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Abstract Despite the research dedicated to under-

stand the potential climate change impacts on crop-

ping systems, little attention has been given to

potential effects on the geographic range of agricul-

tural weeds. This paper reviews some biological and

eco-physiological features of Sorghum halepense

populations and their current and potential spread in

a central eco-region of Argentina. Above ground

biomass accumulation of the weed shows very high

accumulation rates, which in the case of rhizomes is

boosted as the available resources in propagule

increases. An increase in temperature by 15 % may

increase the relative growth rate (RGR) by 50 % in a

20–90 days growth period. Not only biomass output

but also biomass allocation is directly related to

adaptation in changing environments. Populations

adapted to limited water conditions are able to

maintain a higher RGR under water restriction as

compared to those adapted to more humid conditions.

Regarding the temperature, climate models are

coincident: a range of increase from 0.9 �C in the

south to 1.4 �C in the north of Argentina is predicted

for 2020–2040, as compared to the period 1961–1990.

Concerning the rainfall, not yet a prediction but a real

fact is the displacement of isohyets from east to south.

The average frequency of the weed in the pool of fields

recently surveyed in the central region was 37 %,

which increased to 42 % in the field borders. We

consider that this frequency is high, since all crop

fields are managed with high technology level and

herbicides have been applied not only during the crop

cycles, but also in previous fallows. The high RGR and

other physiological features of weed populations at

low water availability, which is more frequent in the

west of the surveyed region where the frontier of

extensive crops have recently displaced, may explain

higher frequencies found. Well-adapted S. halepense

populations invading rainfed crops in this eco-region

will likely to take advantage under the forthcoming

forecasted climatic conditions. Since temperatures

increase from east to west as shown in climograms, S.

halepense populations will likely perform even better

under the new climate conditions. Coupling the actual

management to physiological traits, it is envisaged an

increase of the weed frequency in the surveyed eco-

regions.
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1 Introduction

The global climate is changing and temperature and

CO2 level are considered the major drivers of climate

change, with increasing attention being given to its

impact on agricultural production systems and weeds

(Mc Donald et al. 2009). For crop-weed competition,

many experiments characterize the effects of elevated

ambient CO2 on comparative physiology and growth

(Ziska 2003). Variation in any factor such as CO2,

temperature, water, or nutrient availability which

affects plant growth can also affect weed/crop inter-

actions. Of particular importance are factors that

differentially affect weeds and crops (Patterson 1995).

Despite the research dedicated to understand the

impacts of potential climate change in cropping

systems, little attention has been given to the potential

effects on the geographic range of agricultural weeds

(Mc Donald et al. 2009). Some progress has been

made in the understanding of pest (weeds, insects,

pathogens) response to climate change, in several

cases consistent with climate trends. According to Mc

Donald et al. (2009), Sorghum halepense, a predom-

inantly Southern U.S. weed species at present, may

become common and affect maize production with its

damage niche advancing 200–600 km north of its

present-day distribution. The same type of warning

was done for S. halepense in Austria by comparing

systematic records since 1990 (Follak and Essl 2012).

Sorghum halepense (L. Pers.), a worldwide weed

that can cause severe yield reductions in summer crops

and invades extensive areas of the world, is a perennial

C4 grass native to Eurasia that reproduces via

rhizomes and seeds and is also known as Johnson

grass (Warwick and Black 1983). It was introduced as

a forage crop in the southern United States of America

in the 1800s and in the early 1900s with the same

purpose in Argentina. In general, this weed is best

adapted to warm and humid conditions of subtropics

and new ecotypes have emerged with an array of

differences between populations, such as increased

seed weight, seedling growth, flowering and resource

allocation to rhizomes enabling weed expansion in

new areas (Warwick et al. 1984). Although highly

selfing, the genetic variation needed for the shifts in

the ecology of Johnson grass populations may be

provided by the existence of cross pollination and also

by the introgression from domesticated sorghum

(Sorghum bicolor L. Moench.) (Warwick et al.

