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Abstract The aim of this paper is to extend the applicability of the incomplete
oblique projections method (IOP) previously introduced by the authors for solving
inconsistent linear systems to the box constrained case. The new algorithm employs
incomplete projections onto the set of solutions of the augmented system Ax− r = b,
together with the box constraints, based on a scheme similar to the one of IOP, adding
the conditions for accepting an approximate solution in the box. The theoretical prop-
erties of the new algorithm are analyzed, and numerical experiences are presented
comparing its performance with some well-known methods.
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1 Introduction

Large and sparse systems of linear equations arise in many important applications [5,
24], as image reconstruction from projections, radiation therapy treatments planning,
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computational mechanics and optimization problems. In practice, those systems are
often inconsistent, and one usually seeks a point x∗ ∈ �n, li ≤ x∗i ≤ ui , i =
1, . . . , n, that minimizes a certain proximity function. In this paper, for such possibly
inconsistent systems we will consider the standard problem

min
x∈B

‖Ax − b‖2
Dm

, (1)

where B= {x : x ∈�n, li ≤ xi ≤ ui, i=1,. . . , n}, A ∈�m×n, b ∈�m, m≥ n. ‖.‖Dm

denotes the norm induced by the positive definite diagonal matrix Dm ∈ �m×m.
In [19] we have introduced, for inconsistent problems Ax = b, the IOP algorithm

that converges to a weighted least squares solution of that system. That algorithm
uses an incomplete oblique projections scheme onto the solution set of the augmented
system Ax − r = b, in order to solve minx∈�n ‖Ax − b‖2

Dm
. We proved that this

problem is equivalent to the problem [19]:

min{‖p − q‖2
D : for all p ∈ P and q ∈ Q}, (2)

being P = {p : p = [x; r] ∈ �n+m, x ∈ �n, r ∈ �m, Ax − r = b}, and Q =
{q : q = [x; 0] ∈ �n+m, x ∈ �n, 0 ∈ �m}. D is a diagonal matrix of order n+m,
whose n first elements are 1’s, and the last m coincide with those of Dm. That result
led us to develop the IOP method for solving (2), applying an alternate projections
scheme between the sets P and Q, similar to the one of Csiszár and Tusnády [10],
but replacing the computation of the exact projections onto P by suitable incomplete
or approximate projections. In [21] the results of [19] were generalized for solving
rank deficient problems.

In this paper we add to the IOP alternating algorithm the condition x ∈ B; for that
purpose we define the sets:

Pb = P
⋂

{(x; r) : x ∈ B} and Qb = Q
⋂

{(x; 0) : x ∈ B}, (3)

adopting the distance d(p, q) = ‖p − q‖D , for all p ∈ Pb, q ∈ Qb.
We consider the following basic scheme:

Algorithm 1 (Basic Alternating Scheme)
Given feasible vectors pk = [

xk; rk] ∈ Pb, qk = [
xk; 0

] ∈ Qb.
Let p = [x; r], p̂ = [

x̂; r̂].
Define

p̂ = argminp∈Pbgk(p), where (4)

gk(p) = ‖x − xk‖2 + ‖r‖2
Dm

,

Pb = {p : x ∈ B, r = Ax − b}.
Define pk+1 = [

xk+1; rk+1
] = [

x̂; r̂], and qk+1 = [xk+1; 0]

In each step of Algorithm 1 a minimum norm problem with linear constraints (4)
needs to be solved. For that purpose we use the HLWB algorithm [9]. This inner
iteration needs of course to be terminated at some step. Therefore in practice we must
use instead of p̂ some approximation of it.
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In the following sections we present the extended BIOP algorithm based on
the basic scheme of Algorithm 1, adding the conditions for accepting an approxi-
mate solution of (4). The theoretical properties of the new algorithm are analyzed
in Section 3, and numerical experiments are presented in Section 4 comparing its
performance with some known methods.

Notations

• ‖.‖ denotes the Euclidean norm, and ‖.‖D the norm induced by a positive definite
matrix D.

• In denotes the identity matrix in �n×n, and ei , the i-th column of In.
• The upper index T stands for the transpose of a matrix.
• D = diag(d), denotes a diagonal matrix of order n, whose diagonal is d =

(d1, . . . , dn).
• P

(
qk

)
will denote the exact solution p̂=[

x̂,r̂
]

of problem (4), where qk=[
xk;0]

.

