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A model of percolation with disaggregation and aggregation (PDA) is proposed and 
studied by means of the Monte Carlo simulation on the square lattice. The critical 
concentration (qSc), the correlation length exponent and the fractal and spreading dimen- 
sions of the largest cluster at qSc have been computed. The obtained results suggest 
that the PDA model belongs to the same universality class than the standard percolation 
model. Nevertheless, the critical concentration (~b c = 0.464 + 0.005) of the former is quite 
different from the critical probability (Pc = 0.5927) of the later model. 

I. Introduct ion  

During the last years, the "static" percolation theory 
has concentrated considerable attention (see for ex- 
ample the reviews [-1, 2]). This interest has recently 
been renewed due to the fractal properties of incipient 
percolation clusters. On the other hand a huge effort 
has been dedicated to the study of irreversible kinetic 
growth models, such as diffusion-limited aggregation 
[-3] and clustering of clusters E4] (for a review see 
[5]). From the theoretical point of view, the main 
interest on these models arise from the fact that the 
kinetic effects are relevant in the sense that they deter- 
mine to which universality class belongs each model. 
Also, in order to study the "dynamic" effects in perco- 
lation, some models such as the invasion percolation 
[6], and the percolation with diffusion of particles 
with non-additive lateral interactions [-7], have been 
introduced. 

On the other hand, variants of the static standard 
percolation model (henceforth SP) have also been in- 
vestigated. For example, the so called "Bootstrap Per- 
colation" [-8] (henceforth BP), in which lattice sites 
are randomly occupied with probability p, but all 
sites, with less than a fixed number m of nearest-neigh- 
bout (n-n) occupied sites are culled until a stable 
configuration is attained. The study of the BP model 
has been focused to the dependence of both, the class 
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of the percolation transition and the critical expo- 
nents on m [-8-10]. The BP model involves some kind 
of disaggregation (or evaporation) of occupied sites 
and consequently the number of particles on the lat- 
tice changes due to the culling process. In other con- 
text, a model of diffusion limited aggregation with 
disaggregation (henceforth DLAD) has been analized 
Ell] (for models of clustering of clusters with disag- 
gregation, see [12]). In the DLAD model, a single 
bonded particle may scape from a loopless cluster 
undergoing a random walk until it reaches the cluster 
again. If, for example, one starts with a loopless diffu- 
sion-limited aggregation cluster, this dynamic disag- 
gregation-aggregation process changes the fractal di- 
mension of the cluster, and in the steady state regime 
the fractal dimension is independent of the type of 
the initial cluster. 

In the present work, a new model of percolation 
with disaggregation and aggregation (henceforth 
PDA) is introduced and discussed (for the definition 
see Sect. II). The PDA model can be thought of as 
some kind of "dynamic" m = 2 BP where the culling 
process is replaced by a dynamic disaggregation-ag- 
gregation process and the total number of particles 
is conserved. It should be noted that the rigid rules 
which dominate the culling process in BP do not al- 
low any possible restructuration and/or relaxation of 
the clusters. This limitation is raised in the PDA mod- 
el where the disaggregation and diffusion of weakly 
bonded particles is allowed. Also, the main differences 
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between the present model and the D L D A  merit a 
brief comment. In the D L D A  the disaggregation- 
agregation procedure is a particle by particle process 
since during each time step only one particle disaggre- 
gated from a single loopless cluster is allowed to dif- 
fuse until it becomes attached again. On the other 
hand, the initial configuration for the PDA model, 
which is a SP distribution, involves many (and not 
necessarily loopless) clusters. Furthermore,  in the 
PDA model the number of diffusing particles depends 
on the time. 

The aim of this work is to study the effect of the 
disaggregation-aggregation process on some critical 
and structural properties of SP clusters. For  this pur- 
pose the critical concentration, the correlation length 
exponent and the fractal and spreading dimensions 
have been evaluated using the Monte Carlo simula- 
tion in two dimensions. These results are presented 
and discussed in Sect. III, and the conclusions are 
stated in Sect. IV. 