1984), illustrating yet another mechanism by which

weed species gain selective advantages in association

with agriculture. Under favorable Argentinian cli-

matic conditions in the spring, rhizomes surviving the

winter from previous season provide buds for renewed

growth: secondary extensions from the original rhi-

zomes reach the surface generating a crown and new

tillers. The tillers produce new rhizomes during the

summer, which in turn provide new buds for weed re-

growth in the following spring (Oyer et al. 1959;

Keeley and Tullen 1979). Each tiller produces an

open-lax panicle and up to 350 seeds may be formed in

a panicle, depending on the ecotype (Horowitz 1973;

Ghersa et al. 1985). There has been extensive research

on anatomy, biology, physiology and chemical control

of S. halepense, as reviewed by McWhorter (1989).

Information at population level allows robust models

to be built, a valuable tool to understand how and why

the weed persists and so to design improved manage-

ment practices (Cousens and Mortimer 1995). It is at

the population level that this weed is being studied

since 1979 under the agroecosystems of Argentina

(Leguizamón 1983, 1999, 2003; Leguizamón et al.

1986).

The rapid response of weeds to environmental

changes may represent a competitive advantage over

less aggressive species, including other weeds and

crops. The impacts of climate change on single species

and ecosystems are likely to be complex, as weeds

have rapid dispersal and establishment, invading new

areas and increase their environmental range. This

ability to occupy new areas can be attributed to

evolutionary adaptation of some weed populations

occurring in areas experiencing warmer and/or more

humid climates.

This paper reviews some biological and eco-

physiological features of populations of Sorghum

halepense, considering its potential spread in a central

eco-region of Argentina. We summarized the pattern

of dry matter accumulation of the weed comparing

three plant densities originated in rhizomes, and the

influence of a crop (soybean) and soil management.

While we describe differences in the accumulation

pattern due to the ‘‘initial capital’’ of seeds and

rhizomes we use data to parameterize an expo-lineal

competition model for predicting the effects of

changes in temperature and light. We also show the

relative growth rate (RGR) and leaf gas exchange in

populations that are presumable adapted to different
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climate conditions. The weed frequency in field crops

and margins growing in a central area of the country is

also presented. Finally, prospects for its spread in the

forthcoming decades within the global warming

scenario are presented in the selected eco-region,

where we also comment the potential use of remote

sensing techniques to predict the risk of invasion in

new areas.

2 Pattern of above-ground dry matter

accumulation

In field experiments, three initial rhizome densities of

the weed (3, 30 and 300 g m-2, thereafter named as

low, medium and high, respectively) were settled in

randomized four replicates blocks, which included the

weed in monoculture and also with soybean plants

(maturity group, MG VI) sown at 0.7 m between rows.

Considering the thermal time (growing degree

days, GDD) accumulated above 15 �C, several har-

vests were made along the period 0–1,400 GDD

(Fig. 1). The above-ground pattern of weed dry weight

dynamics was modeled using a third order polynomial,

as follows (Leguizamón 2003; Leguizamón,

unpublished):

y ¼ a þ b �HTþ c �HT2 þ d �HT3 ð1Þ

where y represents the accumulated above-ground

biomass (g m-2) at any thermal time (HT), a, b, c and

d are parameters.

In each weed density, models depict three distinc-

tive periods: before 180–220 GDD above ground

biomass (shoot and tillers) is very low, time in which

the weed is more sensitive to herbicides (Satorre et al.

1985; Vitta and Leguizamón 1991). From 180 to

900-1100 GDD, biomass accumulation increases up

to its maximum (1200, 960 and 460 g m-2 in high,

medium and low densities, respectively) in parallel to

RGR decrease from 0.266 to 0.055 g g-1 day-1.

From 900-1100 to 1400 GDD, RGR is negative,

denoting the exportation of photosynthates to subter-

ranean structures that ensure sustainability: the rhi-

zomes. Generation of new rhizomes (tertiary) starts by

180–220 GDD. At any weed density, the maximum

above-ground weed biomass was significantly

decreased (30 %) by the crop (not shown). Differences

in above-ground growth rate due to initial propagule

type and characteristics have been studied by Lolas

and Coble (1980a, b) and Leguizamón (1997, 1999).

