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Abstract Fusarium graminearum is the primary causal agent
of Fusarium head blight of wheat in Argentina. This disease
affects yield losses and quality of grains, reducing the wheat
end-use, also causing mycotoxin contamination. In this study,
the genetic variability and deoxynivalenol (DON) potential/
production of F. graminearum sensu stricto (s.s.) isolates ob-
tained from wheat samples of the 2009, 2010, and 2011 grow-
ing seasons from a single location in Argentina were evaluat-
ed. The genetic variability detected using inter-simple se-
quence repeat (ISSR) was analyzed in relation to the in vitro
deoxynivalenol production, the main monitored and quanti-
fied mycotoxin according to the current regulations for the
international marketing of cereals. Of the 68 F. graminearum
s.s. isolates obtained in this study, 95 % showed a different

banding pattern with ISSR molecular markers and a high var-
iability was detected within the population. However, no clus-
tering was found in relation with year or DON production. All
isolates amplify for the DON-related gene and a high variabil-
ity in DON production was observed among the isolates, with
production values between non-producers and 1741μg/g. The
results suggest that the F. graminearum s.s. population varies
significantly in both genetic structure and toxin production in
a limited sampled area.

Introduction

Latin American countries in general and mainly Brazil and
Argentina are important wheat producers in the world, with
Argentina being among one of the major wheat exporters
(Calzada 2014; Reynoso et al. 2011). Fusarium head blight
(FHB) is one of the most severe fungal diseases affecting
wheat crops worldwide, including those in Argentina
(Galich 1996; Lori et al. 2003). Many members of the
Fusarium graminearum species complex (FGSC) are associ-
ated to this disease, with Fusarium graminearum sensu stricto
(s.s.) being the main causal pathogen reported in Argentina
(Alvarez et al. 2011; Castañares et al. 2014; Ramirez et al.
2007; Sampietro et al. 2010). In this complex, 16 different
phylogenetically species have been recognized (Aoki et al.
2012; Sarver et al. 2011). FHB directly affects yield losses
and quality of grains, reducing the wheat end-use, also causing
mycotoxin contamination (Matny 2015). At least 20 FHB
epidemics of wheat have been registered in the last 50 years
in Argentina, with variable intensity (Kikot et al. 2011;
Malbrán et al. 2012; Moschini and Fortugno 1996).
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Even though different strategies have aimed to control the
effects of the disease, such as chemical control (Lechoczki-
Krsjak et al. 2008), biological control (Mourelos et al. 2014;
Zhao et al. 2014). and the development of resistant cultivars
(Cainong et al. 2015). satisfactory levels of control have not
yet been attained. It is noteworthy that knowledge of the ge-
netic variability of this pathogen is relevant to understand its
epidemiology and evolutionary potential, which provides use-
ful information to control and reduce the devastating effects of
the disease (Zeller et al. 2003).

Several molecular techniques have been used to analyze
F. graminearum isolates and to provide information about
the population structure worldwide, such as amplified frag-
ment length polymorphism (AFLP), restriction fragment
length polymorphism (RFLP), random amplified polymor-
phic DNA (RAPD), variable number tandem repeat
(VNTR), and inter-simple sequence repeat (ISSR) (Karugia
et al. 2009; Leslie et al. 2007; Llorens et al. 2006). The pop-
ulation structure of Fusarium species in South America is
poorly understood compared to other production regions.
The studies recorded in Argentina regarding genetic variabil-
ity among F. graminearum s.s. isolates have been based main-
ly on AFLP molecular markers (Alvarez et al. 2011; Ramirez
et al. 2007). The analysis based on ISSR-polymerase chain
reaction (PCR) molecular markers is considered a reliable
methodology in population genetic studies of fungi, in which
the selection of ISSR primers does not require previous
knowledge of the sequence and generates specific and repro-
ducible patterns due to the highly stringent conditions of the
reaction (Mishra et al. 2003).

The mycotoxins most associated with members of the
FGSC are deoxynivalenol (DON) and nivalenol (NIV), which
have several adverse effects on animal and human health, such
as gastrointestinal disorders and severe depression of the im-
mune system, promoting the development of secondary infec-
tions (Pestka 2007; Pestka and Smolinski 2005). In South
America, the main mycotoxin is DON, belonging to type B
trichothecenes, whose presence is monitored and quantified
due to current regulations for the international marketing of
cereals (Astolfi et al. 2012; Castañares et al. 2014; Umpiérrez-
Failache et al. 2013). In our country, the DON genotype/
chemotype seems to be predominant in the wheat-cropping
area (Alvarez et al. 2009; Malbrán et al. 2014; Ramirez et al.
2007).

