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Abstract Cooperative binding has been described in many publications and has been
related to or defined by several different properties of the binding behavior of the
ligand to the target molecule. In addition to the commonly used Hill coefficient, other
characteristics such as a sigmoidal shape of the overall titration curve in a linear
plot, a change of ligand affinity of the other binding sites when a site of the target
molecule becomes occupied, or complex roots of the binding polynomial have been
used to define or to quantify cooperative binding. In this work, we analyze how the
different properties are related in the most general model for binding curves based on
the grand canonical partition function and present several examples which highlight
differences between the cooperativity characterizing properties which are discussed.
Our results mainly show that among the presented definitions there are not two which
fully coincide. Moreover, this work poses the question whether it can make sense
to distinguish between positive and negative cooperativity based on the macroscopic
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binding isotherm only. This article shall emphasize that scientists who investigate
cooperative effects in biological systems could help avoiding misunderstandings by
stating clearly which kind of cooperativity they discuss.

Mathematics Subject Classification 82B20 · 82B05 · 92C40 · 92C05 · 92E99

1 Introduction

The topic of cooperative binding has been addressed in many publications (e.g. Ben-
Naim 2001; Gutierrez et al. 2012; Hunter and Anderson 2009; Ullmann and Ullmann
2011) and different underlying equations, measures and definitions of “cooperativity”
have been used since the discovery of cooperative binding of oxygen to hemoglobin
(Hill 1910, 1913). Among the different equations which have been used to describe
binding curves are the Hill equation, the Adair equation, the Klotz equation (for a
review of the history of these equations see e.g. Stefan and Le Novère 2013) and sev-
eral “measures” or “indicators” have been developed, sometimes based on the validity
of the respectivemodel. Even though alreadyHill (1985) provided a rigorous treatment
of cooperative binding based on statistical mechanics nearly thirty years ago (which
included results of even earlier work) and which in particular highlighted that different
concepts of cooperativity do not necessarily coincide, these consistency problems are
still not fully recognized by the scientific community investigating cooperative phe-
nomena. For instance, Hill (1985) clearly highlighted that the significance of the A.V.
Hill coefficient (in the form of how it was initially generalized from the Hill to the
Adair equation) as an indicator of cooperativity depends on a certain kind of symmetry
between the binding sites and should be substituted by another quantity if an asym-
metric system is considered. In this work, we will follow Hill’s treatment of binding
curves in the setup of the grand canonical ensemble, analyze under which circum-
stances different measures of cooperativity coincide and highlight difficulties which
will arise if different measures are used. In particular, we present several hypothetical
binding systems to illustrate differences between the concepts of cooperativity. We
start with a recapitulation of the grand partition function in the next section which is
followed by a section on definitions of cooperative binding related to the ligand activ-
ity (“effective concentration”) dependent behavior on the macrostates (the number of
bound ligands) and a section on definitions of cooperative binding on the microstates
(including the information which sites are occupied). Note that this work deals with
cooperative ligand binding. The term “cooperativity” will not be discussed in other
contexts.

2 The grand canonical ensemble

The grand canonical ensemble defines a family of parameterized probability distri-
butions on the possible states of a small subsystem which is embedded in a much
larger system with which it can exchange energy and particles. The chemical activity
(“effective concentration”) of the particle in the whole system and the temperature of
the whole system are the parameters. If we regard a molecule with n ligand binding
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Cooperative binding: a multiple personality 1749

sites in solution as such a subsystem we obtain the following probability for a binding
state k = (k1, . . . , kn) ∈ {0, 1}n , where ki = 0 means that site i is unoccupied and
ki = 1 that site i is occupied (Schellman 1975):

P({k}) = g(k)λ|k|
�

k g(k)λ
|k| (1)

with
g(k) := exp(−G(k)/RT ) (2)

the so-called Boltzmann factor, G(k) the free energy of the molecule in state k com-
pared to a fixed, arbitrarily chosen reference state, R the Boltzmann constant, T the
absolute temperature in °K, λ ≥ 0 the thermodynamic activity of the ligand in the
environment and |k| the number of occupied sites in microstate k (note that the domain
λ ≥ 0 will underly all statements in this work). The overall titration curve is given
by the expectation of the number of bound ligands as a function of the activity of the
ligand in the solution at fixed temperature (also called “isotherm”):

