fair-sharing fast cores among applications [3,18] or by factoring in
the computational power of the various cores when performing CPU account-
ing [15]. None of these techniques, however, exploit the fact that applications in
a multiprogram workload may derive different benefit from using the fast cores
in the AMP. For this reason, assigning the same heterogeneous CPU share to
equal-priority applications does not ensure an even slowdown across applications
due to sharing the AMP [20]. Moreover, not taking into account the diversity in
applications’ relative speedups when making scheduling decisions on AMPs may
also lead to degrading the system throughput [3,18].

To address these shortcomings, we propose Prop-SP, a novel scheduling al-
gorithm that delivers priority enforcement on AMPs and strives to even out
the slowdown experienced by equal-priority applications. Our proposal delivers
high system throughput without requiring hardware support nor changes in the
applications. We qualitatively and quantitatively compare Prop-SP with state-
of-the-art schedulers, such as A-DWRR [15] and CAMP [18]. Our experimental
analysis reveals that Prop-SP improves the throughput-fairness trade-off for a
broad spectrum of multi-application workloads.

The rest of the paper is organized as follows. Section 2 motivates our work.
Section 3 outlines the design of the Prop-SP scheduler. Section 4 showcases our
experimental results. Section 5 discusses related work and Section 6 concludes.

2 DMotivation

We now present an analytical study regarding the system throughput and fair-
ness delivered by previously proposed scheduling algorithms for AMPs. Our
analysis demonstrates that existing schedulers that seek to optimize one metric
degrade the other significantly, thus achieving unacceptable tradeoffs.

To assess system throughput we avoided metrics depending on instructions
per cycle (IPC) or instructions per second (IPS) since they can be misleading
to evaluate the performance of multithreaded programs [1]. As such, we opted
to use a metric depending on completion time instead. In particular, we found
that the Aggregate Speedup captures differences in throughput caused by diverse
asymmetry-aware schedulers considerably better than other metrics proposed
for CMPs, such as STP [7]. The Aggregate Speedup is defined as follows:

n

CT low,i

Aggregate Speedup = Z (sowt_ 1 (1)
i—1 CTsched,i

328 J.C. Saez et al.

Table 1. Synthetic workloads Table 2. Analytical formulas to approximate the
Workload SF; SF; SF; SF, aggregate speedup and unfairness for a workload

W1 34 34 12 1.2 consisting of n applications running simultaneously
W2 3.4 34 23 23 under a given thread scheduler.
W3 23 23 19 1.9 Metric Definition

W4 34 34 27 27 yocooate Speedun ST (1 _1)
W5 34 34 34 34 CgreeseteSpeedw S| pigy

W6 25 21 1.6 1.2 Slowdownapyp Japp + SFapp - (1 — fapp)
W7 30 21 21 21 Unfairness N Sl o oin)

W8 34 3.0 25 21
W9 29 25 21 12

where n is the number of applications in the workload, CTsioy,; is the com-
pletion time of application ¢ when it runs alone in the system and uses slow
cores only, and CTscpeq,; is the completion time of application ¢ under a given
scheduler.

Regarding fairness, previous works have employed diverse definitions. Some of
them define a scheme to be fair if it assigns the same CPU share to equal-priority
threads [15]. Others consider a scheme as fair if equal-priority applications suffer
the same slowdown due to sharing the system with respect to the situation
in which the whole system is available to each application [8,16,6]. The latter
definition is more suitable for CMP systems where degradation due to contention
on shared resources may occur. Therefore, we opted to use this definition and
employ the unfairness metric [16,6], which is defined as follows:

MAX(Slowdowny, ..., Slowdown,,)

Unfairness = MIN(Slowdowny, ..., Slowdown,,)

(2)

where Slowdown; = CTsched,i/ CTtast,i, and CTqst,; is the completion time of
application ¢ when running alone in the AMP (with all the fast cores available).

In our analytical study we assessed the effectiveness of different scheduling
algorithms when running several synthetic multi-programmed workloads on an
AMP system consisting on two fast cores (FC) and two slow cores (SC). All
workloads comprise four single-threaded applications each. In this hypothetical
scenario, we assume that applications exhibit fast-to-slow performance ratios
that range between 1.2 and 3.4, a similar speedup range than that of the SPEC
CPU2006 applications running on the Intel Quick-IA asymmetric system, as
reported in [5]. Note that for single-threaded programs, the speedup matches
the speedup factor (SF) of its single runnable thread, defined as Ilﬁgﬁ, where
IPSf,6 and IPSs0,, are the thread’s instructions per second ratios achieved on
fast and slow cores respectively. Each row in Table 1 shows the speedup factors
(SFs) of the four applications in a specific workload (W;).