II. The P D A  Model 

The starting configuration corresponds to the classic 
SP model, i.e. it is obtained by filling the lattice with 
probability q5 (each site can be either occupied by 
only one particle or empty). Let us only consider n - n  
bonds between adjacent particles. In order to account 
for the disaggregation of weakly bonded particles 
only, the movement of particles linked by more than 
one bond is forbidden (in other words, a single move- 
ment of one particle could break at most only one 
bond). Then mobile particles (MP), which could parti- 
cipate in the diffusion process, are monomers (which 
have empty all their n - n  sites) and particles with 
only one n - n  occupied site. Note that disaggregation 
could also generate MPs and therefore the disaggre- 
gation-aggregation process involves more particles 
than those which were present in the starting configu- 
ration. Once the lattice has been filled the disaggrega- 
tion-aggregation process is simulated as follow. At 
each Monte Carlo time step, a MP and one of its 
n - -n  sites are chosed at random. If this site is unoccu- 
pied, the selected MP jumps to it. Otherwise, the MP 
remains fixed. The diffusion finishes when all the MPs 
have been exhausted. Then, in the final "stat ic" con- 
figuration all the particles are linked by at least two 
bonds. 

The Monte Carlo simulation has been carried out 
on L •  square lattices (L~<201) with periodic 
boundary conditions. For  q~---0.46 and L = 2 0 1  the 
final configuration is typically reached after 6 • 104 
Monte Carlo time steps. For  L- -  201 and for all values 
of q~, the statistic was made starting with about  of 
200-600 different initial configurations. 

0.45 

eL 

043 

L 
201 101 51 

0.47 i , , , 

I 

'p.~ r r~ ' '  'tO "~"~.... 

, ~ 0 . 9  " 

0 

0.8 

0 L FL 

I, i , 0.6 
0.45 0.47 0.49 

) W 
004 

31 

I 
008 

c3/4 
Fig. 1. Plot of the L-dependent threshold eL (see (2)) versus L -3/4. 
The error bars take the uncertainties in the determination of each 
q5 L into account. The thick line on the left ordinate axis represents 
the extrapolated value of ~bc = 0.464 _+ 0.005. The method employed 
in the determination of ~b L (see (1)) is shown in the inset for L=201. 
The points o, e, 4),, I, x, *, +, have been obtained averaging 
over 50, 100, 150, 200, 300, 500 and 750 samples respectively 

III. Results 

III.1. The Critical Concentration and the Correlation 
Length Exponent 

Let us briefly explain the method employed to evalu- 
ate the critical concentration [-7]. On a L x L lattice 
with periodic boundary conditions a percolating clus- 
ter is a cluster which has either its length or its width 
(or both) equal to L. Let F L be the fraction of percolat- 
ing clusters (see the inset of Fig. 1) and ~b L be the 
L-dependent threshold defined by 

FL(~bL) = 0.9. (1) 

Now, using the finite-size scaling argument, one has 
[133 

~)c = ~L Jv a Z -  1 / v  ( 2 )  

where r is the critical concentration in the thermody- 
namic limit (L-- ~) ,  A is a constant and v is the corre- 
lation length exponent (viz. the correlation length 
in the infinite system behaves as ~ oc (~b-q~c)-v). Fig- 
ure 1 shows a plot of ~b L against L-3/4. The straight 
line obtained suggest that (see (2)) 

v = 4/3, (3) 

that is, the same value than for SP. The discussion 
of the universality class of the PAD model will be 
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Fig. 2a  and b. The final configuration of two largest clusters obtained working with r  and L=201  and starting with two different 
initial configurations. The cluster of a (b) has Sa = 11606 (Sb = 3064) particles respectively 

presented later on. Also from Fig. 1 (and (2)) one ob- 
tains 

r = 0.464_+ 0.005, (4) 

where the large error bar takes the possible correction 
to (2) due to finite-size effects into account. Let us 
stress that r is appreciably smaller than the best 
available value of the critical probability Pc = 0.5927 
_+0.0001 (see for example [14] and references cited 
therein) for the SP model on the square lattice. The 
change in the critical concentration is a consequence 
of the disaggregation-aggregation process. In fact, a 
single diffusing particle can sticks together two (and 
sometime three) adjacent clusters. Furthermore,  as the 
particles which can be disaggregated have at most 
one bond, the number of particles constituing a clus- 
ter can not be decreased by more than one at each 
Monte Carlo step. For  these reasons, the aggregation 
process prevails over the disaggregation one, and the 
final static configuration of the PAD model is charac- 
terized by a considerable increment of the mean clus- 
ter size as compared to the cluster size distribution 
of the SP model at the same concentration. Note that 
the aggregation of monomers ( r162 i.e. 

about of 4% of the total amount  of particles of the 
starting configuration) is not relevant. 

