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Abstract. Robe's restricted three-body problem is reanalyzed with a view to incorporate a new 
assumption, namely that the configuration of the fluid body is that described by an hydrostatic 
equilibrium figure (Roche's ellipsoid). In the concomitant gravitational field a full treatment of the 
buoyancy force is given. The pertinent equations of motion are derived, the linear stability of the 
equilibrium solution is studied and the connection between the effect of the buoyancy forces and a 
perturbation of the Coriolis force is pointed out. 
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1. Introduction 

A new kind of restricted three-body problem that incorporates the effect of buoy- 
ancy forces was introduced by Robe in 1977. He regards one of the two principal 
bodies as a rigid spherical shell of mass ral, filled with an homogeneous incom- 
pressible fluid of density Pl. The other one is a point mass m2 located outside the 
shell. The particle of negligible mass (third body) has density/93 and moves inside 
the shell under two influences: (a) the gravitational attraction of the principal bod- 
ies and (b) the buoyancy force of the fluid Pl. The Robe model may provide some 
insight into the problem of small oscillations of the earth's core in the gravitational 
field of the earth-moon system. 

Robe considered two situations (1) that in which m2 describes a circular orbit 
around the shell and (2) the case of elliptical orbits for m2, assuming the shell 
empty (i.e. Pt = 0) or the densities Pl and P3 to be equal. In both instances the 
center of the shell is an equilibrium point for the third body, which led him to study 
the conditions for its linear stability. 

Shrivastava and Garain (1991) studied the effect of a small perturbation in 
the Coriolis and centrifugal forces on the location of the equilibrium point. They 
considered the circular case with equal densities (Pl = P3) and evaluated the 
concomitant shift in the location of the equilibrium point. 

In deriving the expression for the buoyancy force E, both Robe (1977) and 
Shrivastava et al. (1991) assumed that the pressure field of the fluid Pt has spherical 
symmetry around the center of the shell, in accordance with its assumed spherical 
shape. However, they took into account just one of the three components of the 
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pressure field: that due to the own gravitational field of the fluid Pl itself The 
remaining two contributions are: (1) that originating in the attraction of m2 and 
(2) that arising from the centrifugal force. These, in tum, give raise to additional 
components of the buoyancy force. (Notice that the component due to the attraction 
of mz lacks spherical symmetry.) 

The purpose of the present effort is precisely that of studying the effect of these 
two contributions in connection with the dynamics of Robe's model. To this effect, 
we shall consider that the fluid body ml adopts the shape of an ellipsoidal figure of 
hydrostatic equilibrium, specifically, a Roche's ellipsoid (Chandrasekhar, 1987). 
By recourse to the analytical expressions that obtain for the pressure field in this 
situation, a full account of the effects of the buoyancy forces can be given. 

The pertinent equations of motion will be discussed in Section 2, while the 
important case Pl = P3 is considered in Section 3. Section 4 deals with the 
stability of the equilibrium point. The relation between the buoyancy force acting 
on a small particle moving in a uniformly rotating fluid in hydrostatic equilibrium 
and perturbations in the Coriolis force is addressed in Section 5. Finally, some 
conclusions are drawn in Section 6. 

2. Equations of Motion 

In what follows we will take that the primary ml is described by a Roche ellipsoid. 
Since one deals here with an equilibrium figure, there is no need to assume the 
existence of a rigid outer shell. According to the framing of Roche's problem, we 
suppose that the primary ml describes a circular orbit around the secondary To. 2 in 
such a way that the concomitant relative configuration remains unchanged. 

In order to fix the notation let R stand for the distance between the centers of 
mass of the primaries, while f~ denotes the constant angular velocity of rotation 
about their common center of mass. Adopt a uniformly rotating coordinate system 
Oxlx2x3, with origin at the center of mass of ml,  O X l  pointing towards m2 and 
Oxlx2 being the orbital plane of mz around ml.  