We derived a set of analytical formulas (shown in Table 2) to compute the
Unfairness and the Aggregate speedup (ASP) of a workload under a given

Exploring the Throughput-Fairness Trade-off on AMPs 329

work-conserving! scheduler in this scenario. In deriving the formulas we assume
that all applications in the workload run continuously for a certain amount of
time T'. To make the analytical derivation tractable we also assume that each
application exhibits a constant SF during the time interval. Throughout the ex-
ecution the given scheduler allots each application app a certain fast-core time
fraction, denoted as Fypp, such that 0 < F,p,, < 1, where Fy;,, = 1 means that
the application would be mapped to a fast core the whole time. Equation 3 makes
it possible to obtain the fraction of instructions each application completes on
a fast core during the time interval — referred to as f,pp,— based on its speedup
factor (SFapp) and F,pp. As evident, the formulas to approximate the ASP and
Unfairness only depend on SFgp, and fapp. The detailed derivation process for
these formulas as well as for Equation 3 can be found in [17].

1
1
Fho- 1) 1

Figure 1 shows the normalized unfairness and aggregate speedup for the ana-
lyzed workloads under five asymmetry-aware schedulers. The first one, denoted
as HSP (High-SPeedup), assigns all fast cores to the Npc (number of fast cores)
threads in the workload that experience the greatest fast-to-slow speedup (for
these applications F,p,,=1); the remaining threads are mapped to slow cores
(Fapp=0). Such a scheduler has been proposed in previous work [13,11]. The
second scheduler is an asymmetry-aware round-robin (RR) policy that equally
shares fast cores (Fypp = N;C) among applications [3,18]. The third scheduler
is our proposal, referred to as Prop-SP (Proportional-SPeedup) and explained
in detail in Section 3. In the scenario we explored, where workloads consist of
equal-priority single-threaded programs, Prop-SP assigns the fast-core share to
an application in proportion to its net speedup (i.e., SFqpp — 1).

The fourth and fifth schedulers, referred to as Opt-Unfairness and Opt-ASP-
Ref, constitute theoretical algorithms. The per-application FC cycle distribution
made by Opt-Unfairness ensures the maximum ASP value attainable for the
optimal unfairness. Opt-ASP-Ref, on the other hand, achieves the maximum
ASP possible ensuring an unfairness value no greater than the one achieved by
Prop-SP for a particular workload. We created a simple program which makes
use of the analytical formulas in Table 2 to determine per-application fast-core
cycle distributions for these theoretical algorithms.

Results from Figure 1 reveal that HSP optimizes the aggregate speedup (the
higher ASP, the better) at the expense of obtaining the worst unfairness numbers
by far (the higher the unfairness, the worse). As evident, the theoretical Opt-
Unfairness scheduler exhibits lower aggregate speedup than HSP in most cases.
This fact underscores that, in general, it is not possible to optimize both metrics
simultaneously. More importantly, much throughput has to be sacrificed in some
cases (up to 20% for W2) to achieve the optimal unfairness. As for the RR sched-
uler, results highlight that this policy always degrades both fairness and ASP

3)

1 .
SFapp

Japp = (

! Such a scheduler does not leave idle cores when the total thread count is greater or
equal to the number of cores in the platform.

330 J.C. Saez et al.

T T T T T T T T T T
1 Wa ew ow2 owa wse - 1 | ews -
=]
09 K. & W8, = 09 ~ :v\:: —
_g‘ Vg @ _g' ow4
Wi *W2
é 0.8 REA = % 08
s ws, © " H ow¥ W8
5t o *W9 & Oows
2 07 4 8 07 | N
5 5i)
__‘:” W 3 w7 é" *W9
g 0.6 o @ 1 3 0.6 *W7 7
é) o eWe ew3 g ow7 owl
; 0.5 e 9o - 2 05 w0 T
O, 5 £ W3
wi® 0 RR 9 OW3
HSP .
04 - Prop-SP * T 04 - -
o Opt-Unfairness a oW6
pt-ASP-Ref =]
03 I I I I I I T T T T 03 I I I
0 01 02 03 04 05 06 07 08 09 1 0 01 02
Normalized unfairness Normalized unfairness