Ψ (λ) = n · anλn + (n − 1) · an−1λ
n−1 + · · · + a1λ

anλn + an−1λn−1 + · · · + a1λ + 1
, (3)

where the denominator is the grand partition function, which is a polynomial Φ(λ) =
anλn + · · · + 1 of degree n in the case of a target molecule with n binding sites. Here,
the coefficients ai are the sum of all Boltzmann factors g(k) (Eq. 2) which belong to
the respective macrostate i . In the context of ligand binding, Eq. (3) is called the Adair
equation (Adair et al. 1925). The overall titration curve Ψ is what can be measured
easily in experiments and we would like to deduce some characteristics of the family
of measures described in Eq. (1) from Ψ . An example for a characteristic could be a
change in “affinity” of the ligand to a certain site if another site changes its binding state.
Note that even if Eq. (3) describes at first sight only the expectation of the distribution
of |k| (macrostates) as a function of λ, it defines the whole family of distributions
on the macrostates uniquely (see Martini 2014, p. 26). However, what is not uniquely
determined is the original distribution on themicrostates: an infinite number of families
of distributions on the microstates produce the same overall binding curve.

In the following, wewill introduce and discuss several quantities related to “cooper-
ativity”, starting from definitions by properties of the distributions on the macrostates.

3 Cooperative binding as a property of the family of distributions
on the macrostates

3.1 The A. V. Hill equation, the Hill coefficient and its generalizations

3.1.1 The A. V. Hill equation

The A. V. Hill equation was developed as a phenomenological description of the
overall binding of oxygen to hemoglobin (Hill 1910, 1913) and it is not based on any
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1750 J. W. R. Martini et al.

mechanistic principle of ligand binding. It is given by

Ψ (λ) = n
Kλα

1 + Kλα
. (4)

with n denoting the maximal number of bound ligands, K the positive association
constant and α an appropriate positive constant. Even though Eq. (4) is “only” a
phenomenological description and consequently not necessarily covered by Eq. (3),
we will investigate under which circumstances Eq. (4) fits to the setup of Eq. (3) to
generate an intuition of how to interpret α. Firstly, we see that, e.g. for the case of
α = n = 2 and K > 0, Eq. (4) fits the shape of Eq. (3) only if a1 = 0. This is not
possible, since the coefficients of the polynomial have to be positive, since they are
sums of exponential terms. However, Eq. (4) can be interpreted in this example as a
limit case with a1 much smaller than 1. To include these limit cases, we will from
now on also use binding polynomials with coefficients equal to zero. Including these
polynomials, the question arises whether there are other options than n = α ∈ N

denoting the number of binding sites to obtain an equation of shape of Eq. (4) from
Eq. (3). An answer is given by Proposition 1 and Example 1 (see the proof section for
the derivation of the results of Proposition 1).

Proposition 1 Let Eq. (4) with K > 0 be an overall binding curve of a molecule with
n binding sites and an �= 0 (all sites can be occupied simultaneously). Then

(a) α is a positive integer
(b) α divides n
(c) The coefficients aiα are nonzero for all i ∈ {1, . . . , n

α
}.

Note that Proposition 1 does not state that the denominator of Eq. (4) is necessarily
the binding polynomial, which is true if α = n. Indeed, binding polynomials can be
constructed whose corresponding overall titration curve satisfies Eq. (4) and α �= n,
which is illustrated by Example 1.

Example 1 An example of a binding polynomialwhose corresponding overall titration
curve is a Hill equation with a denominator unequal to the binding polynomial is

Φ(λ) = K 2λ4 + 2Kλ2 + 1. (5)

Its overall titration curve is given by

Ψ (λ) = 4K 2λ4 + 4Kλ2

K 2λ4 + 2Kλ2 + 1
= 4Kλ2

Kλ2 + 1
(6)

Proposition 1 showed that within the framework of Eq. (3), the parameter α can be
regarded as a measure which tells us how many ligand particles bind simultaneously
as a “package” to the target molecule.
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3.1.2 The Hill coefficient

In Eq. (4), the parameterα is called theHill coefficient, but it is also a useful tool (based
on the more general Definition 1) if the binding curve of interest is not of shape (4).
As illustrated in Proposition 1, the parameter α can be regarded as a measure which
tells us how many ligand particles have to bind as a “package” to the target molecule.
Even though, in the setup of the grand canonical ensemble, α has to be a natural
number (positive integer), we can generalize the domain of α with different concepts.
One possibility is to fit measured data to Eq. (4) with α ∈ R