Assume for the angular velocity ft the 'Keplerian' value 

~-~2 = G(ml + m2) 
R3 (1) 

If in the Taylor expansion of the gravitational potential due to rnz, only terms 
up to second order in xi are retained, the hydrodynamical equations in the rotating 
frame read (Chandrasekhar, 1987) 

Pl dui/dt = -OP/Ozi  + pl(O/Ozi) 

[ ( 1 l x2)] laZ(zl2+X~)+# :c 2 - ~ x 2  2 -  x B+g 

+2pl~eil3Ul, (i = 1,2,3) (2) 
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where ui are the components of the fluid velocity field in the rotating frame, P is 
the pressure field, B stands for the gravitational potential due to the fluid mass, and 
# is given by 

# = G m z / R  3. (3) 

For hydrostatic equilibrium, Equations (2) can be recast in the simple fashion 

V B + ~ I  f~2(x2+x2 ) + #  Xl 2 _ 2  2 - =0 .  (4) 

Roche's ellipsoids constitute solutions to Equation (4). They are ellipsoidal figures 
with semiaxes al, a2 and a3 parallel, respectively, to the coordinates Oxl ,  Ox2, 
and Ox3. The semiaxes ai verify the following relations (Chandrasekhar, 1987) 

[(3 + p)a 2 + a~]#* = 2[A,a 2 - A3a2], (5) 

[pa 2 + a~]#* = 2[Aza 2 - A3a~], (6) 

where 

p = m l / m 2 ,  (7) 

and 

#* = (8) 

while the quantifies Ai are given by 

OO 

f (i = 1,2, 3), (9) 
du 

Ai = alaza3 A(a  2 + u) ' 
0 

with 

A 2 = (a 2 + u)(a 2 + u)(a 2 + u). (lO) 

With these definitions, it is plain from Equations (1) and (3) that 

a 2 = (1 + p)#. (11) 

The potential B at an internal point xi of the homogeneous ellipsoid is given 
by 

B = 7 r G p , ( I -  A , x  2 -  A2x 2 -  A3x2), 

where I stands for 

I = a2A1 q.-aZAz + aZA3. 

(12) 

(13)  
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Our interest lies in describing the motion of a small mass m3 (m3 << ml,2) 
within the Roche ellipsoid. This small mass moves under the influence of three 
forces (per unit mass of the affected particle): 

(1) The attraction of the fluid p~ 

grad B, (14) 

(2) the gravitational field due to the point mass m2 

' 
grad { #Rx~ + tt (x2~ - ~ x2 - ~ (15) 

where, for the sake of consistence with the above description of hydrostatic equi- 
librium, only terms up to second order have been kept, and 

(3) the buoyancy force E arising in the fluid Pl. 
In order to obtain the expression for the buoyancy force E, we must consider 

the pressure field inside the fluid, assumed to be in hydrostatic equilibrium in 
the rotating reference frame. From elementary hydrostatics it is known that the 
buoyancy force acts on a small body of volume V according to 

E* = - V  grad P, (16) 

so that the buoyancy force per unit mass is 

E * 

E -- (17) 
Vp3 ' 

and, keeping Equation (4) in mind, 

{ ( 1 lx2)}  (18) 1 Q2(x 2 + x 2  ) + #  x 2 _ 2 x 2 _ 2  . E = -(Pl/P3)V B + 

The combined action of the forces given by (14), (15), and (18) upon our small 
particle can be expressed with the help of the potential 

{ ( 1 1 2) ) 
. = 

[ l ~2(x21+x~)+#(x2- 1-~ -~lx~)} . (19) 
- ( p , / p 3 )  t B  + - 

Regarding the total mass of the primaries, m, + m2, as the unit of mass, and 
selecting the units of time and length in such a way that ~2 = 1, and R = 1, the 
quantity # of Equation (3) becomes numerically equal to the ratio m2/(ml + m2) 
so that (cf. Equation (7)) 

= (1 + p ) - l ,  (20) 
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and Newton's gravitational constant equals unity. With this choice of units, the 
equations of motion for m3, which are the focus of our concern, adopt the appear- 
a n c e  

d2xl /dt  2 - 2 dx2/dt = OU/Oxl, 

d2x2/dt 2 + 2 dx l /d t  = OU/Ox2, 

d2x3/dt 2 = OU/Ox3, 

where 

U 

(21) 

(22) 

(23) 

1 
= v + - + 

{ 1 (x2 21x2  2 1 x 2 ) + ~ } ' ( 2 4  ) = ( 1 - p l / P 3 )  B + ~ ( x  2 + x  2 ) + #  - - 

The equations of motion (21)-(23) can be recast in the convenient fashion 

dZxl/dt  z - 2 dx2/dt = D[1 + 2# - C1]xl, (25) 

d2x2/dt 2 + 2 dx l /d t  = D[1 - # - C 2 ] x 2 ,  (26) 

d 2 x 3 / d t  2 = D [ - #  - C 3 ] x 3  , (27) 