Different studies on genetic variability and/or mycotoxin
capacity at the genome level/in vitro production of
F. graminearum s.s. have been carried out (Alvarez et al.
2009; Astolfi et al. 2012; Ramirez et al. 2007). However, the
majority of them were conducted to reflect the genetic or
mycotoxin variability among different wheat cultivated areas
in a region or in a country, and little is known about the var-
iability in a small and single wheat production area (Karugia
et al. 2009). The purpose of this work was to analyze the

genetic variability and both DON potential (genetic level)
and in vitro production among F. graminearum s.s. isolates
obtained from a single field.

Materials and methods

Biological materials

Thirty-three wheat samples (50 g each) obtained during the
2009, 2010, and 2011 wheat growing seasons were harvested
and threshed manually. The samples belong to the national
wheat breeding program, in an experimental field of 1 ha of
Marcos Juárez-INTA (32°42′S; 62°06′W), province of
Córdoba, Argentina, which is one of the most important pro-
ducer and often studied areas of wheat cultivars in the country.
Conventional tillage operations according to standard produc-
tion practices on fields, in an Argiudol soil, were made.

Isolation of F. graminearum

For F. graminearum isolation, 60 grains per wheat sample
were surface-sterilized with 10 % v/v sodium hypochlorite
solution and plated onto Petri dishes containing wet filter pa-
per in darkness at 25 °C for 7 days. Grains that showed fungal
presence were transferred to potato dextrose agar (PDA) me-
dium. Mycel ium was subcul tured on Spezie l le r
Nährstoffarmer agar (SNA) medium for 15 days and then
conidium suspension was transferred to water agar (WA) me-
dium for 16 h. A single conidia was picked and transferred to
PDA. Identification was carried out by cultural characteriza-
tion on PDA and carnation leaf agar (CLA) by means of the
keys of Gerlach and Nirenberg (1982). Burgess et al. (1994).
and Leslie and Summerell (2006).

Molecular characterization

Molecular identification and potential production of DON

Total genomic DNA from presumable F. graminearum iso-
lates was extracted using the cetyltrimethylammonium bro-
mide (CTAB) method (Stenglein and Balatti 2006) and
DNA concentrations were calculated using a NanoDrop
2000 UV–vis spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA). To confirm morphological identifica-
tions, an F. graminearum-specific PCR assay was performed
for the isolates using primers Fg16F and Fg16R, according to
Nicholson et al. (1998). These primers are not completely
specific to F. graminearum s.s., but they give products of
different size. Fusarium graminearum s.s. (Castañares et al.
2014, used as control) gives a product of about 400 bp, while
F. asiaticum (NRRL 13818, used as control) gives a PCR
product of about 550 bp, F. meridionale (NRRL 28436, used
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as control) gives a product of about 500 bp, and no amplifi-
cation was expected for F. boothii (NRRL 26916, used as
control), according to Waalwijk et al. (2003). Mugrabi de
Kuppler et al. (2011). Castañares et al. (2014, 2015). and
Covarelli et al. (2015). The species used as a control were
selected according to their presence in South America (van
der Lee et al. 2015). DON genotype determination was con-
ducted by amplifying a portion of the Tri13 gene (Chandler
et al. 2003). Fusarium poae and F. pseudograminearumDNA
were used as negative controls for the specific PCR reactions.

ISSR markers

The ISSR-PCR was performed using five ISSR primers:
Biolab H [(GCC)5], Biolab D [(AG)8], Biolab F [CT(GA)8],
Biolab J [(CAC)5], and Biolab E [CTC(GT)8]. PCRs were
performed in an XP Thermal Cycler (Hangzhou Bioer
Technology Co., Ltd., Hangzhou, China), according to
Dinolfo et al. (2010). Cluster analysis based on the Dice co-
efficient was realized on the similarity matrix employing the
unweighted pair group method with arithmetic mean
(UPGMA) algorithm (Sneath and Sokal 1973). NTSYSpc
version 2.1 was used for the analysis (Rohlf 1998). An anal-
ysis of molecular variance (AMOVA) was realized using
Arlequin 2000 software (Schneider et al. 2000). DNA from
a F. pseudograminearum isolate was used as the outgroup
(Castañares et al. 2013).