2 Some basic results

The convex feasibility problem (CFP) is to find a point (any point) in the nonempty
intersection C = ⋂m′

i=1 Ci 	= ∅, of a family of closed convex subsets Ci ⊂ �n′ ,
i = 1, 2, . . . , m′ of the n’-dimensional Euclidean space.

Projection algorithms employ projections onto the individual convex sets in order
to reach the required point in the intersection. They employ projections onto the
individual sets in various ways [5–7, 12, 18]. In the sequel we denote by Pi the
orthogonal projection onto Ci , and PD

i the oblique projection onto Ci , where D is a

positive definite matrix of �n′×n′ .
The best approximation problem (BAP) is to find the projection of a given point

y ∈ �n′ onto the nonempty intersection C. Thus, it seeks a point in the intersection
of the convex sets which is closest to the point y.

Aiming at clarifying the applicability of HLWB within the new approach, it is
convenient to point out that, it solves the BAP problem [8, 9]. It computes the simul-
taneous projections onto each set, takes a convex combination of the intermediate
points, and defines the next iterate.

Next, the simultaneous HLWB algorithm [8] is presented for the sake of
completeness.

Algorithm 2 Initialization: Let y0 = y be the given point y whose projection
PC(y) onto C = ⋂m′

i=1 Ci 	= ∅ is sought after by the BAP. Let
{
σj

}∞
j=0 be a user

chosen steering sequence and let {wi}m′
i=1, be real positive numbers (weights) such

that
∑m′

i=1 wi = 1.

Iterative step: Take the steering parameter σj from the chosen steering sequence.

Given the current iterate yj , calculate T (yj ) = ∑m′
i=1 wiP

D
i (yj ) and the next

iterate:
yj+1 = σjy

0 + (1 − σj )T (yj ).
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The sequence {σj } must satisfy the following conditions:

(i) 0 ≤ σj < 1;
(ii) limj→∞ σj = 0;

(iii)
∑∞

j=0 σj = ∞ and
(iv)

∑∞
j=0 |σj − σj+q | < ∞, q > 0.

In the new algorithm, HLWB will be used for obtaining an approximation to the
solution of problem (4), where the former convex set C will be the intersection of
Az− r = b, with li ≤ zi ≤ ui , i = 1, . . . , n, and the initial point at the k-th iteration
of Algorithm 1, will be y0 = [

xk; 0
]
.

For each constraint of Az− r = b, we will denote by Ci =
{
y = [z; r] ∈ �n+m :

aTi z − eTi r = bi
}
, i = 1, . . . , m.

Given an arbitrary y = [z; r] ∈ �n+m, we denote for each i = 1, . . . , m, ri(y) =
aTi z−eTi r−bi , āTi = [ai; −ei]T , ei ∈ �m, and the oblique projection of y onto Ci , by

PD
i (y) = y − ri(y)

āTi D
−1āi

D−1āi . (5)

We define Cm+i = {
y = [z; r] ∈ �n+m : li ≤ zi ≤ ui

}
, for i = 1, 2, . . . , n.

Given an arbitrary y = [z; r] ∈ �n+m, for each i = 1, . . . n we denote rm+i (y) =
max(0,max(zi − ui, li − zi)), and PD

m+i (y) is calculated by

PD
m+i (y) = y − sgn(zi − li )

rm+i (y)

‖ei‖2
D−1

D−1ei ,where ei ∈ �n+m. (6)

In particular, in this paper we will use a diagonal weighting matrix D =(
In 0
0 Dm

)
, therefore the last previous projections will be computed by

PD
m+i (y) = y − sgn(zi − li)rm+i (y)ei , i = 1, . . . , n, where ei ∈ �n+m.

Analogously, the projections (5) onto Ci , i = 1, . . . , m, will be computed by

PD
i (y) = y − ri(y)

‖ai‖2 + eTi D
−1
m ei

(
ai

D−1
m (−ei)

)
,where ei ∈ �m. (7)

3 Incomplete oblique projections algorithm

As said in the Introduction, for possibly inconsistent systems Ax = b, x ∈ B, A ∈
�m×n, b ∈ �m, m ≥ n, we will consider the standard problem (1). We will follow the
alternating scheme of Algorithm 1 for solving the equivalent problem that minimizes
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the distance between the sets described in (3). For that purpose we will use a diagonal
weighting matrix D ∈ �(n+m)×(n+m), as defined in the previous Section.

