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In visual discrimination tasks, the subject collects information about 
sensory stimuli and makes behavioral decisions accordingly. In this 
study, we are searching for coding strategies in visual cortices of the 
macaque (macaca mulatta) that relate to both stimuli and behav-
ior. Multi-units within a single cortical column are recorded in V1 and 
V4 areas simultaneously while the subject is performing a change 
detection task with matching and non-matching stimuli. We assess 
systematic differences in distribution of spike counts for matching vs. 
non-matching stimuli (detection probability) and for correct vs. incor-
rect behavioral performance (choice probability, [1]) on the single cell 
and on the population level. In addition, we estimate pair-wise cor-
relations of spike counts. The spiking signal is weakly but significantly 
predictive on the type of stimulus (matching vs. non-matching stimuli 
with correct behavioral responses) as well as on different behavioral 
choices with correct and incorrect behavioral performance (correct vs. 
incorrect behavioral responses on non-matching stimuli). In both areas, 
the effect is limited to the superficial layers of the cortical column. 
Detection and choice probability are consistent, the behavioral choice 
“match” being characterized by higher spike counts in both cases. In 
V1, but not in V4, the signal corresponding to the choice”match” is even 
statistically invariant with changes in both the type of the stimulus and 
the behavioral performance. In incorrect trials, neural activity in V1 is in 
addition characterized by a systematic bias in spike counts already at 
the beginning of the trial. The bias is consistent with the future behav-
ioral choice and is only present in the deep cortical layers. Comparing 
the distribution of correlation coefficients across pairs of neurons with 
matching and non-matching stimuli, distribution of coefficients in V4 
is less variable with matching stimuli, in particular for short (0-0.5 mm) 
and middle-range (0.5-1 mm) inter-neuron distances. This effect could 
be interpreted as a fast adaptation of neural responses to two con-
secutive presentations of the same stimuli [2]. A change in long-range 
(>1 mm) correlations in V4 is observed when comparing trials with cor-
rect and incorrect behavioral performance, correlations in incorrect tri-
als showing higher variability. In V1, we did not observe any systematic 
changes in spike-count correlations with different stimuli. However, 
correlations are significantly more variable in trials with incorrect com-
pared to correct behavioral performance. This effect is once again lim-
ited to deep cortical layers. Higher variability of correlations in V1 might 
be a signature of spontaneously generated network state that is more 
likely leading to incorrect behavioral performance. Finally, we test the 
interactions between choice probabilities and spike-count correlations. 
Choice probabilities and correlations do not interact in V1, but weakly 
interact in the V4 area, where cells with similar choice probabilities tend 
to be more strongly correlated. In summary, we observe various differ-
ences in the first and second order statistics of spike counts in both V1 
and V4 areas. The first order statistics is related to coding of both stimuli 
and behavioral choices while correlations would rather modulate the 
efficacy of encoded signals.
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The interplay between structural connectivity (SC) and neural dynamics 
is still not yet fully understood. Applying topological analysis, the con-
nectome approach links this anatomical network to brain function. Here 
we adopt a computational approach to find topology features related 
to the stability on global neural dynamics. A previous study of a mean 
field model based on the human cortex network, shows at least 2 global 
neural states, with either a low or high firing rate pattern [1, 3]. These 2 
possible states, or bistability, emerge in the model within a range of the 
global coupling parameter G, limited by critical values G- and G+[1, 3]. 
Also, at this bistable range, this model achieves the highest correlations 
with empirical resting state fMRI data. How the network connectivity pat-
tern shapes the critical G values has not been yet investigated. Our aim is 
to identify local or global topology features related to the critical G val-
ues. We studied 4 different SC networks: a cortical parcellation of human 
brain [2], a human binary equivalent, a Random Network (RN) having 
the same degree distribution as human SC, and an equivalent Watts & 
Strogatz Small World (SW) network. For each of the analyzed networks, 
values in their critical G points have small or null variability. Then, we 
selectively prune the edges of the networks and calculate their critical G 
values to show the effect of structure pattern in maintaining the bistable 
dynamics. The edges were pruned selectively based on either the degree 
or the k core decomposition measure; interpreted as a local or global 
topology feature, respectively. Also, the pruning procedure is applied 
to the edges on one of 3 specific ways: i) high degree/k core nodes, ii) 
random cuts, and iii) low degree/no k core nodes. The highest shifts in 
critical G values are achieved when the edges of high degree or k core 
nodes are pruned. In contrast, when we prune those edges belong to low 
degree or no k core nodes, the shifts in the critical G points are irrelevant. 
We interpret this as that the model can use either local or global connec-
tivity pattern in order to stabilize the critical G points. Furthermore, our 
study show that shifts in the critical G points are statistically equivalent 
when the degree distribution (but not k core structure) is shared, such as 
in the binary human SC compared to the RN. Therefore, in our simulation 
the degree distribution, interpreted as a local connectivity feature, deter-
mines the critical G points for bistability, capturing the essential struc-
tural pattern of the network. We also show that it is possible to obtain 
bistability in other types of networks, suggesting that structure dynamic 
relationships may obey a topological principle.