Fig. 1. Aggregate speedup (ASP) and unfairness values for the analyzed workloads
under the various schedulers. The closer to the top left corner, the better the ASP-
Unfairness tradeoff for the workload in question. Both metrics have been normalized to
the (0,1) interval, where O represents the minimum value attainable for the metric in
the platform and 1 the maximum one. For the sake of clarity, the explicit comparison
between RR and Prop-SP has been replicated in a separate figure (right).

compared to Opt-Unfairness, thus providing a suboptimal solution. Notably, RR
sacrifices up to 47% of the maximum throughput attainable and in some work-
loads, such as W1, high throughput reductions are also accompannied by fairness
degradation. Finally, the results showcase good properties regarding the Prop-
SP scheduler. First, it delivers higher aggregate speedup than Opt-Unfairness
and RR across the board. Second, despite the slight fairness degradation, Prop-
SP ensures unfairness numbers within 0-10% of the maximum attainable for
all workloads (clearly, this is not always the case for HSP and RR). Third, re-
sults of the theoretical Opt-ASP-Ref scheduler reveal that Prop-SP delivers ASP
numbers very close to the maximum attainable for the provided unfairness.

3 The Prop-SP Scheduler

3.1 The Algorithm

Prop-SP assigns threads to fast and slow cores so as to preserve load balance in
the AMP, and periodically migrates threads between fast and slow cores to ensure
that they run on fast cores for a specific amount of time. To perform thread-
to-core assignments, it relies on two mechanisms: fast-core credit allocation and
inter-core swaps.

Fast-Core Credit Allocation is a mechanism to control the amount of fast-
core cycles allotted to the running threads on an AMP. At a high level, fast-core
credit allocation works as follows. Each thread has a fast-core credit counter
associated with it. When a thread runs on a fast core it consumes credits. Threads

Exploring the Throughput-Fairness Trade-off on AMPs 331

that have fast-core credits left (i.e., their credit counter is greater than zero) are
preferentially assigned to fast cores by Prop-SP. Every so often, the OS triggers
a credit assignment process that allots fast-core credits to applications with
runnable threads. The time period elapsed between two consecutive system-
wide credit assignments is set dynamically by the scheduler. We will refer to
this elapsed period as the execution period. Note that we borrowed the idea of
associating credits to threads from Xen’s Credit Scheduler (CS) [4]. However,
credit distribution in Prop-SP is completely different from that of CS.

Prop-SP awards fast-core credits to each application based on its associated
dynamic weight, which is defined as the product of its net speedup (speedup
minus one) and its static weight. In this context, the speedup indicates the
relative benefit that the application would derive if all fast cores in the AMP
were devoted to running threads from this application, with respect to running
all threads on slow cores. The speedup is estimated at runtime by Prop-SP
without the user intervention (see Section 3.2). The static weight, by contrast,
is derived directly from the application priority (set by the user).

The credit assignment process entails three steps as detailed in Algorithm 1.
After computing dynamic weights (step 1), Prop-SP allots credits to each appli-
cation based of its dynamic weight in competition with the sum of the dynamic
weights of all applications (step 2). Because the actual length of the next ex-
ecution period is computed afterwards so as to control the migration rate (we
will elaborate on this issue later), the credit distribution performed in step 2
is done assuming a fixed-width reference execution period. Once the length of
the execution period has been determined, awarded per-application credits are
scaled to the actual interval length. Finally, credits awarded to the applica-
tion are then distributed among its runnable threads (step 3). For sequential
programs, per-thread credit-distribution entails increasing the credit counter of
the only thread by the amount of credits awarded. For multi-threaded applica-
tions, Prop-SP supports two per-thread credit distribution schemes: Even and
BusyFCs. Even distributes credits uniformly across runnable threads in the ap-
plication. BusyFCs goes sequentially through runnable threads and assigns each
one the maximum amount of credits it can consume in the next execution pe-
riod (cred per fc next period) until there are no more credits left to share. We
found that the Even scheme is well-suited to coarse-grained parallel applications
while BusyFCs turns out beneficial for fine and mid-grained parallel programs.
The associated experimental analysis has been omitted due to space constraints.