DON production

Sample preparation

DON analyses were carried out following the methodology
proposed by Cooney et al. (2001). with some modifications.
Wheat grains were irradiated with 10–12 kGrays of gamma
irradiation. Water activity (aW) was measured using an
Aqualab Series 3 (Labcell Ltd., Basingstoke, Hants, UK)
and then rehydrated to get a value of 0.995. The wheat grains
were placed on Petri dishes forming a monolayer (20 g) and
then inoculated with a 4-mm-diameter agar disk taken from
the margin of a 7-day-old growing colony of each isolate on
PDA and incubated at 28 °C. Cultures were carried out in
triplicate. After 28 days of incubation, the samples were dried
in a forced air oven and finely ground with a propeller grinder
Arcano (Instrumental Pasteur, Buenos Aires, Argentina).
Fifteen grams of each sample were mixed with 40 mL of
acetonitrile:methanol (14:1) and shaken at high speed for
1 h. Then, an aliquot of 2 mL of each isolate was taken and
added to a cleanup cartridge, containing a layer of glass wool
and 500 mg of a mixture of alumina:carbon (20:1). DON was
e l u t e d f r om t h e c a r t r i d g e w i t h 5 0 0 μL o f
acetonitrile:methanol:water (80:5:15), evaporated to dryness

under nitrogen gas and resuspended in methanol:water (95:5).
Cultures with uninoculated grains were employed as controls.

HPLC conditions

DON detection and quantification was performed using high-
performance liquid chromatography (HPLC, Waters 717 plus
Autosampler) with a UV detector (220 nm) (Palazzini et al.
2007). The chromatographic separations were carried out on a
C18 reverse phase column (250×4.6 mm, 5-μm particle sizes,
Waters). The mobile phase used a mixture of water:methanol
(88:12) with a flow rate of 1.5 mL min—1. Quantification was
performed by measuring the peaks (Empower software;
Waters Corporation, Milford, MA, USA) and extrapolation
to a calibration curve was obtained using DON standard solu-
tions of 1–5 μg mL−1 in methanol:water (5:95) (Sigma
Aldrich Co., St. Louis, MO, USA; purity >99 %). The purity
of the peak was determined by performing a spectral homo-
geneity test with the same software. This test showed values of
limit of detection (LOD)=0.15 μg/g, limit of quantification
(LOQ)=0.50 μg/g, and recovery percentage of 96 %. In order
to analyze the results, the isolates were divided into four DON
production levels: not detectable (ND), low producers (lower
than 50 μg/g), medium producers (50–150 μg/g), and high
producers (higher than 150 μg/g).

Results and discussion

Sixty-eightFusarium graminearum s.s. isolates were obtained
from 24 wheat samples, with amplified fragments of about
400 bp (Fig. 1). No Fusarium graminearum s.s.were obtained
f rom the rema in ing n ine whea t samples . Mos t
F. graminearum s.s. isolates were obtained from the 2010
wheat growing season (66). Only one isolate from the 2009
and another from the 2011 wheat growing seasons were iden-
tified as F. graminearum s.s. Consequently, it became actually
a point analysis on the Fusarium population at one site
(Marcos Juárez) in 2010.

Higher percentages of the presence of F. graminearum s.s.
were reported by other authors in Argentina. Ramirez et al.
(2007) and Alvarez et al. (2011) found that 100 and 97 % of
the isolates obtained from locations in the major wheat pro-
duction area of Argentina were members of this species, re-
spectively. Similar results were obtained in Uruguay by Pan
et al. (2013). who identified all isolates obtained as
F. graminearum s.s. Moreover, values closer to those ob-
served in our research were reported for southern Brazil by
Astolfi et al. (2012). which were near to 74 %.

The occurrence of FGSC members over time is strongly
related to competition among them, according to the severity
degree of FHB (Xu et al. 2007). Although different members
of the FGSC can be found in much of the geographical area
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affected by the disease, F. graminearum s.s. is the most dom-
inant around the world (O’Donnell et al. 2000, 2004, 2008;
van der Lee et al. 2015). Furthermore, the predominance of
one species over another could be attributed to environmental
conditions and/or host preference (Del Ponte et al. 2015;
Osborne and Stein 2007; Xu et al. 2007, 2008).

A t t he momen t , among FGSC spec i e s , on ly
F. graminearum s.s. has been isolated from wheat grains in
Argentina (Alvarez et al. 2011; Ramirez et al. 2007).
However, different species of the complex were isolated from
wheat in Uruguay and Brazil, where subtropical environmen-
tal conditions favor FGSC diversity (Astolfi et al. 2012;
Umpiérrez-Failache et al. 2013).