The RGR during the 0–900 GDD period increases

from 0.085 to 0.548 g g-1 day-1 as rhizome length

increases from one to nine nodes (or 3–25 mm length,

Table 1). As seen, above-ground biomass accumula-

tion of the weed is very high, which in the case of

rhizomes, is boosted as the available resources in

propagule increases. Also, soybean competition may

substantially reduce weed biomass, which may be

enhanced if the time to reach crop critical leaf area is

shortened (e.g.: improving spatial arrangement by

reducing distances between rows and/or selecting

proper cultivars according to sowing date).
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Fig. 1 Sorghum halepense above-ground (shoots ? tillers)

biomass accumulation pattern at three initial population

densities in monoculture. Models statistically differ at p \ 0.05

Table 1 RGR of Sorghum halepense above-ground biomass

of plants originated in different propagules

Origin of the plant Source RGR

Seed Leguizamón 2003 (Exp. 1) 0.049

Seed Leguizamón 2003 (Exp. 2) 0.048

Seed Oyer et al. 1959 0.051

Seed Leguizamón 2003 (Exp. 3a) 0.072

Uninodal rhizome Leguizamón 2003 (Exp. 3a) 0.085

Short rhizome 40 mm Leguizamón 2003 (Exp. 3b) 0.182

Rhizome 25 mm Lolas and Coble 1980a, b 0.250

Long rhizome 100 mm Leguizamón 2003 (Exp. 3b) 0.258

Rhizome 100 mm Lolas and Coble 1980a, b 0.298

Rhizome 200 mm Lolas and Coble 1980a, b 0.325

Rhizome 250 mm Lolas and Coble 1980a, b 0.548
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3 Temperature and irradiance: assessing

variations on above-ground dry matter

accumulation in a simulation model

In several pot experiments, the above-ground biomass

accumulation pattern of plants originated from seeds

and rhizomes were determined in several harvests

after weed emergence and the data were used to

parameterize the expo-linear model by Scaife and

Morris (1987) and Benjamin and Park (2007). These

authors claim that the combined effects of temperature

and irradiance may be assumed as the sum of its

reciprocals, using an approach based on resistances of

an electric circuit. Thus, within certain limits, plant

growth (above-ground biomass accumulation) is pro-

portional to the reciprocal of temperature and irradi-

ance. The model was validated with independent data

and then used to simulate the effects on biomass

accumulation according to changes in temperature and

irradiance, which is influenced by plant density

(Leguizamón 2008):

r ¼ 1=wð Þ � dw=dtð Þ
¼ 1= 1= a � T� Tbð Þð Þ þ b � Ið Þð Þ ð2Þ

where r is the RGR (g g-1 day-1), w is the initial

weight (g pl-1), a is the conversion coefficient, T is the

actual daily temperature, Tb is the base temperature, b

is the conductance of r as related to irradiance

(g g-1 m-2 MJ-1), and I is the irradiance (MJ m-2).

The Eq. 2 may be improved by incorporating

factors affecting the proportion of intercepted irradi-

ance as the leaf area index (LAI), the light extinction

coefficient and plant density, as well as the radiation

use efficiency (RUE):

r ¼ 1=ð1= a T� Tbð Þð Þ þ ðb � U � IÞÞ ð3Þ
U ¼ 1� exp �n � K � SLð Þ=n � K � SLð Þ ð4Þ

where U is the efficiency of leaf area for irradiance

interception, n is plant density (plants m-2), K is the

light extinction coefficient, and SL is the leaf area per

plant (m2).

The light extinction coefficient accounts for differ-

ences in leaf angle and also its distribution within the

canopy; thus its inclusion in Eq. 4 makes the self-

shading function a proportion of irradiance intercep-

tion per unit ‘effective’ leaf area. The leaf area (SL)

was calculated with an allometric relationship as

follows:

SL ¼ F � wh ð5Þ

where F is an allometric constant, h is the relationship

among both variables (SL and K), and w is the plant

weight (g pl-1).