Pl (28) 
P3 

2( rcG pl ) A i 

= 2(#/#*)Ai ,  i = 1,2,3. (29) 

w h e r e  

D = I - - -  

and 

C'i= 

Notice that #* and the ratio a2/al are determined by Equations (5) and (6) as a 
function of the input datap (or #) and a3/al. These two ratios allow one to evaluate 
the Ai and a posteriori the Ci. Summing up, the whole dynamics of our problem 
is characterized by just three adimensional figures, namely, p, D, and a3/al. 

3. The Case p~ = Pa 

We consider here that special instance (discussed by Robe (1977) and Shrivas- 
tava et al. (1991)) in which the small particle and the fluid have equal densities. 
The concomitant equations of motion adopt the form 

d2xl /dt  2 - 2 dx2/dt = 0, (30a) 
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d2x2/dt 2 -q-2 d x l / d t  = O, 

d E x 3 / d t  2 : O, 

so that their integration yields 

xl = a cos(2t + 7) +/3, 

x z  = - a  sin(2t + 7) + 5, 

x3 = e t  + X, 

(30b) 

(30c) 

(31a) 

(31b) 

(31c) 

where ce,/3, 5, 7, e, and X are integration constants. 
It is worthwhile to point out that all triplets (2:1, X2,  X3) are equilibrium points 

of the equations of motion (30). This fact has a simple interpretation: as the fluid 
is assumed to be in hydrostatic equilibrium in the rotating frame, all the elements 
of the fluid remain at rest in that reference system. If the small particle has the 
same density as that of the fluid, it is indistinguishable from any of its elements. 
Thus, it will be in equilibrium everywhere. We see that in this instance the new 
terms in the buoyancy force have important effects in the behaviour of Robe's 
model. Notice that (1) neglecting the tidal deformation of the fluid body rnl due 
to the other primary mE and (2) ignoring the components of the buoyancy force 
arising from, respectively, the gravitational attraction of rn2 and the appropriate 
centrifugal forces (Robe, 1977; Shrivastava et  al., 1991), has the effect of making 
the center of the fluid the only  equilibrium point. It should be pointed out that, in 
Robe's original treatment, when there is no fluid inside the shell, i.e., when Pl = 0, 
the center is indeed the only equilibrium point. 

4. The Stability of the Equilibrium Point 

It is easy to verify that the center of ml  (of coordinates (0, 0, 0) is an equilibrium 
point of the equations of motion (25)-(27). It is then of some importance to study 
its stability. 

From Equation (27) one easily ascertains that the motion parallel to the x3 axis 
is stable when the small particle is denser than the medium (D > 0). The remaining 
Equations (25) and (26) admit solutions of the form 

Xl = ~ e Lt,  (32) 

X2 = 79 e Lt, (33) 

with L given by the biquadratic equation 

L 4 + [4 - 9 ( 2  + # - C1 - -  C2)]L 2 

+ D 2 ( 1 + 2 # - C 1 ) ( 1 - # - C 2 ) = 0 .  (34) 
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Setting S = L 2, we obtain 

1 { D ( O t  + Q2) - 4 + A1/2}, S l , 2  = 

where 
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(35) 

Q 1 = 1 + 2 # - C ~ ,  (36) 

Q2 = 1 - # - c2, (37) 

and 

A = (Q1 - Q2) 2D2 - 8(Q1 + Q2)D + 16. (38) 

It is plain from Equation (35) that 

$1 + $2 = D(Q1 + Q2) - 4, (39) 

and 

$1 $2 = D2QIQ2. (40) 

The equilibrium situation is a stable one if S1 and $2 are real and negative. 
Therefore we must have 

A > 0, (41) 

$1 + $2 < 0, (42) 

and 

S~ $2 > 0. (43) 

In what follows it is assumed that D is a positive number. This is tantamount to 
stating that the small particle is denser than the surrounding fluid. Since Ci > 0, it 
is easy to see that condition (42) is automatically fulfilled. 