Inter-Core Swaps is a thread-migration mechanism that ensures that threads
with fast-core credits get a chance to use up their credits without disturbing
load balance. In order to illustrate how this mechanism works, let us consider an
AMP with one fast core and one slow core. Suppose that there are two threads
with fast-core credits running on the system, each one mapped to a different core
to preserve load balance. Eventually, the thread running on the fast core runs
out of fast-core credits. At this point, the scheduler swaps both threads between
cores to make sure the thread that was running on the slow core gets a chance
to consume its fast-core credits while maintaining load balance.

332 J.C. Saez et al.

Algorithm 1: Credit Assignment Algorithm
{ ® R is the set of applications with runnable threads.
e Nrc is the number of fast cores (FCs).
e CRED 1FC REF is the amount of credits consumed on each FC' during an
execution period used as reference.
e cred per fc next period is the amount of credits consumed on each FC during
the next execution period. }

S:=[]; total weight:=0; total credits:=CRED 1FC REF % Npc;
{ STEP 1 = Compute apps’ dynamic weight and total weight }
foreach app in R do

speedupgpp:= estimate speedup for app;

dyn weightapp:= (speedupapp — 1) * static weightapp;

total weight := total weight 4+ dyn weightapp;

Insert app into S so as to keep S sorted in descending order by dyn weightqpp;
end
{ STEP 2 = Assign credits to apps based on dyn weightap, }
foreach app in S do

total credits % dyn weightqpp

creditopp:= ;

total weight
end
{ STEP 3 = Determine the length of the next execution period
and distribute credits among threads }
Compute cred per fc next period;
scale factor:=cred per fc next period/CRED 1FC REF;
foreach app in S do
creditqpp:=creditqpp * scale factor;
Distribute credit,p, credits among threads in app
end

3.2 Determining the Speedup

At runtime, Prop-SP needs to obtain the relative speedup that an application
derives from using all fast cores in the AMP. This value is used by the credit
distribution algorithm to compute the application’s dynamic weight.

As mentioned in Section 2, the speedup of a single-threaded application
matches the SF of its single runnable thread. To determine a thread’s SF online,
Prop-SP feeds a platform-specific estimation model with values from diverse per-
formance metrics collected over time? (such as the IPC or the last-level-cache
miss rate). In this work, we leverage the technique proposed in our previous
work [19] to aid in the construction of SF estimation models. This technique,
which has been proven successful in a AMP prototype system where cores dif-
fer in microarchitecture, enables to generate SF models by analyzing offline-

2 In our setting, performance counters are sampled every 200ms, which leads to neg-
ligible overhead associated with sampling and SFs estimation.

Exploring the Throughput-Fairness Trade-off on AMPs 333

collected performance counter data from a representative set of single-threaded
CPU-bound programs.?

To obtain a speedup estimate for a multithreaded application, several factors
in addition to the SF must be taken into account [9,19], such as its amount of
thread-level parallelism (TLP) or how fast-core credits are distributed among its
threads. Prop-SP makes use of the following equations to estimate the applica-
tion speedup under the BusyFCs and the Even credit-distribution schemes:

SPB““‘yFC“" = NS;F;?l 2 +1 SPgyen = MIN(]XIFC’N) : (SF - 1) +1
({NFCJ+1)

where N is the number of threads in the application, Np¢c is the number of
fast cores in the AMP and SF is the average speedup factor of the application
threads. The detailed derivation process for these formulas can be found in our
previous work [19,17].

4 Experimental Evaluation

In our experiments, we analyzed two variants of Prop-SP (static and dynamic),
which follow different approaches to determine a thread’s SF. The base im-
plementation of Prop-SP, referred to as Prop-SP (dynamic), estimates SFs on-
line using hardware counters. Prop-SP (static), on the other hand, asummes
a constant SF value for each thread, measured prior to the execution. We
compare both versions of Prop-SP against four previously-proposed schemes:
RR [3,18], A-DWRR [15], CAMP [19] and HSP (High-SPeedup) [3,11]. In previ-
ous work [18], we observed that considering the speedup of the application as a
whole rather than the speedup of individual threads when making thread-to-core
mappings leads to higher throughput in scenarios where parallel applications are
present. As such, for a fairer comparison, we modified HSP to perform thread-to-
core assignments taking into account the application-wide speedup rather than
per-thread speedup factors.