Figure 2 shows the largest clusters at r  
(L = 201) of two final configurations obtained by start- 
ing with different initial configurations. One of them 
is a percolating cluster which has S, = 11606 particles 
and the other has Sb=3064 particles. These values 
may be compared with the average number S = 8394 
(averaged over 500 samples) of particles of the largest 
cluster at the same concentration and lattice size. It 
should be mentioned that the fluctuation in the 
number of particles of the largest cluster at r is about 
of the same order of magnitude than for SP at Pc. 
The configurations shown in Fig. 2 have been selected 
in order to point out that, even when S, and Sb are 
quite different, the clusters have some structure simi- 
larity after a view inspection. 

111.2. The Fractal Structure of the Incipient 
Percolating Cluster 

In order to analyze the fractal structure of the largest 
cluster close to r its spreading and fractal dimen- 
sions have been evaluated. 
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III.2.1. The Spreading Dimension. Considering the in- 
finite cluster at the critical concentration, let AN be 
the average number of occupied sites connected by 
at most N n -  n bonds to a given origen in the cluster 
(N is the so called chemical distance). Then, for large 
N, AN behaves as 

A N ~ N a, (5) 

where 3 is the spreading (or chemical) dimension (see 
for example [15]) which is an intrinsic exponent of 
the cluster. 

In Fig. 3 a plot of AN/N  for the largest cluster 
against N is shown for the SP model at pc=0.5927 
and for the PDA model at ~bc = 0.464. Note that for 
the results of Fig. 3, N < L / 2  in order to avoid bound- 
ary effects. The full straigth line in the figure corre- 
sponds to one of the best available values of a~= 1.675 
[16, 17] for the SP model. Although in the present 
work the lattice size is smaller than the one used in 
previous works for the determination of d for ordi- 
nary percolation, from Fig. 3 one clearly sees that 
for the PDA model the slope of A N / N  vs N asymptoti- 
cally approach to that of ordinary percolation. This 
behaviour strongly suggests that both models have 
the same spreading dimension, at least within the ac- 
curacy of the Monte  Carlo method. 

III.2.2. The Fractal  Dimension. For  a fractal infinite 
cluster on the square lattice, the number M of parti- 
cles inside a square of linear size l (centred in one 
point belonging to the cluster) scales as 

m ~ l D, (6) 

where D is the fractal dimension of that cluster (see 
for example [5]). Figure 4 shows the l n - l n  plot of 
M / l  2 versus l for both, the SP and the PDA models, 
evaluated for the largest cluster at probability p and 
concentration 4) slightly below to the critical values 
Pc and ~b c, respectively (this is an appropriate proce- 
dure for obtaining the fractal dimension [7]). For  or- 
dinary percolation a good straight line is obtained 
whose slope corresponds to 

D = 1.90 -4- 0.02, (7) 

which agrees with the exact and well known result 
D = 91/48 ~ 1.896 for this model. 

For  the PDA model the points do not show a 
well defined straight-line behaviour, as for the SP 
model. This result is a consequence of the change 
of the linear scale. In fact, for the SP model the small- 
est clusters are the monomers, while for the PDA 
model the smallest clusters, on the square lattice, are 
squares constituted by four particles. This means that 
the linear scale has been increased by a factor 2. A1- 
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Fig. 3. The double logarithmic plot of X=AN/N versus N for the 
largest clusters of the SP model (m) and the PDA model (e) working 
with pc=0.5927 and ~bc=0.464, respectively. Results obtained on 
a square lattice of size 201 x 201 by averaging each point over 600 
samples. The full straight line corresponds to the best available 
value of aT= 1.675 for the SP model on the square lattice [16]. In 
the lower part of the figure the ratio Y(+) between AN for the 
SP model and AN for the PDA model, is plotted against N in a 
double logarithmic scale. The dashed line has been drawn to guide 
the eyes. The behaviour of this line for large values of N strongly 
suggests that the incipient infinite clusters of both models have the 
same spreading dimension 
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Fig. 4. The l n - l n  plot of M/l 2 against l, using L=201,  for the 
SP model (,'), (averaged over 400 samples) and the PDA model 
(o), (averaged over 500 samples), working with p=0.583 and 
~b = 0.455 respectively. These figures have been taken slightly smaller 
than the respective critical values (pc=0.5927, ~bc=0.464 ). The full 
line with slope D = 1.9 has been drawn to guide the eyes 