In order to satisfy condition (43), the quantities Q1 and Q2 must have the same 
sign. We will now show that, within the present generalization of Robe's restricted 
three-body problem, those quantities are both negative. From (5), (20) and (29) we 
have 

1 [3+p+_(_.a3/al) 2 ] 
C1 = 1 - (A3/Al)(a3/al) 2 1 + p J 

1 (Aa /A1) (a3 /a l )  2 1 ~- 2~ -t- (~-~3/a1!2-] - l + p  ] 

> 1 + 2#. (44) 
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In a similar way we have (cf. Equations (4), (20) and (29)) 

1 Iv + (a3/ag 2 
C2 = 1 - (A3/A2)(a3/a2)2 L 1 + p 

= 1-(a3/A2)(a3/a2) 2 1 - # +  l + p  j 

> 1 - #. (45) 

From (44) and (45) it is clear that Q1 and Q2 are both negative. Thus, the stability 
conditions (42) and (43) are always fulfilled. This fact is independent of the value 
adopted by the small body's density P3- Let us now consider the remaining stability 
condition (41). It is plain that we have A > 0, since we assumed D > 0, and we 
have proved that Q1,2 < 0. Summing up, in this formulation of Robe's restricted 
problem, the equilibrium point is always stable. 

5. Relations between the Buoyancy and the Coriolis Forces 

Let us consider now the general situation of a small body of density P2 that moves 
within a fluid mass of constant density P l. The fluid is supposed to be in hydrostatic 
equilibrium in an uniformly rotating frame. If f~, ~b, and P denote, respectively, 
the angular velocity of rotation, the gravitational potential, and the pressure field, 
hydrostatic equilibrium entails (we assume the z axis parallel to the rotation axis 
and its origin fixed in an inertial system) 

V[~f~2(cc2Wy2)-k-~)-P/pl] = 0 .  (46) 

The forces (per unit mass) acting upon the small body are: (1) the gravitational 
attraction, given by 

F = V~b, (47) 

and (2) the buoyancy force, that reads 

E = - ( p l / p z ) v  [ l  f~2(z2 + y2) + ~] . (48) 

The action of both forces upon the small particle can be accounted for by the total 
potential 

v = c~- (p,/p2) [ l  fl2(z2 + y2) + ~] . (49) 

The pertinent equations of motion (in the rotating frame) adopt the appearance 

d2z /d t  2 - 2f~ dy/dt = OU/O:c, (50) 
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d2y/dt 2 + 2~ dx/dt  = OU/Oy, 

d2z/dt 2 = OU/Oz, 
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(51) 

(52) 

where 

w = v + g a 2 ( x  2 + y2) = (1 - p l /p2)  a2(z2  + y2) + ¢ . 

By choosing a new (independent) variable r given by 

r = t(1 - pl/p2) 1/2, 

the equations of motion can be recast in the form 

d 2 x / d 7  "2 - 29t(1 - P l / P 2 )  -1/2 dy/dT = OV/Ox, 

(53) 

(54) 

(55) 

d2y /d ' r  2 + 2 ~ ( 1  - pl/P2) -1/2 d x / d ' r  = OV/Oy,  

d2z /d ' r  2 = OV/Oz, 

(56) 

(57) 

where 

1 
v = ~ f~2(x2 + y2) + ¢. (58) 

We see that V looks like the usual effective potential in the rotating frame. It takes 
into account just the gravitational forces accounted for by ¢. Hence, Equations (55)- 
(57) are the familiar equations of motion in a rotating frame (without buoyancy 
terms), but with a perturbed Coriolis force. Therefore, the effect of the buoyancy 
forces might be thought as being equivalent to a perturbation of the Coriolis force. 
One could then speculate on possible connections between the present problem 
and the study of effects due to perturbations in the Coriolis force as described by 
Shrivastava and Garain (1991 ). 

6. Conclusions 

In the present work we have revisited Robe's restricted three-body problem under 
the assumption that the fluid body assumes the shape of the Roche ellipsoid. This 
has allowed for a full account of the buoyancy force, without neglecting any 
component. 

The pertinent equations of motion where derived and special attention was paid 
to that important instance in which the density of the fluid equals that of the small 
particle. In this case, it was found that any point inside the fluid is an equilibrium 
one. 

In the general case, the only equilibrium point is the ellipsoid's center. Its 
stability was analyzed and, under the assumption that the smaller particle is denser 
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than the surrounding medium, it can be ascertained that the equilibrium is always 
stable. 

A tentative connection between the effect of the buoyancy forces and a pertur- 
bation of the Coriolis force was pointed out. 
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