By 50 days after emergence, RGR of shoots origi-

nated in seeds is significantly higher than that of shoots

originated in rhizome (Fig. 2a). The estimates shown in

this figure are within the range presented in Table 1 and

also in accordance to those reported by Huntet al. (2002).

Figure 2b shows that above-ground accumulated bio-

mass increased as original rhizome length increased.

Predicted outputs of above-ground biomass, radiation

use efficiency (RUE) and RGR as affected by changes in

temperature, irradiance and weed density are shown in

Fig. 3. This figure shows simulated changes in plant

biomass when the base temperature increases by 15 %

(Fig. 3a), irradiance decreases by 25 % (Fig. 3b) and

weed density increases ten times (Fig. 3c), which in turn

affects RUE because of shading (Fig. 3d). An increase in

temperature by 15 % may increase the RGR by 50 % in

the 20–90 days growth period (Fig. 3e). Finally, we may

point out that not only biomass output but also biomass

allocation is directly related to adaptation to changing

environments (Lambers et al. 1998).

4 Relative growth rate and leaf gas exchange

of populations of different geographical origins

under two levels of soil water availability

In this section we explore if the variation in soil water

availability during the growth period modifies crucial
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Fig. 2 a RGR of above-ground biomass (shoots ? tillers)

originated in seeds (PL) and uninodal rhizome (RU), and

b above-ground biomass accumulation in plants originated in

seeds and uninodal (PL ? RU), short (RC-4 nodes) and long

(RL-10 nodes) rhizomes
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physiological processes in S. halepense populations

growing and presumably adapted to different climates.

Rhizomes were collected in three areas located in the

boundaries of an imaginary circle in the center of a

surveyed ample area (see Fig. 13): climograms of Rı́o

IV, Santa Rosa and Rojas are shown in Figs. 4, 5 and 6.

Rhizomes were planted in large pots and after appro-

priate establishment, plants where then submitted to

differential water availability in controlled conditions

(Acciaresi et al. 2012). For the purpose of this paper,

we only compare three populations under field capacity

(FC) and drought (DR). The multivariate analysis

demonstrated a significant effect of population origin

and water level along the period studied (21–46 days

after weed emergence) on RGR and leaf gas exchange.

Under FC conditions, the population collected in a

more humid location (Rojas) exhibited higher RGR as

compared to that of populations collected in sub-

humid locations of Sta Rosa and Rı́o IV (Fig. 7a).

Under DR conditions, RGR decreased along the

period of study in all populations, but it was significant

lower in the population from the humid location

(Rojas) 30 days after emergence (Fig. 7b).

Plants of different origins maintained a steady-

constant leaf CO2 assimilation (A) under FC condi-

tions (Fig. 8a), which was significantly higher in the

population collected in the humid region (Rojas).

Under DR conditions, A showed a significant decrease

30 days after emergence (Fig. 8b).

As observed for RGR and A, the stomatal conduc-

tance (gS) and transpiration (E) were higher in the

population of humid region along the whole period of

study when grown in FC conditions (Figs. 9a, 10a),

but significant decreases were noticed 30 days after

emergence under DR conditions (Figs. 9b, 10b).

It has been experimentally demonstrated that pop-

ulations adapted to limited water conditions (Rı́o IV

and Sta Rosa) are able to maintain higher RGR as

compared to that adapted to more humid conditions

(Rojas) under water restriction. Soil available water

provided by rainfall is crucial in the rainfed production

systems where extensive crops are cultivated in

Argentina, a feature that is magnified as the cultivated

area expands to the west. Climograms shown in Figs. 4,

5 and 6, illustrate differences in climate conditions (e.g.

rainfall) that may be encountered in each location.

