Shock wave and modelling study of the unimolecular dissociation of Si(CH₃)₂F₂: an access to spectroscopic and kinetic properties of SiF₂

C. J. Cobos¹, L. Sölter^{2, 3}, E. Tellbach^{2, 3},

and J. Troe^{2, 3, *}

Electronic Supplementary Information

¹ INIFTA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, Argentina

² Institut f
ür Physikalische Chemie, Universit
ät G
öttingen, Tammannstrasse 6, D-37077 G
öttingen, Germany

³ Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany

* Email: juergen.troe@mpibpc.mpg.de

ESI – 1 Modelling of oscillator strengths for UV absorptions of SiF_x (x = 1 – 3)

Table S1Experimental absorption cross sections of $SiF_2(\sigma, base e, in cm^2)$ attemperatures near 1600 and 3000 K (see main text).

λ / nm	σ (1600 K)/ 10 ⁻¹⁸ cm ²	σ (3000 K)/10 ⁻¹⁸ cm ²
200	1.0	-
210	4.5	-
215	19.0	19.0
222	24.5	20.5
230	15.5	16.0
235	8.4	11.0
240	3.0	-
245	1.0	-
250	0.5	-
255	0.5	-

Table S2 Wavelengths of UV- absorption maxima λ (in nm) and oscillator strengths f (determined by time-dependent density functional theory, TD-DFT, on the ω B97X-D level and with 6-311+G(3df) basis set; the calculations in **ESI** – 1 and **ESI** – 2 employed the Gaussian 09 software. revision – A.02-SMP, of ref. S1).

DFT model	λ (SiF ₃)	$f(SiF_3)$	λ (SiF ₂)	$f(SiF_2)$	λ (SiF)	f(SiF)
ωB97X-D	186	0.1259	225	0.1902	278	0.1104
	185	0.1259			218	0.0226
					195	0.0436

a. Reaction enthalpies

All calculations were performed at the CBS-QB3 and G4 ab initio composite levels with geometries and harmonic vibrational frequencies derived at the B3LYP/6-311++G(3df,3pd) DFT level.

Table S3 Dissociation enthalpies of $Si(CH_3)_2F_2$ and $Si(CH_3)F_2$ (from CBS-Q//B3LYP/6-311++G(3df,3pd) and G4//B3LYP/6-311++G(3df,3pd) calculations, enthalpies at 0 K and in kJ mol⁻¹).

Reaction	CBS-Q//B3LYP/6-	G4//B3LYP/6-
	311++G(3df,3pd)	311++G(3df,3pd)
$Si(CH_3)_2F_2 \rightarrow$	410.0	401.7
$Si(CH_3)F_2 + CH_3$		
$Si(CH_3)F_2 \rightarrow SiF_2 + CH_3$	173.2	169.9

b. Properties of the potential energy surface along the minimum-energy path(MEP) for the reaction $Si(CH_3)_2F_2 \rightarrow CH_3 + Si(CH_3)F_2$

Fig. S1 Electronic potential for the reaction $Si(CH_3)_2F_2 \rightarrow CH_3 + Si(CH_3)F_2$ along the MEP. G4//B3LYP/6-311++G(3df,3pd) calculations fitted with a Morse function with $D_e = 447.3 \text{ kJ mol}^{-1}$ and $\beta = 1.51 \text{ Å}^{-1}$

Fig. S2 Transitional modes ν of the reaction Si(CH₃)₂F₂ \rightarrow CH₃ + Si(CH₃)F₂ along the MEP, calculated at the B3LYP/6-311++G(3df,3pd) level. Exponential decay functions with decay parameters $\alpha = 1.50$ (**■**), 0.43 (o), 0.48 (•), 0.40 (Δ) and 0.43 Å⁻¹ (**▲**).