+, thus “projecting” a
curve of shape of Eq. (3) on the class of functions described by Eq. (4) and interpret
α in an analogous way, even if α is not a natural number. A value of e.g. 1.5 for α

could be interpreted as packages of one and a half ligands which bind simultaneously.
Consequently, a value of α > 1 in the best fitting function of shape of Eq. (4) can be
interpreted as an indicator for cooperative binding. A second possibility to transfer the
Hill coefficient α to curves of shape of Eq. (3) is to generalize the definition such that
it coincides with α if we consider a curve of shape Eq. (4). This is done by Definition 1
which gives amore general definition of theHill coefficient andwhich can bemotivated
by following idea: We start with the concept that (“positive”) cooperativity between
different sites means that the binding of the ligand to one site increases the “affinity” of
the ligand to the other sites. This view leads to the intuition that cooperativity should
lead to a steep slope of the titration curve, since the binding enhances the binding to the
other sites (similar to a positive feedback loop). Having the example of hemoglobin
in mind, this means that only a “small” change in oxygen activity is required to transit
from a distribution with mainly completely empty molecules to a distribution with
mainly fully occupied molecules. Consequently, “positive” cooperativity should be
related to the steepness of the slope of an overall titration curve.

Definition 1 The Hill coefficient η of an overall titration curve Ψ is defined as the
slope of

HΨ (log(λ)) := log

�
Ψ (λ)

n − Ψ (λ)

�

(7)

as a function of the natural logarithm of the ligand activity log(λ), at the activity at
which Ψ = n

2 (Hill 1985, 1910, 1913).

Note that the Hill coefficient of Definition 1, coincides with α of Eq. (4), if this
equation describes the overall titration curve (see the proof section). Moreover note
that the transformation of the overall titration curve is strictly monotonous, i.e.

Ψ (λ0) > Ψ (λ1) ⇔ HΨ (log λ0) > HΨ (log λ1),

which means that we can express the information that we find in the Hill plots HΨ

also directly through Ψ .
We have summarized up to now that the Hill coefficient is motivated by the phe-

nomenological Eq. (4) and that the usual way to generalize it to curves of shape of
Eq. (3) is the use of Definition 1 which coincides with α of Eq. (4) if the function is of
this shape. Since the Hill coefficient is usually applied to curves of shape of Eq. (3),
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the question arises which characteristics of the family of measures defined by Eq. (1)
are really measured by the Hill coefficient. The answer to this question highlights a
certain phenomenon of the grand partition function: Within this setup, characteristics
of certain curves as a function of λ are related to characteristics of certain probability
measures on {0, . . . , n}when λ is fixed. In particular, the Hill coefficient describes the
variance of the distribution on the macrostates when Ψ = n

2 .

Proposition 2 The Hill coefficient ν of Definition 1 satisfies

η = 4

n
V(λ)|Ψ = n

2
(8)

with V(λ) denoting the variance of the distribution on the set of macrostates as a
function of λ and V(λ)|Ψ = n

2
its value at Ψ = n

2 .

Proposition 2 states that the Hill coefficient, which measures the steepness of the
slope of the expectation as a function of log(λ) atΨ = n

2 , also gives the variance of the
distribution on the macrostates at Ψ = n

2 . This fact fits well to the idea of (“positive”)
cooperativity increasing the “affinity” of the ligand to the other sites when a certain
site is occupied, since this circumstance will lead to a distribution on the macrostates
with more weight towards the extreme occupational states 0 and n than if the ligands
bind independently and thus will increase the variance.

However, the question arises why the pointΨ = n
2 is regarded. The answer is given

by the fact that under a certain symmetry condition, the slope and consequently the vari-
ance of the distribution on the macrostates has a local extremum at this point., and that
actually abnormally high values of variances of the distributions on the macrostates
are quantities of interest. Before presenting the symmetry condition according to Hill
(1985), we shortly describe why high values of variances of the distributions on the
macrostates are of interest at all: High values of the variance of the distribution on the
macrostates are important characteristics of the macroscopic system since the vari-
ances of independent systems define bounds. If a bound is exceeded, the observation
can not result from an independent system. An “abnormally high” variance is an indi-
cator for relevant interaction between the sites. To understand the threshold which is
recognized by theHill coefficient, let us regard an independent system. If the individual
binding sites do not interact (in terms of interaction energy zero), the sites will bind the
ligand stochastic independently for every value of λ (Martini et al. 2013b). Thus, the
variance of the sum (the macrostates) equals the sum of the variances of the Bernoulli
variables Xi describing whether site i is occupied or not. The variance of a Bernoulli
variable is bounded by 0.25, which is reached if P(Xi = 1) = P(Xi = 0) = 0.5.
Thus, a variance larger than 0.25n (which at Ψ = n

2 equals a Hill-coefficient of 1)
indicates that the observed behavior cannot result from a system of stochastic inde-
pendent binding sites [We will show later that this reference point of half-saturation
which is used in Definition 1 and which can often be found in literature (e.g. Hill 1985;
Onufriev and Ullmann 2004; Ge and Qian 2009; Hunter and Anderson 2009) is not in
general meaningful].