The ISSR dendrogram defined 65 haplotypes (Fig. 2).
The isolates were resolved into two clusters (I, II), with an
average similarity among groups of 51 %. The
F. pseudograminearum strain used as the control appeared
alone in a third cluster (III). The isolates distribution in
the dendrogram was dispersed, showing no clustering ac-
cording to the origin of wheat or with DON production.
The genetic variability determined by AMOVA showed
that 99 % of the isolates are different. The use of molec-
ular markers has also been demonstrated to be a useful
tool in the analysis of genetic diversity in populations of
F. graminearum in South America. In Argentina, Ramirez
et al. (2007) and Alvarez et al. (2011) detected around of
98 and 100 % of genetic variability, respectively. In addi-
tion, Astolfi et al. (2012) showed 93 % of variability in
south Brazil, although they used F. graminearum s.s. iso-
lates from different sampled areas of wheat.

In general, variability studies for FGSC members have
been conducted from several geographical locations
(Alvarez et al. 2009, 2011; Boutigny et al. 2011, 2014;
Qiu et al. 2014; Sampietro et al. 2010). By contrast, there
are a scarce number of authors that have analyzed the
genetic variability of the species among a limited number

of localities (Astolfi et al. 2012; Guo et al. 2008; Mishra
et al. 2004; Ramirez et al. 2006b, 2007) or even at a
single field location (Karugia et al. 2009). In such a case,
as well as being observed in the present study, a high
genetic variability can be found in a single geographical
area. This variability could be attributed to several factors.
Ramirez et al. (2007) suggested that a high level of ge-
notypic diversity with relatively few clones is a conse-
quence of frequent outcrosses, enough to maintain a great
deal of genetic heterogeneity in the population, able to
rapidly synthesize a multilocus response to change in se-
lection pressures. In addition, the co-existence of different
members of the FGSC provides a potential for hybridiza-
tion and the formation of new genotypes that could affect
pathogenicity, host range, or toxin production (Alvarez
et al. 2011; Karugia et al. 2009). Furthermore, spores are
easily transported among different locations, increasing di-
versity (Schmale et al. 2006).

Genotype analysis showed that all F. graminearum s.s.
amplified the fragment of 282 bp corresponding to the
Tri13 gene involved in the DON trichothecene biosyn-
thesis (Chandler et al. 2003). The determination of DON
production showed significant differences among isolates
(p<0.05), observing values that ranged from not detect-
able (ND) to 1741 μg/g, demonstrating a high intraspe-
cific variability in their toxin production profile, even for
isolates coming from a single location. Four isolates
(5.9 %) belonged to the ND group, 51.5 % from the
low producers, 19.1 % from the medium producers, and
23.5 % from the high producers (Fig. 3). However, the
predominant group belonged to values less than 50 μg/g,
with these values being the most frequently reported
(Alvarez et al. 2009; Palazzini et al. 2007; Ramirez
et al. 2006a).

There are few studies that use wheat as a substrate to ana-
lyze DON production in vitro by F. graminearum (Hope et al.

Fig. 1 Amplification patterns.
M: molecular marker; 1–4: F.
graminearum s.s.; 5:F. asiaticum;
6: F. meridionale; 7: F. boothii;
8: F. pseudograminearum;
9: F. poae
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2005; Ramirez et al. 2006a, b). All these reports showed
values of production <10 μg/g. At the genetic level, all iso-
lates were potentially DON producers, similar to those report-
ed previously by Burlakoti et al. (2011) and Castañares et al.
(2014). Differences between molecular assays and in vitro
production could be explained as PCR shows the capacity, at
the genome level, to produce a specific toxin, whereas the
production is dependent on the substrate and environmental
conditions of the assay (Castañares et al. 2014; Somma et al.
2014).

Moreover, when Goswami and Kistler (2005) evaluated the
variation in mycotoxin production and aggressiveness among
isolates belonging to different species from the FGSC, they
observed that the high level of variability for both characters

was specific to each of the isolates tested and independent of
the species considered.

In conclusion, our results showed that, even at a single
and small area, the population of F. graminearum s.s.
presents a high variability in their genomic pool and
DON production. This observed level of diversity could
be considered as one of the causes behind the periodical
emergence of this pathogen in different areas around the
world. Furthermore, the high variability observed in the
toxigenic production could be considered as another indi-
cator of this genetic diversity. This study reflects that con-
tinuous monitoring not only at the regional level, but also
at the single field level, is needed in order to understand
the F. graminearum s.s. population.
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Fig. 2 Dendrogram obtained by
ISSR markers showing cluster
grouping of the 66
F. graminearum s.s. isolates from
the year 2010 plus
F. pseudograminearum strain
(F. ps) and the DON production.
(−): Not detectable; (+): low
producers; (++): medium
producers; (+++): high producers
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