Given pk = [
xk; rk] ∈ Pb, and its projection qk = [

xk; 0
]

onto Qb, we will
denote by P

(
qk

)
the projection of qk onto Pb, which is the solution of problem (4).

As mentioned before, instead of defining pk+1 as the exact solution of (4), we
define it by means of the incomplete resolution of that problem.

In order to define an inexact projection, we consider the following:

Definition 1 Given an approximation [z; v], z ∈ �n, v ∈ �m, of P
(
qk

)
, we will

denote by P r([z; v]) = [
zB; r(zB)], where zB is the projection of z onto half spaces

xi ≥ li , or xi ≤ ui , i = 1, . . . , n, and r(zB) = AzB − b.

Aiming at obtaining properties of the sequence
{
pk

}
generated by the new algo-

rithm that guarantees convergence to the solution of (1) we establish an “acceptance
condition” that an approximation to P

(
qk

)
must satisfy, using the iterative HLWB

algorithm for solving (4).

Definition 2 Acceptance Condition. Given 0 < βk < 1, 0 < γ < 1 an approx-
imation pj = [zj ; vj ] of the solution of (4) is acceptable, considering the inexact

projection P r(pj ) =
[
zBj ; r(zBj )

]
, if it satisfies:

(i) |pj − T (pj−1)‖D ≤ βk‖qk − T (pj−1)‖D. (8)

(ii) ‖P r(pj )− qk‖2
D < ‖pk − qk‖2

D, and

‖P r(pj )− pj‖2
D ≤ γ ‖P r(pj )− pk‖2

D. (9)

Lemma 1 Applying the HLWB algorithm for solving (4) it is possible to find an
iterate pj = [zj , vj ] satisfying conditions (8) and (9).

Proof Since the sequence obtained by HLWB converges to the solution of (4), the
sequence {pj } = {[zj ; vj ]} tends to P

(
qk

) = [
ẑ; v̂], then ‖P r(pj )− P

(
qk

)‖2
D goes

to zero when σj tends to zero.
By definition pj satisfies ‖pj − T (pj−1)‖D = σj‖qk − T (pj−1)‖D . Then, given

0 < βk < 1, as σj tends to zero, a σj exists such that σj < βk . Hence, it is possible
to satisfy condition (8).

If P
(
qk

) 	= pk , ‖P (
qk

) − qk‖2
D < ‖pk − qk‖2

D , and considering that ‖pj −
P

(
qk

)‖2
D tends to zero, there exists an j such that ‖pj − qk‖2

D < ‖pk − qk‖2
D .

Furthermore, considering that the sequences ‖P r(pj ) − P
(
qk

)‖2
D and ‖P r(pj ) −

pj‖2
D go to zero, it is possible to satisfy condition (9).

Our proposal is to replace in the new algorithm the exact solution P
(
qk

)
of (4) by

P r(pj ) if it satisfies the above conditions. Thus, we will define

pk+1 = P r(pj ), if pj = [zj ; vj ] satisfies conditions (8) and (9). (10)
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Notation In the following, the index j corresponding to the accepted approximation
pj = [zj , vj ] will be denoted by jk to indicate that it corresponds to the k-th iteration
of the new algorithm.

Algorithm 3 Bounded Incomplete Oblique Projections (BIOP)

Initialization: Given γ , 0 < γ < 1, a positive definite diagonal matrix Dm of
order m and

{
βk

}∞
0 , such that βk > 0 and βk tends to zero, if k tends to ∞.

Given p0 = [
x0; r0

]
, x0 ∈ B, r0 = Ax0 − b and q0 = [

x0; 0
] ∈ Qb.

Set k ← 0.
Iterative Step: Given pk = [

xk; rk], set qk = [
xk; 0

]
, xk ∈ B, βk > 0.

• Calculate an approximation to the solution of (4) satisfying the conditions
of definition 2, applying HLWB from the initial point y0 = [z0; v0] = qk,
and using the sequence {σj }:

– Compute for j = 1, 2, . . ., yj = σj y0 + (1 − σj )T (yj−1), until
finding an index jk such that yjk = [

zjk , vjk
]

and P r
(
yjk

)
satisfy

conditions (8) and (9).