Hill (1985) gives the following symmetry condition: a λ0 exists such that

Ψ (aλ0) + Ψ (λ0/a) = n ∀a �= 0 (9)
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and states that the “definition of the Hill coefficient [. . .] can be used for all systems
with the above symmetry” (Hill 1985, p. 83). Since we did not find a proof for this
statement in literature, we will prove Proposition 3 (proofs can be found in Sect. 6).

In the following, we will use the notation

f � := d f

d log λ

for the derivative of a function with respect to the natural logarithm of the activity of
the ligand. Moreover, note that

Ψ � = V(λ), (10)

i.e. the derivative of the titration curve with respect to log λ is the variance of the
distribution on themacrostates |k| ∈ {0, . . . , n} (calculate the derivative or see e.g. Hill
1985).

Proposition 3 LetΨ be an overall titration curve satisfying Eq. (9). ThenΨ � and thus
the variance of the distribution on the macrostates |k| has a local extremum at λ0.

Hill (1985) also rewrote the condition of Eq. (9) to the equivalent statement that
the coefficients of the binding polynomial Φ(λ) = anλn + · · · + a1λ + 1 fulfill

arλ
r
0 = an−rλ

n−r
0 (11)

which means for the distribution at λ0 that

Pλ0(|k| = r) = Pλ0(|k| = n − r) ∀r ∈ {0, . . . , n}.

In particular, this equation illustrates that if a λ0 exists which satisfies Eq. (9) [or
equivalently Eq. (11)], this implies that λ0 also satisfies Ψ (λ0) = n

2 . Note that this
kind of symmetry does not necessarily mean that the binding sites are identical, i.e.
that they have the same energy levels. We will illustrate this point in Example 2.

Example 2 (Homooligomers and symmetry) Let M be a molecule with three binding
sites. Moreover, let gi be the Boltzmann factor of a microstate of macrostate i . Then
the binding polynomial is given by

Φ(λ) = g3λ
3 + 3g2λ

2 + 3g1λ + 1.

This special choice of the coefficients means that all the three sites are equal in terms
of the free energy of binding or releasing a ligand from the site: the Boltzmann factor
of a microstate only depends on the corresponding marcrostate (this could be a valid
assumption for homooligomers). In spite of the binding polynomial belonging to a
symmetric system (in terms of being composed of energetically identical sites) it
does not necessarily fulfill the symmetry condition of Eq. (9), which is illustrated by
g3 = 4, g2 = 2, g1 = 1 and λ0 = 0.603 as the activity of half-saturation. Moreover,
even any arbitrarily chosen binding polynomial with coefficients ai can result from a
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Fig. 1 Left side the mean of the number of occupied sites as a function of the ligand activity (the “overall
titration curve” or “isotherm”, a decadic logarithmic scale is used) of the polynomial of Example 3. Right
side the variance as a function of the ligand activity (at constant temperature) of the system described by
the polynomial of Example 3

molecule with identical sites with gi = ai
�n
i

�−1, which illustrates that the discussed
symmetry condition is not related to a chemical symmetry of the target molecule.
Conversely, a binding polynomial fulfilling Eq. (9) does not necessarily come from a
molecule inwhich all sites are identical. Eq. (9) describes a property of the distributions
on the macrostates and not on the microstates. The symmetry condition (9) is not
related to a chemical symmetry of the molecule. However, note here that the relation
gi = ai

�n
i

�−1 allows us to deduce the free energies of the microstates from the binding
polynomial (if we know that we are dealing with a chemically symmetric system).

We have seen that the Hill coefficient measures the variance of a certain distribution
and that the variance is extreme at the ligand activity of half-saturation if condition
Eq. (9) is satisfied. An important observation is that even if Eq. (9) is fulfilled, the Hill
coefficient is only a locally extreme variance, but not necessarily a locally maximal
variance which is illustrated by Example 3.

Example 3 Let us regard the bindingpolynomialΦ(λ) = λ4+0.1λ3+100λ2+0.1λ+1
which satisfies Eq. (9). Half-saturation is reached at λ0 = 1, where the corresponding
variance reaches a local minimum of 0.08. The overall titration curve (isotherm) as
well as the variance are illustrated in Fig. 1.