All the evaluated algorithms have been implemented in the Solaris kernel and
tested on real multicore hardware made asymmetric by reducing the processor
frequency of a subset of cores in the platform. In particular, we used a multicore
server consisting of two AMD Opteron 2435 “Istanbul” hex-core processors (12
cores). Each chip includes a 6MB shared L3 cache shared among cores. Emu-
lated AMP configurations on this system consist of “fast” cores that operate at
2.6GHz and “slow” cores running at 800MHz. To evaluate the different schedul-
ing algorithms, we used two AMP configurations: (1) 2FC-2SC — including two
chips with one fast core and one slow core (2) 2FC-10SC — two chips with one
fast core and 5 slow cores each.

3 In this work we obtained the SF estimation models by analyzing offline-collected data
from a subset of the SPEC CPU 2006 benchmarks. Note that we also experimented
with applications different to those employed to generate the models.

334 J.C. Saez et al.

Table 3. Multi-application workloads consisting of single- and multithreaded programs

Categories Benchmarks Categories Benchmarks

3STH-1HPH hmmer, gobmk, h264ref, fma3d m(9) 4STH povray, gobmk, bzip2, sjeng
3STH-1HPL povray, gamess, gobmk, swim m(9) 3STH-1STM povray, h264ref, perlbench, astar
2STH-1PSH- gamess, bzip2,

1HPM BLAST(4), wupwise m(6)
1STH-1STM gamess, astar,
-1STL-1PSH soplex, blackscholes(9)

3STH-1STL A hmmer, namd, perlbench, soplex

3STH-1STL B hmmer, h264ref, gobmk, milc

1PSH-1PSL semphy(6), FFTW3D(6) 28TH-2STM A povray, bzip2, leslie3d, sphinx3
2PSH-1HPM BLAST(4), semphy(4), wupwise m(4) 2STH-2STM B gamess, gobmk, xalancbmk, astar
1PSH-1HPL semphy(6), equake m(6) 28TH-2STL A hmmer, gobmk, 1bm, soplex
1HPH-1HPL fma3d m(6), equake m(6) 28TH-2STL B povray, h264ref, 1bm, omnetpp
1PSH-1HPH blackscholes(6), fma3d m(6) égig_lsTM- sjeng, leslie3d, 1bm, soplex

Our evaluation targets multi-application workloads consisting of HPC bench-
marks from diverse suites (SPEC CPU 2006 and OMP 2001, PARSEC, NAS
Parallel Benchmarks and Minebench). We also experimented with BLAST — a
bioinformatics benchmark — and FFTW3D — an HPC benchmark performing the
fast Fourier transform. In all experiments, the sum of the number of threads of
all applications was set to match the number of cores in the platform, since this is
how runtime systems typically configure the number of threads for CPU-bound
workloads like the ones we used. We ensure that all applications in the workload
are started simultaneously and when an application terminates it is restarted
repeatedly until the longest application in the set completes three times. For
each application in a workload, CTscpeq is calculated as the geometric mean of
its completion times for the various executions. We measure CT'tq4: for an ap-
plication by tracking its completion time when running alone in the AMP with
its best-performing per-thread credit distribution scheme.

Table 3 shows the analyzed multi-application workloads. The first nine work-
loads (left) consist of both sequential and parallel applications; the last nine
(right) comprise sets of single-threaded programs. In creating the workloads,
we categorized applications into three groups with respect to their parallelism:
highly parallel (HP), partially sequential (PS) —parallel applications with a se-
quential component of over 25% of the total execution time— and single-threaded
(ST). In order to cater to applications’ SFs as well, we further divided the three
aforementioned application groups into three subclasses based on their SFs —
high (H), medium (M) and low (L). The application categories are shown in
the table in the same order as the corresponding benchmarks. For example, in
the 1PSH-1HPL category, semphy is the PSH application and equake m is the
HPL one. The number in parentheses next to the name of each multithreaded
application indicates the number of threads it runs with.

Figure 2 shows the aggregate speedup and unfairness for the workloads under
the various schedulers. Overall, HSP and CAMP, which assign high-speedup ap-
plications to fast cores, yield the highest system throughput in most cases but
fail to deliver fairness accross the board. RR and A-DWRR, on the other hand,
do rather a good job in terms of both fairness and throughput for workloads
including single-threaded applications only. However, when multithreaded pro-