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Chaotic dynamics of neural oscillations has been shown at the single 
neuron and network levels, both in experimental data and numerical 
simulations. Theoretical works suggest that chaotic dynamics enrich 
the behavior of neural systems, by providing multiple attractors in a 
system. However, the contribution of chaotic neural oscillators to rel-
evant network behavior has not been systematically studied yet. We 
investigated the synchronization of neural networks composed of con-
ductance-based neural models that display subthreshold oscillations 
with regular and burst firing [1]. In this model, oscillations are driven 
by a combination of persistent Sodium current, a hyperpolarization-
activated current (Ih) and a calcium-activated potassium current, 
very common currents in the CNS. By small changes in conductance 
densities, the model can be turned into either chaotic or non-chaotic 
modes [2]. We study synchronization of heterogeneous networks 
where conductance densities are drawn from either chaotic or non-
chaotic regions of the parameter space. Measuring mean phase syn-
chronization in a small-world network with electrical synapses, we 
characterize the transition from unsynchronized to synchronized state 
as the connectivity strength is increased. First, we draw densities from 
fixed-size regions of the parameter space and find the transition to 
synchronized oscillations is always smooth for chaotic oscillators but 
not always smooth for the nonchaotic ones. However, non-smooth 
transitions were found to be associated to a change in firing pattern 
from tonic to bursting. Nevertheless, we noticed that chaotic oscilla-
tors display a wider distribution of firing frequencies than non-chaotic 
oscillators, thus making more heterogeneous networks. Next, we draw 
the conductance densities from the parameter space in a way that 
maintained the same distribution of firing frequencies (hence the 
heterogeneity of the network) for both chaotic and non-chaotic. In 
this case, synchronization curves are very similar, being second order 
phase transition for both cases. However, we cannot discard that non-
chaotic oscillators become chaotic (or vice versa) when in a network, 
because of the extra parameter associated to the electrical synapse. 
Finally, when the chaos-inducing Ih current is removed, the transition 
to synchrony occurs at a lower value of connectivity strength but with 
a similar slope.
Our results suggest that the chaotic nature of the individual oscillators 
may be of minor importance to the synchronization behavior of the 
network. Ongoing work is being conducted to measure the chaotic 
nature of the whole network, and how it is related to the synchrony 
behavior.
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Stochastic spatial molecular reaction-diffusion simulators, such as 
STEPS (STochastic Engine for Pathway Simulation) [1], often face great 
challenges when simulating large scale complex neuronal pathways, 
due to the massive computation required by the models. This issue 
becomes even more critical when combining with cellular electro-
physiological simulation, one of the main focuses in computational 
neuroscience research. One example is our previous research on sto-
chastic calcium dynamics in Purkinje cells [2], where a biophysical cal-
cium burst model was simulated on approximate ¼ of a Purkinje cell 
dendritic tree morphology using the serial implementation of spatial 
Gillespie SSA and electric field (EField) solver in STEPS 2.0. Even with 
a state-of-the-art desktop computer, it still took months to finish the 
simulation, significantly slowing down research progress.
One possible, yet not trivial approach to speedup such simulation 
is parallelization. In CNS2016 we reported our early parallel imple-
mentation of an Operator-Splitting solution for reaction-diffusion 
systems, which achieved super-linear speedup in simulation of the 
buffer components of the above published model on full Purkinje 
cell morphology. While the performance of our parallel implementa-
tion was promising, the test model had no calcium presented in the 
system and only buffers were simulated. Since buffers were uniformly 
distributed in the geometry, the loading of each computing process 
was relatively balanced, resulting in a close to ideal scenario for par-
allel computation. The membrane potential computation, as well as 
voltage-dependent reactions in the published model, were omitted 
due to the lack of a parallel EField solver at the time. In a recent pub-
lication [3], we further extended the model by applying a dynamically 
updated calcium influx profile extracted from the published calcium 
burst simulation. Our result shown that in a realistic scenario with 
dynamic calcium influx, data recording, and without special load bal-
ancing, our parallel reaction-diffusion solution can still achieve more 
than 500 times of speedup with 1000 computing processes comparing 
to the conventional serial SSA solution.
STEPS 3 is the first public release out of the collaboration between the 
CNS Unit of OIST and the Blue Brain Project of EPFL. The ongoing collab-
oration aims to deliver a scalable parallel solution for future integrated 
stochastic molecular and electrophysiological neuron modelling. Com-
bining the parallel TetOpSplit molecular solver developed by OIST and 
EPFL’s parallel EField solver based upon the PETSc library, our new 
release addresses the limitations of above test cases, and allows full 
scale parallel simulation of the complete Purkinje cell calcium burst 
model. It also contains new changes that are essential to parallel STEPS 
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