• Define pk+1 = [
xk+1; rk+1

] = P r
([
zjk , vjk

])
.

• If
[
xk+1; rk+1

]
satisfies the stopping condition, |‖rk+1‖ − ‖rk‖| <

ε max
(‖r0‖, 1

)
, define x∗ = xk+1 and r∗ = rk+1. STOP

• Define qk+1 = [
xk+1; 0

] ∈ Qb.
• k ← k + 1.

3.1 Convergence of the BIOP algorithm

We will consider the set of solutions to the problem (1):

L
sq
D = {x∗ ∈ B : for which r∗ = Ax∗ − b satisfies ATDmr

∗ = μ∗}, (11)

such that μ∗
i ≥ 0 if x∗i = li , and μ∗

i ≤ 0, if ui = x∗i , otherwise μ∗
i = 0, when

li < x∗i < ui .
The corresponding set in �m+n:

SD = {
p∗ : p∗ = [x∗; r∗] ∈ Pb such that x∗ ∈ L

sq
D

}
. (12)

In the following we analyze the convergence properties of the sequence given by
Algorithm 3 studying the relationship between two consecutive iterates pk and pk+1.

Lemma 2 Let
{
pk

} = {[
xk; rk]} be the sequence generated by the Algorithm 3,

then

(i) pk = [
xk; rk] and pk+1 = [

xk+1; rk+1
]

satisfy ‖rk+1‖2
Dm

≤ ‖rk‖2
Dm

−
‖xk+1 − xk‖2.

(ii) The sequence
{‖rk‖Dm

}
is decreasing and bounded, therefore it converges.
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(iii) The following three sequences tend to zero:
{‖pk+1 − pk‖2

D

}
,

{‖pk+1 −
P

(
qk

)‖2
D

}
and

{‖pk − P
(
qk

)‖2
D

}
, where P

(
qk

)
is the exact solution of (4).

(iv) The sequence
{
ATDmr

k−μk
}

goes to zero, μk being the vector of the Karush-
Kuhn Tucker (KKT) multipliers associated to the bound constraints at the
solution of the problem (4).

(v) The sequence
{
μk
i ∗ min

(
xki − li , ui − xki

)}
goes to zero.

Proof We get, as a consequence of the definition of pk+1 = [
xk+1; rk+1

]
, that

pk+1 = P r
([
zjk ; vjk

])
satisfies the condition (9), ‖pk+1−qk‖2

D < ‖pk−qk‖2
D , then

it follows that ‖rk+1‖2
Dm

satisfies ‖rk+1‖2
Dm

+ ‖xk+1 − xk‖2 < ‖rk‖2
Dm

from which

it follows that ‖rk+1‖2
Dm

< ‖rk‖2
Dm

− ‖xk+1 − xk‖2. Thus, the sequence
{‖rk‖Dm

}

is decreasing and bounded, and therefore it converges. Hence, ‖xk+1 − xk‖2 tends
to zero. As a consequence of that, we also obtain that

{‖pk+1 − pk‖2
D

}
goes to

zero.
By the conditions required in Definition 2 to accept pjk and P r(pjk ) =

[
zBjk ; vBjk

]

we know that ‖P r(pjk )− pjk‖D ≤ γ ‖pk − pk+1]‖2
D , then ‖P r(pjk )− pjk‖D tends

to zero.
Also, from the conditions in Definition 2 to accept pjk = [zjk ; vjk ], we obtain that

‖pjk − T (pjk−1)‖D = σjk‖qk − T (pjk−1)‖D ≤ βk‖qk − T (pjk−1)‖D . Thus, the
sequence of parameters {σjk } converges to zero because {βk} tends to zero. Therefore,
from the properties of the HLWB algorithm [9], ‖pjk −P

(
qk

)‖D tends to zero, when
k tends to ∞. Hence, we also obtain that ‖pk+1 −P

(
qk

)‖2
D tends to zero. Then, also

‖pk − P
(
qk

)‖2
D tends to zero.

In order to prove (iv), the components of the exact solution P
(
qk

)
will be denoted

by
[
x̂k; r̂k], to exhibit their dependence of the k-th iterative step.