Exploring the Throughput-Fairness Trade-off on AMPs 335

HSP m— A-DWRR EXXXXXS Prop-SP (static)
CAMP C——1 RR Prop-SP (dynamic) 77777772
Multithreaded and single-threaded apps. on 2FC-10SC Single-threaded applications only on 2FC-2SC
4.5
a5
O 8 I H
o 3| -
55| i]
A]
grer]
5 L .
S L
05 |- .
g 08 i mrym o KLl
1 1 1 | | 1 1 T | 1
B BT B Ry R)A% 7/”‘39 %‘5’& % e®®39
N U N T e W Ty e,
% % % R R (A
325 Multithreaded and single-threaded apps. on 2FC-10SC Single-threaded applications only on 2FC-2SC

275

: %Ej\iw@um LLL LL'-

unfairness

; L
Q Q
R T T T T W T TR R 5 %
KN \’;5:2’2;9""@62{" R T P, T, OO NN p“‘»}(&"“/\
% R7S /:o% ¥ R L% % s % %

Fig. 2. Aggregate speedup and unfairness of the investigated scheduling algorithms

grams are present in the workload, both schedulers degrade the system through-
put significantly. In this scenario, A-DWRR awards higher fast-core share to
those applications with a higher thread count. As shown in [18], this may lead
to throughput degradation since applications with a high active thread count
may experience low benefit from using the scarce fast cores in the platform.

The results reveal that Prop-SP is able to make efficient use of the AMP and
improve the throughput-fairness tradeoff for a wider range of workloads. Overall,
these benefits are especially pronounced for workloads including multithreaded
programs. In this scenario, Prop-SP is able to match the performance of HSP
and CAMP for 3STH-1HPH, 1PSH-1PSL and 1PSH-1HPH, while performing in
a close range for the remaining application mixes. At the same time, it achieves
much lower unfairness numbers than HSP and CAMP across the board and
exhibits comparable unfairness to A-DWRR and RR. Moreover, we observe that
the inacuracies of the SF estimation model used by Prop-SP (dynamic), do not
prevent it from reaping benefits similar to those of the static version.

5 Related Work

A large body of work has advocated the benefits of AMPs over symmetric
CMPs [13,12,9]. Despite these benefits, AMP systems pose significant challenges
to the system software [15]. OS scheduling is one of the most critical challenges,
and this is the focus of our paper.

Most existing asymmetry-aware schedulers strive to optimize the system
throughput. Schedulers targeting workloads consisting of single-threaded pro-
grams only [13,3,11,21,18] aim to maximize throughput by running on fast cores

336 J.C. Saez et al.

those applications with a higher SF. To maximize throughput in workload sce-
narios including multithreaded programs, the amount of thread-level parallelism
(TLP) in the applications must be taken into account. In this scenario, some
schedulers make use of fast cores in the AMP as accelerators for serial execu-
tion phases in parallel applications [18,19,10]. These schemes, however, do not
attempt to ensure fairness. In our proposal, the OS-level scheduler acts as a
global arbiter that delivers fairness by adjusting the fast-core share allotted to
the various programs in multiapplication scenarios.

To the best of our knowledge, A-DWRR [15] is the first scheduler aiming to de-
liver both fairness and priority enforcement on asymmetric single-ISA multicore
systems. Unlike Prop-SP, A-DWRR does not take into account that applica-
tions derive different speedups when using fast cores in the platform and that
these speedups may vary over time. Moreover, A-DWRR performs CPU-time
allocation on a per-thread basis rather than on a per-application basis. As our
experimental results reveal, these factors may lead A-DWRR to degrading the
system throughput significantly and prevent this scheduler from ensuring an
even slowdown for equal-priority applications on AMPs, especially when multi-
threaded applications are present in the workload.

6 Conclusions

In this paper we proposed Prop-SP, a scheduler that aims to improve the bal-
ance between fairness and throughtput on asymmetric multicores. To make this
possible, Prop-SP exploits the diversity in the fast-core efficiency of a workload
to even out the slowdown experienced by simultaneously running applications
(based on their priorities) when sharing the fast cores of an AMP. We imple-
mented Prop-SP in the Solaris kernel and compared it against several state-
of-the-art asymmetry-aware schedulers. Our experiments reveal that Prop-SP
is able to make efficient use of the AMPs and improve the throughput-fairness
tradeoff for a wider range of workloads. The benefits of the Prop-SP policy are
especially pronounced for workloads including multithreaded programs.