In many plants species, the fluctuation of soil water

availability along the crop cycle affects not only

growth, but also biomass allocation and crop produc-

tivity. Different traits have been related to the

tolerance to water deficit, such as an increased density

of root system, the maintenance of root elongation

with decreased soil water availability (Acciaresi and

Guiamet 2010), the ability to maintain stomata opened

under low leaf water potential (Geddes et al. 1979;

Stuart et al. 1985; 1987; Patterson 1995; Leguizamón

et al. 2011; Acciaresi et al. 2012), osmotic adjustment
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Fig. 3 a Simulated changes in the above ground biomass when

base temperature increased by 15 % (Eq. 2); b by 25 % (Eq. 3);

c changes in weed density (=109) (Eq. 4); d simulated effect of

two weed densities on RUE (Eq. 4); and simulated effects of

changes in temperature on daily RGR (Eq. 2)
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(Stuart et al. 1985; Hsiao and Xu 2000) and also the

ability to decrease RGR and reproduction (Ray et al.

1997; Ray and Sinclair 1997). It has also been reported

that under a situation of water competition, several

weeds make wasteful water consumption (‘‘luxury

consumption’’, Patterson 1995), a response related to

the physiological behavior of the stomata, being less

sensitive to low leaf water potential as compared to

that of the crops (Scott and Geddes 1979; Geddes et al.

1979; Patterson and Flint 1983; Patterson 1995).

Stuart et al. (1985) determined that S. halepense grown

in monoculture was able to maintain high photosyn-

thesis rates (ca. 40 lmol CO2 m-2 s-1) and stomatal

conductance (0.48 mol H2O m-2 s-1) even when leaf

water potential was -1.6 MPa. When the weed grew

in competition with different corn genotypes, stomatal

conductance was maintained at 0.099 mol

H2O m-2 s-1 and photosynthetic rate at 17.5 lmol

CO2 m-2 s-1 even under leaf water potential of

-2.6 MPa, This indicates that S. halepense is highly

capable of an active gas exchange and also to maintain

photosynthesis even under water deficit.

Fig. 4 Climogram of Rı́o

IV (33�080S 64�210W).

http://es.climate-data.org/

location/1905/ Driest month

is July, 14 mm rainfall.

December is the most humid

month: 132 mm. Accumu-

lated annual rainfall is

809 mm. Hottest month is

January (23.6 �C). Coldest

month is June (9.9 �C).

Axes Y1: temperature in �F

and �C, Y2: rainfall (mm).

X: months of the year

Fig. 5 Climogram of Santa

Rosa (36�370S64�170W).

http://es.climate-data.org/

location/1919/). Driest

month is July, 18 mm rain-

fall. December is the most

humid month: 87 mm.

Accumulated annual rainfall

is 642 mm. Hottest month is

January (23.4 �C). Coldest

month is June (7.7 �C).

Axes Y1: temperature in �F

and �C, Y2: rainfall (mm).

X: months of the year
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Fig. 6 Climogram of Rojas

(34�120S 60�440W). http://

es.climate-data.org/

location/1907/. Driest

month is July, 39 mm rain-

fall. March is the most

humid month: 128 mm.

Accumulated annual rainfall

is 956 mm. Hottest month is

January (23.3 �C). Coldest

month is July (9.8�C). Axes

Y1: temperature in 8F and

8C, Y2: rainfall (mm). X:

months of the year
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Fig. 7 RGR of S. halepense populations: Rı́o IV (R.IV), Santa

Rosa (SR) and Rojas (Rj), 21 days after emergence under a FC

and b DR. Redrawn from Acciaresi (2008)
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Fig. 8 Photosynthetic rate of S. halepense populations: Rı́o IV

(R.IV), Santa Rosa (SR) and Rojas (Rj) 21 days after emergence

under a FC and b DR. Redrawn from Acciaresi (2008)
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5 Argentina climate: present situation

and prospects for the agriculture in the global

change summit

Regarding temperature, climate models are coinci-

dent: an increase from 0.9 �C in the south and

1.4 �C in the north of Argentina is predicted for

2020–2040, as compared to the period 1961–1990

(Fig. 11a). Although prospects for rainfall are var-

iable, they are consistent on predicting that minor

changes will occur (Fig. 11b) and extreme events

(high frequency rainfalls) are likely to increase.

Following the analysis of the vulnerability of the

agricultural production and the scenario with

increased temperatures and similar rainfalls, yields

of wheat and corn may be penalized in the north of

the country, but they may be boosted in the south.