The solution of a convex problem with linear equalities and inequalities constraints
satisfies KKT conditions [5]. Therefore, the exact solution P

(
qk

) = [
x̂k; r̂k] of

problem (4), satisfies

x̂k − xk = −ATDmr̂
k + μk, (13)

where μk is the vector of multipliers associated to the bound constraints at P
(
qk

)
. It

is known that, if li < x̂ki < ui then μk
i = 0. Otherwise, if x̂ki = li ,μk

i ≥ 0, and if x̂ki =
ui thenμk

i ≤ 0. Then, since ‖pk−P
(
qk

)‖2
D = ‖xk−x̂k‖2+‖rk−r̂k‖2

Dm
tends to zero,

considering the results in (iii), it follows that both ‖ATDmr̂
k −μk‖ and ‖rk − r̂k‖Dm

tend to zero. Therefore, since ‖ATDmr
k−μk‖ = ‖ATDm

(
rk−r̂k

)+ATDmr̂
k−μk‖,

we get that ‖ATDmr
k − μk‖ goes to zero. Thus, (iv) follows.

Furthermore, as a consequence of the previous result it turns out that μk is

bounded, and considering that ‖xk − x̂k‖ tends to zero, we get that
(
μk

)T (
xk − x̂k

)

also tends to zero.
In order to prove (v), it is known that for each i ∈ {1, 2, . . . , n}

such that li < x̂ki < ui , the product μk
i min

(
xki − li , ui − xki

)
is zero, because

μk
i = 0. Also, if x̂ki = li , the product μk

i min
(
xki − li , ui − xki

)
coincides with

μk
i min

(
xki − x̂ki , ui − x̂ki + x̂ki − xki

)
, then since xki − x̂ki goes to zero, an index kl
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exists such that for k > kl, μ
k
i min

(
xki − li , ui − xki

) = μk
i

(
xki − x̂ki

)
that we know

that goes to zero. Likewise if x̂ki =ui , the product μk
i min

(
xki − li , ui − xki

)
coincides

with μk
i min

(
xki − x̂ki + x̂ki − li , x̂

k
i − xki

)
. Hence, since xki − x̂ki converges to zero,

an index ku exists such that for k >ku the product is equal to μk
i

(
x̂ki − xki

)
. Hence,

we get (v).

Lemma 3 Let {pk} = {[
xk; rk]} be the sequence generated by the Algorithm 3, then

(i) There exists a subsequence of {pk}, denoted {pks }∞s=1 = {[xks ; rks ]}, satisfying
rks = Axks − b, convergent to [x; r] ∈ SD . Furthermore,

(ii) Every limit point of {pk} is in SD .
(iii) If SD is a singleton set the sequence

{[
xk; rk]} converges to p∗, p∗ ∈ SD .

Proof Considering that xk ∈ B, we know a subsequence {xks } exists convergent to
x in B. Hence, the subsequence {pks } = {[xks ; rks ]}, satisfying rks = Axks − b, is
convergent to [x; r] ∈ Pb. By (iv) of the Lemma 2, we know that ATDmr

ks − μks

tends to zero. Furthermore, by (iii) of the Lemma 2 ‖xks − x̂ks‖ and ‖rks − r̂ks ‖Dm

tend to zero, then ‖x̂ks − x‖ tends to zero, as well as ‖r̂ks − r‖Dm .
Therefore, μks = xks − x̂ks + ATDm

(
r̂ks

)
converges to μ = ATDm(r),

satisfying r = Ax − b. Moreover, by the KKT conditions of problem (4),
μ
ks
i min

(
x̂
ks
i − li , ui − x̂

ks
i

) = 0, with μ
ks
i ≥ 0 if x̂ksi = li , and μ

ks
i ≤ 0 if x̂ksi = ui .

Then, it follows that if xi satisfies li < xi < ui , there exists ki , such that for ks > ki ,
|x̂ksi − xi | < 0.5 ∗min (xi − li , ui − xi). Hence, for ks > ki , μ

ks
i = 0, so we get that

μi = 0. If xi , satisfies xi = li , since |x̂ksi − xi | tends to zero, the same happens with

|x̂ksi −li |, and therefore there exists kLi , such that for ks > kLi , |x̂ksi −li | < 0.5∗|ui−li |,
then μ

ks
i ≥ 0, and it follows that μi ≥ 0. Likewise we deduce that if xi = ui , then

μi ≤ 0.
Hence, μi min (xi − li , ui − xi) = 0, with μi ≥ 0 if xi − li = 0, and μi = 0 if

li < xi < ui , and μi ≤ 0 when xi = ui , taking into account that x̂ks tends to x. As
a consequence of the last result, [x; r] ∈ Pb, satisfies [x; r] ∈ SD Therefore, [x; r]
satisfies the optimality conditions of the problem (1). Then, (i) follows.