Key elements for the success of Prop-SP are the credit-based mechanism en-
abling the scheduler to adjust the fast-core share allotted to the different pro-
grams and its reliance on estimation models to approximate application speedup
online. As shown in previous work [19], asymmetry-aware schedulers relying on
SF estimation models, such as Prop-SP, can be seamlessly extended to differ-
ent forms of performance asymmetry. Evaluating Prop-SP on cutting-edge AMP
prototypes [5] is an interesting avenue for future work.

Acknowledgements. This work has been supported by the Spanish govern-
ment through the research contract TIN2012-32180 and the HIPEAC? European
Network of Excellence.

Exploring the Throughput-Fairness Trade-off on AMPs 337

References

1.

2.
3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Alameldeen, A.R., Wood, D.A.: IPC considered harmful for multiprocessor work-
loads. IEEE Micro 26(4) (2006)

ARM: Benefits of the big. LITTLE Architecture (2012)

Becchi, M., Crowley, P.: Dynamic Thread Assignment on Heterogeneous Multipro-
cessor Architectures. In: Proc. of CF 2006, pp. 29-40 (2006)

Cherkasova, L., Gupta, D., Vahdat, A.: Comparison of the three CPU schedulers
in Xen. SIGMETRICS Perform. Eval. Rev. 35(2), 42-51 (2007)

Chitlur, N., et al.: QuickIA: Exploring heterogeneous architectures on real proto-
types. In: Proc. of HPCA 2012, pp. 1-8 (2012)

Ebrahimi, E., et al.: Fairness via source throttling: a configurable and high-
performance fairness substrate for multi-core memory systems. In: ASPLOS 2010
(2010)

Eyerman, S., Eeckhout, L.: System-level performance metrics for multiprogram
workloads. IEEE Micro 28(3) (2008)

Gabor, R., Weiss, S., Mendelson, A.: Fairness and throughput in switch on event
multithreading. In: Proc. of MICRO 2006 (2006)

Hill, M.D., Marty, M.R.: Amdahl’s Law in the Multicore Era. IEEE Com-
puter 41(7), 33-38 (2008)

Joao, J.A.| et al.: Utility-based acceleration of multithreaded applications on asym-
metric CMPs. In: Proc. of ISCA 2013, pp. 154-165 (2013)

Koufaty, D., Reddy, D., Hahn, S.: Bias Scheduling in Heterogeneous Multi-core
Architectures. In: Proc. of Eurosys 2010 (2010)

Kumar, R., et al.: Single-ISA Heterogeneous Multi-Core Architectures: the Poten-
tial for Processor Power Reduction. In: Proc. of MICRO, vol. 36 (2003)

Kumar, R., et al.: Single-ISA Heterogeneous Multi-Core Architectures for Multi-
threaded Workload Performance. In: Proc. of ISCA 2004 (2004)

Kwon, Y., et al.: Virtualizing performance asymmetric multi-core systems. In: Pro-
ceedings of ISCA 2011 (2011)

Li, T., et al.: Operating system support for overlapping-ISA heterogeneous multi-
core architectures. In: HPCA 2010, pp. 1-12 (2010)

Mutlu, O., Moscibroda, T.: Stall-time fair memory access scheduling for chip mul-
tiprocessors. In: Proc. of MICRO 2007 (2007)

Pousa, A., et al.: Theoretical study on the performance of an asymmetry-aware
round-robin scheduler. TR - 5028A. Dept. of Computer Architecture. UCM (2012),
https://artecs.dacya.ucm.es/sites/default/files/dacya-tr5028A.pdf

Saez, J.C., et al.: A Comprehensive Scheduler for Asymmetric Multicore Systems.
In: Proc. of ACM Eurosys 2010 (2010)

Saez, J.C., et al.: Leveraging core specialization via OS scheduling to improve
performance on asymmetric multicore systems. ACM TOCS 30(2) (April 2012)
Saez, J.C., et al.: Delivering fairness and priority enforcement on asymmetric mul-
ticore systems via OS scheduling. In: Proc. of ACM SIGMETRICS (2013)
Shelepov, D., et al.: HASS: A Scheduler for Heterogeneous Multicore Systems.
ACM SIGOPS OSR 43(2) (2009)

https://artecs.dacya.ucm.es/sites/default/files/dacya-tr5028A.pdf

	Exploring the Throughput-Fairness Trade-off on Asymmetric Multicore Systems
	1
Introduction
	2
Motivation
	3
The Prop-SP Scheduler
	3.1
The Algorithm
	3.2
Determining the Speedup

	4 Experimental Evaluation

	5
Related Work
	6
Conclusions
	References