Fig. S3 Rotational constants of Si(CH₃)₂F₂ calculated along the MEP for the reaction Si(CH₃)₂F₂ \rightarrow CH₃ + Si(CH₃)F₂, calculated at the B3LYP/6-311++G(3df,3pd) level (fit with a function (B+C)/2 = 0.113 cm⁻¹/[1 + 0.330 (r -1.849) + 0.103 (r - 1.849)²].

c. Modelling of limiting high pressure rate constants

Table S4 Modelled limiting rate high pressure constants for the recombination reaction $CH_3 + (CH_3)SiF_2 \rightarrow (CH_3)_2SiF_2$ ($k_{rec,\infty}$, in cm³ mol⁻¹ s⁻¹) and the reverse dissociation reaction $Si(CH_3)_2F_2 \rightarrow CH_3 + Si(CH_3)F_2$ (k_{∞} , in s⁻¹) (calculations with the simplified statistical adiabatic channel/classical trajectory model, SACM/CT, of ref. S2 and S3, employing the parameters of Figs. S1 - S3, PST = phase space theory, rigidity factors $f_{rigid} = k_{rec,\infty} / k_{rec,\infty}^{PST}$, equilibrium constants $K_c = k_{\infty} / k_{rec,\infty}$, in mol cm⁻³).

T/K	$k_{\rm rec,\infty}^{\rm PST}$	$f_{ m rigid}$	k _{rec,∞}	K _c	k _∞
1500	3.65x10 ¹⁴	5.05x10 ⁻²	1.84x10 ¹³	5.62x10 ⁻¹¹	1.03x10 ³
1750	3.84x10 ¹⁴	5.13x10 ⁻²	1.97×10^{13}	4.91x10 ⁻⁹	9.66x10 ⁴
2000	3.98x10 ¹⁴	5.20x10 ⁻²	2.07×10^{13}	1.25x10 ⁻⁷	2.58×10^{6}
2500	4.21x10 ¹⁴	5.30x10 ⁻²	2.23x10 ¹³	9.04x10 ⁻⁶	2.02×10^8

 $k_{\infty} = 1.24 \text{ x } 10^{19} (T/2000 \text{ K})^{-6.63} \exp(-58400 \text{ K}/T) \text{ s}^{-1}$

d. Modelling of limiting low pressure rate constants

Table S5 Modelled limiting low pressure rate coefficients (k_0 , in cm³ mol⁻¹ s⁻¹) for the reaction Si(CH₃)₂F₂ (+ Ar) \rightarrow CH₃ + Si(CH₃)F₂ (+ Ar) (strong collision rate coefficients k_0^{SC} , calculated following ref. S4 and employing the parameters of Figs. S1 – S3; weak collision efficiencies $\beta_c = k_0 / k_0^{SC}$, as following from the master-equation treatment of ref. S5, were determined with assumed standard values of average energies transferred per collision of $<\Delta E> = -100/hc \text{ cm}^{-1}$).

T/K	$k_0^{ m SC}$	$\beta_{\rm c}$	k_0
1500	1.18x10 ¹²	0.038	4.49×10^{10}
1750	1.24×10^{13}	0.028	3.46x10 ¹¹
2000	4.88x10 ¹³	0.021	1.02×10^{12}
2500	1.71×10^{14}	0.011	1.89x10 ¹²

 $k_0 = [\text{Ar}] 2.94 \text{ x } 10^{25} (T/2000 \text{ K})^{-25.04} \exp(-61980 \text{ K}/T) \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}$

e. Modelling of falloff curves

Falloff curves for the reaction Si(CH₃)₂F₂ (+ Ar) \rightarrow CH₃ + Si(CH₃)F₂ (+ Ar) were represented in the representation proposed in ref. S6 – S8 (see main text), employing center broadening factors F_{cent} estimated according to ref. S8 and leading to values of F_{cent} = 0.039 (1500 K), 0.045 (1750 K), 0.051 (2000 K) and 0.073 (2500 K).

Fig. S4 Modelled falloff curves for $Si(CH_3)_2F_2$ (+ Ar) \rightarrow CH₃ + Si(CH₃)F₂ (+ Ar). Calculations for 1500, 1750, 2000 and 2500 K (from bottom to top).

f. Molecular parameters

Bond dissociation enthalpy for Si(CH₃)₂F₂ \rightarrow CH₃ + Si(CH₃)F₂ at 0 K: Δ H₀⁰ = 401.7 kJ mol⁻¹ (from G4//B3LYP/6-11++G(3df,3pd) calculations).