From the proof of (i), we get (ii). Every convergent subsequence has its limit point
in SD .

In order to prove (iii), under the hypothesis that the set SD has only one element,
we consider that the domain is bounded, and since the sequence ‖xk+1 − xk‖ goes to
zero, applying Theorem 14.1.3 in J.M. Ortega and W. C. Rheinboldt [15], we obtain
that the sequence

{[
xk; rk]} converges to p∗ ∈ SD .

4 Numerical experiments

The objectives of the following experiments are two-fold. First we compare
our algorithm with other methods, in relation to the rate of decrease of the
norm of the residual, reporting the number of iterations needed for satisfying
the convergence conditions and the corresponding CPU time. In the second part
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we analyze the BIOP behavior when solving image reconstruction problems
comparing it with IOP (Scolnik et al. [19]). All visualizations have been obtained
using MATLAB 7.0

For the first purpose, we have implemented our algorithm in Fortran 77 and
MATLAB 7. We made some comparisons of the BIOP algorithm with BVLS,
implemented in Fortran 77, which solves linear least-squares problems with upper
and lower bounds on the variables, using an active set strategy. It is documented by
Stark and Parker [23]. We have also compared our algorithm with one method of the
SLS system, a software in MATLAB for sparse least squares problems. That method
is SBLS2, for solving sparse box constrained least squares problems, in the version of
Mikael Lundquist, Linkoping University, Sweden, http://www.mai.liu.se/∼milun/sls,
which computes the solution by a version of the block principal pivoting algorithm
described by Portugal et al. in [17].

4.1 Test problems

The problems used for these numerical experiments are some from the RRA (real,
rectangular, assembled) part of Harwell-Boeing Collection. Those least squares prob-
lems are from the set LSQ. In particular we used four matrices, such that the
second and fourth matrix have the same pattern as the first and third respectively
but are much more ill-conditioned. The matrices in this set are: WELL1033 and
ILLC1033(real unsymmetric, 1033 by 320, 4732 entries), WELL1850 and ILLC1850
(real unsymmetric, 1850 by 712, 8758 entries). Also, aiming at testing problems
with larger dimensions, we tested some randomly generated dense matrices with
DQRT15(LAPACK) which, using the parameter RKSEL = 2, generates a rank defi-
cient matrix A(mxn) such that m is the number of rows and n is the number of
columns of A, and rank = 3

4 min(m, n).
Other systems arise from the two image reconstruction problems used by Popa

and Zdunek in [16] and other problems from the SNARK System [2]. The first simu-
late real objects in electro-magnetic geotomography, leading to problems whose data
comes from projections made with a limited angular range. Those problems, A1 and
A2, lead to inconsistent systems, and the corresponding matrix has deficient rank due
to the angle limitations of the projections. Also aiming at testing the algorithm with
larger dimensions, we considered other problems from the SNARK System, with
m ≥ n. They are B1, B4, B6 and B7. The dimensions of these matrices are showed
in Table 1. For A1 and A2 we analyze the results with a system Ax = b + δb, aris-
ing from simulating noisy perturbations of the right hand side b = Axexact . The
problems here analyzed exactly correspond to those mentioned as case 2 in [16].
Starting from the knowledge of b = Axexact , a perturbation δb is defined satisfying
‖δb‖/‖b‖ ≈ 5.5 %. Since δb = δbA+δbA⊥ , where δbA ∈ R(A) and δbA⊥ ∈ R(A)⊥,
where R(A) denotes the subspace spanned by the columns of A, and R(A)⊥ stands
for the orthogonal subspace to R(A). Those perturbations are applied to each problem
according to:

A1 case (2): ‖δbR(A1)‖ = ‖δbR(A1)⊥‖ = 1.76.
A2 case (2): ‖δbR(A2)‖ = ‖δbR(A2)⊥‖ = 11.3076.

http://www.mai.liu.se/~milun/sls
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Table 1 Dimensions
Problem m× n

A1 144 × 144

A2 900 × 900

B1 3452 × 1025

B4 896 × 625

B6 896 × 625

B7 27376 × 9025

Perturbations for both problems were computed using a standard procedure in
MATLAB.