On the other hand, soybean yields may be benefited

in both areas (Convención Marco de las Naciones

Unidas sobre el cambio climático 2007).

Concerning the rainfall, not yet a prediction but a

real fact is the displacement of isohyets from east to

south, thus increasing the water availability, a crucial

factor defining the potential yield of crops (and also

weeds), in the central plains of Argentina where

extensive rainfed crops are cultivated (Fig. 12).

6 A survey on the frequency of weed

During 2011–2012 a weed survey was performed in

several Eco-regions of central Argentina requested

and supported by the National Service of Food

Security (SENASA). Inventories also included field

borders. Extra points were added along borders in

significant roadways. Census included ten samples of

10 m2 in each one of selected fields cultivated with

extensive crops (wheat, soybean, sunflower, corn and

lucerne) (Leguizamón et al. 2011). For the purpose of

this paper, pooled frequency of all S. halepense data
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Fig. 9 Stomatal conductance of S. halepense populations: Rı́o

IV (R.IV), Santa Rosa (SR) and Rojas (Rj) 21 days after

emergence under a FC and b DR. Redrawn from Acciaresi

(2008)
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Fig. 10 Transpiration rate of S. halepense populations: Rı́o IV

(R.IV), Santa Rosa (SR) and Rojas (Rj) 21 days after emergence

under a FC and b DR. Redrawn from Acciaresi (2008)
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were interpolated and mapped by using GIS software

(Surfer, Golden Software Inc. 2000). The grid was

created by using the inverse median distance as the

interpolation method (Fig. 13). In the center, an

imaginary circle has been drawn by using the three

locations where populations of the weeds were

collected to test physiological traits (previous section)

as boundaries. It may be seen that interpolated

Fig. 11 Predicted annual mean a air temperature (�C) mean b rainfall (mm) changes in period 2020–2040 as compared to 1961–1990

Fig. 12 West displacement

of isohyets. Light grey

(1950–1969), dark grey

(1980–1999) isohyets
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frequencies clearly increase from the South-East

(frequency boundary = 10) to the Northwest (fre-

quency boundary lines = 20, 30, 40).

The average frequency of the weed in the pool of

fields was 37 %, which increased to 42 % in the

borders. We consider that this frequency is high, since

Fig. 13 Frequency of S. halepense in central region of

Argentina (data from a survey made in December 2010–

February 2011). Tiny points indicate sampling areas. Note that

the frequency boundaries increases from the southeast (10 %) to

the north and northwest (30–40 %). The populations to test

physiological traits under two levels of water availability were

collected in the boundaries of an imaginary circle drawn in the

center of this ample area
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all crop fields are managed with high technology level

and herbicides have been applied not only during the

crops cycles, but also in previous fallows. The high

RGR and other physiological features of weed popu-

lations at low water availability, which is more

frequent in the west of the surveyed region where

the frontier of extensive crops have recently displaced,

may explain the higher frequencies found in the

northwest surveyed area.

6.1 Prospects

Characteristics of Johnson grass that aid in its fast

colonization and spread include: (a) high RGR even

under water restriction, and rapid formation of dense

rhizomes that host meristematic tissue responsible for

regenerating new plants (Anderson et al. 1960;

Leguizamón 2003), (b) moderate to high drought

resistance coupled with luxury water consumption

(Anderson et al. 1960; Acciaresi et al. 2012), which

give competitive advantages; (c) salt tolerance (Yang

et al. 1990); (d) abundant seed production with seeds

that remain viable for 2–5 years prior to germination

(Leguizamón 1986; Allen 1990); (e) possible produc-

tion of toxins that are allelopathic (Warwick and Black

1983; Acciaresi and Asenjo 2003); and (f) several

post-dispersal mechanisms associated with anthropo-

genic causes (irrigation water disperse the seeds and

harvest machinery and farming equipments re-dis-

perse seeds, Scopel et al. 1988), grazing animals

(Ghersa et al. 1993; Hartzler et al. 1991) and also as

contaminant in commercial seeds (Allen 1990). Once

dispersed, complementary strategies of both propa-

gules (seeds and rhizomes) take advantage of open

niches and available resources and colonize very soon

the areas.