though this change of scale is not the same for differ- 
ent clusters, one could expect, at least in average, 
some kind of dilatation of the linear scale. Also, note 
that in Fig. 3 the asymptotic regime (full line) for the 
PDA model is reached for a larger value of N than 
that for the SP model. Following this point of view, 
the square lattice of size L = 2 0 1  could be small in 
order to allow an accurate determination of the frac- 
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tal  d imens ion .  F o r  fur ther  deta i l s  see tha t  the  M/I 2 vs l 
line for the  SP m o d e l  has  three  well def ined regions" 
the  first one for smal l  values  of  I which  has  a large  
slope, an in t e rmed ia t e  region  where  the  s lope  corre-  
sponds  to  D = 1.90, a n d  a curved  reg ion  due  to  b o u n d -  
ary  effects (the la t t ice  is finite and  p < Pc)- In  the  P D A  
m o d e l  the  first r eg ion  becomes  en la rged  wi th  respect  
to tha t  of the SP m o d e l  and  as the b o u n d a r y  effects 
a re  also present ,  it is very difficult to o b t a i n  a precise  
value of  D. Unfo r tuna te ly ,  to w o r k  with  la rger  lat t ices 
is b e y o n d  our  c o m p u t a t i o n a l  capaci ty .  In  spite  of  this 
difficulty, f rom Fig.  3 one ob ta in s  

D = 1.90 _+0.06 (8) 

which  agrees wi th in  the e r ro r  bars  wi th  the  va lue  of  
the SP model .  

IV. Summary 

A new m o d e l  of  pe rco la t i on  is i n t roduced  a n d  s tud ied  
by  means  of  the M o n t e  Ca r lo  s imula t ion  on  the 
square  lattice.  In  this m o d e l  (called the p e r c o l a t i o n  
with d i saggrega t ion  and  agg rega t ion  (PDA)  model) ,  
a t rans ien t  d y n a m i c  d i saggrega t ion  and  diffusion p ro -  
cess of  single b o n d e d  par t ic les ,  which  also involves  
the m o n o m e r s ,  leads  to  the  f o r m a t i o n  of  s tat ics  aggre-  
gates. The  p r o p o s e d  m o d e l  can  be t hough t  of  as a 
cer ta in  k ind  of  m = 2 BP m o d e l  wi th  diffusion. 

The  results  o b t a i n e d  for the co r re l a t ion  length  ex- 
ponen t  v (see (3)), the sp read ing  d imens ion  d (see 
Fig. 3) a n d  the f racta l  d imens ion  D (see (8)), suggest  
tha t  the  new m o d e l  be longs  to the  same  universa l i ty  
class than  the SP model .  Also ,  this seems to be the 
case of  the BP m o d e l  wi th  m =  2 [10]. But,  since the 
rules of  these three  mode l s  are qui te  different, this 
is no t  a t  all a t r ivial  result.  

The  cri t ical  concen t r a t i on  ~bc for the P D A  m o d e l  
on  the square  la t t ice  qSc = 0.464 (see (4)) is app rec i ab ly  
smal ler  t han  the cri t ical  p r o b a b i l i t y  p~=0.5927 for 
the SP m o d e l  on  the same lattice.  This  fact is due 
to the d i s agg rega t i on -agg rega t i on  process  (see also 
be low of  (4)). 

On the o the r  hand,  in bo th ,  the D L A D  and  the 
P D A  models ,  on ly  single b o n d e d  par t ic les  can  be dis-  
agg rega t ed  form the clusters.  Never theless ,  in con t r a s t  
to the D P A  mode l  which be longs  to the same univer-  
sal i ty class than  the SP model ,  the D L A D  m o d e l  
seems to have  the same universa l i ty  class than  la t t ice  
an imals  [11, 12]. 

We would like to thank to L. Molinari for her precious help in 
the preparation of the graphics. 
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