4.2 Numerical results

In these numerical experiments we have considered in the implementation of BIOP

the matrix Dm = Im, and the sequence {σj } =
{ 1
j+1

}
, for j > 0 and parameters wi ,

equal to 1
n+m

, for i = 1, 2, . . . , n + m. BIOP was implemented sequentially, with

parameters γ = 10−1 and βk = 1
k+1 .

The stopping condition for the three algorithms was: if |‖rk+1‖ − ‖rk‖| <

ε max(‖r0‖, 1), with ε = 10−6. The convergence criterion allows to terminate the
iterations when decreasing stagnates.

In Table 2 we compare the results obtained with BIOP and BVLS, implemented
in Fortran, in regard to the number of iterations(Iter) and the CPU time required by
them for each problem p. RE(p) denotes the final value of the norm of the residual
obtained by the algorithms for each problem p, when using ε = 10−6 for the stopping
criterion.

We report for BIOP the number of iterations(Iter) and CPU time required for each
problem p, for reaching the stopping condition using ε = 10−6. The number of
iterations (Iter) of BIOP is the total of inner iterations required by the process since
in each one of the main iterations another inner iterative process is needed. We report
for BVLS the number of iterations(Iter) and CPU time required for each problem p,
for reaching the stopping condition or a norm of the residual less or equal than the
one obtained by BIOP.

We also give, the corresponding CPU time in seconds.
The dimensions of the test problems are shown using m for the number of rows, n

for the number of columns.
It is necessary to point out that the solver BVLS does not deal with sparsity. Thus,

as observed in the previous Table 2, its CPU times are quite significant. Taking this
into account it is fair to compare our algorithm with another able to solve sparse
problems under the same computational framework.

In Table 3 we compare the number of iterations and the CPU time for BIOP and
for the SBLS2, both implemented in MATLAB. We report the results using the same
notation of the previous table.
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Table 2 BIOP-BVLS

p CPU/Iter RE(p)

BIOP BVLS BIOP BVLS

B1

3452 × 1025 1.31/163 563.23/275 8.44 8.43

B6

896 × 625 0.37/275 213.58/307 3.80 3.80

Well

1033 × 322 0.25/382 29.2 /152 4362.7 4362.1

Illc

1033 × 322 0.75/678 19.3 /129 5188.2 5187.6

Well

1850 × 712 1.95/1728 814.4 /388 4757.8 4757.6

Illc

1850 × 712 6.7 /2297 214.2/240 5469.0 5468.6

A1(case 2)

144 × 144 0.01 /111 5.9 /186 0.5 0.7

A2 (case 2)

900 × 900 0.39 /145 6741.4 /1120 2.9 2.9

Rand

40 × 20 0.06 /932 0.05 /9 4.76 4.76

Rand

500 × 300 0.06 /9 NC*/900 0.14 NC*

NC*: Does not converge to a solution into the box.

It follows from those results that the SBLS2 is unable to solve several problems.
The reason is that matrices A1, A2 are rank deficient. On the other hand, BIOP solved
all test problems, a convenient property of the projection methods. Moreover, when
both algorithms solve a given problem BIOP is faster than SBLS2.

In Fig. 1, we analyze the performance data using the performance profiles of Dolan
and Moré, as described in [11]. We compare the performance of BIOP and SBLS2
methods in relation to the CPU time required for each problem when the convergence
criterion is met. The percentage of the test problems for which a given method is
best, is given on the vertical axis of the plot.

It follows from those results that the BIOP method is also able to reduce the
residual more rapidly.