Many efforts are underway to predict changes in the

distribution of invasive plants under climate change

(Kriticos et al. 2007; Mc Donald et al. 2009) but

relatively few of these accounted for the eco-physio-

logical characteristics of the species populations.

Approaches to predictive modeling such as CLIMEX,

utilize climate data for an invasive plant to its home

range or known range, and map these parameters on to

new potential ranges. These models can predict

changes in weed distribution under climate change

by developing scenarios based on increased temper-

atures and/or other climatic parameters (Mc Donald

et al. 2009). CLIMEX models have provided

numerous useful predictions on the spread of invasive

plants, including attempts to predict changes in weed

distribution due to warmer temperatures and other

climatic alterations predicted by climatic change

models (Pattison and Mack 2008).

Well adapted S. halepense populations invading

rainfed crops in eco-region V will likely to take

advantage under the forthcoming climatic change

conditions, since prospects forecast increasing tem-

peratures and isohyets show an actual displacement to

the west. Since temperatures increase from east to

west as it has shown in climograms (Figs. 4, 5, 6). S.

halepense populations will likely perform even better

under the new conditions. Coupling the actual man-

agement to physiological traits in the selected sce-

nario, it is envisaged an increase of the weed

frequency in the eco-regions surveyed.

A further restriction for the prediction of spread is

that the default methodology when undertaking pre-

dictive exercises assumes plants as static entities.

Changes in weed distributions however, may often

reflect evolutionary changes and are likely related to

anthropogenic influences such as cropping practices

(Clements et al. 2004). For many years, it was thought

that weeds would not develop resistance to glyphosate

on a comparable scale to the insecticide resistance,

concerns that emerged in the 1950s and 1960s (Gressel

and Segel 1978). Now, however, glyphosate resistance

is worldwide spread (Heap 2013) and this is the case

for S. halepense in Argentina. A resistant biotype

appeared in 2006 (Vila-Aiub et al. 2007) in the

northeast of the country, but resistant biotypes are now

found in several Eco-regions. In a survey recently

made by REM-Aapresid (Rem-Aapresid 2012) more

than 200 cases of infested fields were reported only

within the limits of the circle of surveyed area. Thus,

weeds have a strong potential to evolve in the presence

of such an intense and widely imposed selection

pressure. Similarly, Baker’s (1965) suggested that

weed success was primarily due to possession of a

‘‘general-purpose genotype’’, and it denotes a strategy

that weeds utilize extensively in having genotypes that

allow a wide degree of phenotypic plasticity and an

adequate and sustained level of heterozygosity. There

are many examples of weed success due largely to

genetic change (Clements et al. 2004) and the

mechanisms of such alterations are often subtle

because large proportion of weeds is predominantly

selfing. Some of these mechanisms include occasional
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outcrossing within selfing populations, storage of

genetic variations in seed banks, and evolution of

phenotypic plasticity. Thus, the consideration of weed

evolution should lead to improved predictive power of

the models (Clements and Di Tommaso 2011, 2012).

A further approach that could improve quarantine/

prevention actions and models is the remote sensing.

Remotely sensed images have a number of features,

which make them ideal for predicting the area

enlargement of invasive species. Remote sensing

technologies look in the electromagnetic spectrum,

which allows better detection of vegetation at regional

scales that would be cost-prohibitive using ground-

based visits. The ability to detect invasive plants using

remotely sensed data has increased with improved

sensors, computer technology, and classification tech-

niques (Lass et al. 2005). Remotely sensed data can

also aid in developing spatially explicit predictive

habitat models and estimating distributional vectors

and pathways. This may provide land managers a

means to evaluate current and future weed control

needs. For example, a spatial distribution and risk

assessment of S. halepense has been modeled for the

Big Bend National Park (USA) by using remotely

sensed and GIS data. Models can represent an early

detection tool to prioritize conservation efforts

(Young and Schrader 2007).
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