Si(CH₃)₂F₂ vibrational frequencies: 141, 153, 193, 210, 250, 320, 322, 635, 707, 758, 789, 801, 828, 905, 930, 1307, 1309, 1453, 1455, 1462, 1465, 3034, 3036, 3106, 3109, 3111, 3111 cm⁻¹ (from B3LYP/6-311++G(3df,3pd) calculations).

Si(CH₃)₂F₂ rotational constants: A = 0.126, B = 0.114, C = 0.112 cm⁻¹ (σ = 2) (from B3LYP/6-311++G(3df,3pd) calculations).

Si(CH₃)F₂ vibrational frequencies: 130, 213, 271, 324, 635, 774, 778, 846, 897, 1270, 1441, 1454, 3029, 3112, 3131 cm⁻¹ (from B3LYP/6-311++G(3df,3pd) calculations).

Si(CH₃)F₂ rotational constants: A = 0.231, B = 208, C = 0.123 cm⁻¹ (σ = 1) (from B3LYP/6-311++G(3df,3pd) calculations).

CH₃ vibrational frequencies: 541, 1407, 1407, 3111, 3289, 3289 cm⁻¹ (from B3LYP/6-311++G(3df,3pd) calculations).

CH₃ rotational constants: A = 9.601, B = 9.601, C = 4.800 cm⁻¹ (σ = 3) (from B3LYP/6-311++G(3df,3pd) calculations).

Lennard-Jones parameters: $\sigma(Si(CH_3)_2F_2) \approx \sigma(SiF_4) = 4.88$ Å and $\epsilon/k(Si(CH_3)_2F_2) \approx \epsilon/k(SiF_4) = 171.9$ K (from ref. S9); $\sigma(Ar) = 3.47$ Å, $\epsilon/k(Ar) = 114$ K (from ref. S10).

g. References

- (S1) Gaussian 09, revision A.02-SMP, M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. (Gaussian Inc., Wallingford CT, 2009).
- (S2) A. I. Maergoiz, E. E. Nikitin, J. Troe, V. G. Ushakov, Classical trajectory and statistical adiabatic channel study of the dynamics of capture and unimolecular bond fission. V. Valence interactions between two linear rotors, J. Chem. Phys. 108 (1998) 9987 – 9998.
- (S3) A. I. Maergoiz, E. E. Nikitin, J. Troe, V. G. Ushakov, Classical trajectory and statistical adiabatic channel study of the dynamics of capture and unimolecular bond fission. VI. Properties of transitional modes and specific rate constants k(E, J), J. Chem. Phys. 117 (2002) 4201 - 4213.
- (S4) J. Troe, Predictive possibilities of unimolecular rate theory, J. Phys. Chem. 83 (1979) 114 126.
- (S5) J. Troe, Theory of thermal unimolecular reactions at low pressures: I. Solutions of the master equation, J. Chem. Phys. 66 (1977) 4745 – 4757.
- (S6) J. Troe, V. G. Ushakov, Revisiting falloff curves of thermal unimolecular reactions, J. Chem. Phys. 135 (2011) 054304.
- (S7) J. Troe, V. G. Ushakov, Representation of "broad" falloff curves for dissociation and recombination reactions, Z. Phys. Chem. 228 (2013) 1 10.
- (S8) J. Troe, Theory of thermal unimolecular reactions in the falloff range. I. Strong collision rate constants, Ber. Bunsenges. Phys. Chem. 87 (1983) 161 169.

- (S9) TRA-036-1 Chemkin Collection Release 3.6 September 2000, A software package for the evaluation of gas-phase multicomponent transport properties, <u>https://www3.nd.edu/~powers/ame.60636(transport.pdf)</u>.
- (S10) H. Hippler, H. J. Wendelken. J. Troe, Collisional deactivation of vibrationally highly excited polyatomic molecules. II. Direct observations for excited toluene, J. Chem. Phys. 78 (1983) 6709 – 6717.