4.3 Image reconstruction problems

In our previous papers we have compared IOP with other algorithms for solving
image reconstruction problems. For instance, in [19] we compared IOP with ART
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Table 3 BIOP-SBLS2

p CPU/Iter RE(p)

BIOP SBLS2 BIOP SBLS2

B1

3452 ×1025 1.77/163 1.95/6 8.44 8.45

B4

896 ×625 0.34/135 0.78/9 3.82 3.91

B6

896 ×625 0.55/216 0.77/9 3.80 3.91

B7

27376 ×9025 34.1/153 NC*/100 74.3 NC*

Well

1033 ×322 0.44/336 NC* /100 4346.9 NC*

Illc

1033x322 0.52/406 0.09 /10 5182.0 5155.0

Well

1850 ×712 0.55/225 0.05 /9 4679.6 4749.9

Illc

1850x712 0.61 /261 NC*/100 5845.2 NC*

A1 (case 2)

144 ×144 0.02 /95 NC* /100 0.70 NC*

A2 (case 2)

900 ×900 0.75 /200 NC* /200 2.90 NC*

Rand

2000 ×750 0.16 /43 0.40 /12 2.28e09 2.28e09

Rand

1200 ×760 0.05 /24 0.30 /13 3.58e07 3.58e07

Rand

1000 ×765 0.03 /20 NC* /100 6.25e07 NC*

NC*: Does not converge to a solution into the box.

(underrelaxed) [5], which is one of the most important class of methods in this field,
and CAV [6] using test problems from SNARK [2], showing that is very efficient.
Those results showed that IOP requires more CPU time than ART in the sequential
implementations, but it obtains better images in some of the problems. In regard to
CAV our algorithms are superior both from the points of view of the CPU time and the
images’ qualities as shown in [19]. In [21] we have also compared a version of IOP
called EIOP for dealing with rank deficient problems with KERP (Popa and Zdunek
[16]) and LANDW [14]. The numerical results given there demonstrate that EIOP
outperforms KERP and LANDW, both in the rate of convergence and the required
CPU time. In the case of image reconstruction problems, EIOP obtains the closest
image to the original one in much less CPU time than KERP. In that paper we used
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Fig. 1 CPU-time: BIOP-SBLS2

problems A1, A2 with the perturbations proposed in [16], and it turned out that EIOP
gave better results than KERP both in terms of CPU time and distance to the true
image.

In all those papers we have considered unconstrained linear least squares prob-
lems. Now, in this paper we use BIOP with bounds on the variables, for testing if
it is possible to improve in image reconstruction problems the final distance to the
true solution when using x ≥ 0, and suitable upper bounds. Hence, in this part we
analyze the BIOP behavior when solving image reconstruction problems compared
with IOP. From the theoretical results we observe that IOP requires γ ≤ 0.5 for con-
vergence in the case of rank deficient problems [21]. We have used γ = 0.01 in the
initial iteration, then γ = 10−1.
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Fig. 2 Distance BIOP-IOP: A1(case 2)(left)- A2(case 2) (right)
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Fig. 3 Distance BIOP-IOP: B1 − B4(top) B6 − B7(bottom)

We show curves representing the distance of the obtained density with regard to
the one of the true image, considering the next Definition [6]:

• Distance: ‖xk−xexact‖
σexact

√
N

where

σexact = ‖xexact − ρexact‖√
N

, and ρexact =
∑N

j=1 |xexactj |
N

,

N = number of pixels of each image, and xexact the density of true image.

In Fig. 2 we compare the performances of BIOP and IOP by means of the distance
of the reconstructed images for problem A1(case2) and A2(case2), from [16].

In Fig. 3 we compare the performances of BIOP and IOP by means of the distance
of the reconstructed images for problem B1, B4, B6 and B7, from SNARK.

From the point of view of the number of iterations BIOP reaches faster than IOP
the image closest to the original for all test problems. BIOP also obtains the minimum
distance, and keeps it below the one corresponding to IOP. It reaches distances similar
to those obtained with regularization techniques [20, 22].
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5 Conclusions

We have presented in this paper the results obtained when including bound con-
straints into the IOP algorithm. The need of including these sort of constraints appear
in, for instance, image reconstruction applications where the solution is positive and
the density values are bounded. Also in nonlinear optimization problems, like in the
SQP method, it is necessary to solve least squares problems in a box.

As it can be seen in the graphs A1 − A2 and B1 − B7 when x ≥ 0 is used, the
convergence to the true image is faster, from the point of view of the number of iter-
ations, than in the case of using IOP. In previous papers we had to use regularization
techniques in order to obtain results similar to the ones here presented, but at a higher
computational cost [20, 22].

As the numerical results show, the BIOP effectiveness is remarkable in several
problems as compared to SBLS2 because in particular it does not fail to converge.
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