We have demonstrated up to now that—from a theoretical point of view– the use
of the reference point Ψ = n

2 is not fully convincing. Firstly, Example 3 showed that
even if Eq. (9) is fulfilled by the system, we can measure a locally minimal variance.
Secondly, if Eq. (9) is not fulfilled, the reference point Ψ = n

2 does not in general give
any special information. In particular, the variance at this point being smaller than
0.25n does not necessarily mean that there is no other point at which the variance is
“abnormally high”. This observations can motivate the following generalizations of
the Hill coefficient.
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3.1.3 An extension of the Hill coefficient definition: the maximal variance

An idea for the extension of the Hill coefficient to other systems which do not satisfy
the symmetry condition of Eq. (9) can be found in literature (Hill 1985; Onufriev and
Ullmann 2004). The concept is to substitute the pointΨ = n

2 at which the variance (or
the slope of the titration curve) is measured by the point at which the maximal variance
is reached (see Hill 1985, p. 73). This idea is a direct consequence of the reference
point Ψ = n

2 not necessarily offering special information and of the initial question
whether the threshold of 0.25n for the variance is exceeded. The variance of a system
of independent binding sites will always be smaller than or equal to this bound and
thus, exceeding this threshold anywhere is an indicator for non-negligible interaction.
Moreover, we have the obvious implication that, if the Hill coefficient is greater than 1
(whichmeans the variance atΨ = n

2 exceeds 0.25n) this implies also that themaximal
variance exceeds this threshold. Thus, the maximal variance exceeding this threshold
is obviously a generalization of the Hill coefficient.

3.1.4 A further extension of the Hill coefficient: different binomial distributions as
reference for the variance

Instead of using the variance of the binomial distribution Bin(n, p = 0.5) as constant
reference and which defines the upper bound of 0.25n for the variance of a system
of independent variables, we can also compare the variance of the considered system
point-wise to the variance of a binomial distribution Bin(n, p = Ψ

n ) (Abeliovich
2005):

Proposition 4 (Binomial variance as reference) Let us consider a target molecule
with n binding sites. Moreover, let a λ0 exist such that

V(λ0) > Ψ (λ0)

�

1 − Ψ (λ0)

n

�

. (12)

Then the observed overall titration curve cannot result from a system of n independent
binding sites.

The derivation of this result which we found in literature was based on the additional
assumptions of identical binding sites. Note that this assumption is not made here (for
a proof see Sect. 6).

Proposition 4 further generalizes the criterion of the maximal variance exceeding
0.25n: In case that the maximal variance exceeds 0.25n, the variance also exceeds
the right-hand site of Eq. (12), since it is bounded by 0.25n. Moreover, this criterion
gives much sharper bounds for the variance that an independent system can exhibit
and extends an elegant generalization procedure: The Hill coefficient of Definition 1
compares a variance at a specific point with a reference variance. The maximum
variance criteria uses the same fixed threshold of 0.25n but compares all variances
of the system to this fixed boundary. At last, the criterion given by Eq. (12) defines
saturation dependent bounds and checks whether this boundary function is exceeded
at any point.
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However, it is important to note here that both generalizations of the Hill coeffi-
cient are based on the idea of comparing the variance at fixed λ with the variance
of a reference system. The following criterion is based on an alternative concept of
investigating the change of the variance, when λ changes.

3.2 A sigmoidal shape in a linear plot

Even though Stefan and Le Novère (2013) use a definition of positive cooperativity
based on microstates (a change in affinity of the ligand to a certain site if the ligand
binds to another site), they state that if the normed titration curve “as a functionof ligand
concentration is sigmoidal in shape, as observed byBohr for hemoglobin, this indicates
positive cooperativity. If it is not, no statement can be made about cooperativity from
looking at this plot alone”.Wewill investigate how this property of a sigmoidal binding
curve is related to large variances whichwere the characteristics of interest in Sect. 3.1.
We start with a definition of a sigmoidal shape.

Definition 2 An overall titration curve Ψ is said to be of sigmoidal shape in a linear
plot if a λ0 > 0 exists such that

d2Ψ

dλ2 |λ0
> 0 (13)

This condition can be rewritten to

Lemma 1

λ0 exists such that
d2Ψ

dλ2 |λ0
> 0 ⇔ V(λ)

λ
has a local maximum

Proposition 5 states why a sigmoidal shape in a linear plot can be regarded as an
indicator of cooperative binding.

Proposition 5 Let Ψ (λ) be an overall titration curve of sigmoidal shape. Then Ψ (λ)

cannot result from a system of independent binding sites.

Proposition 5 gives another criterion for an “abnormal” ligand binding behavior
of the system by comparing the change in variance to a linear function. The question
arises how the indications of cooperativity by the different criteria are related. The
answer is that there is no implication which is illustrated by the following examples
(first we will compare the criterion of maximal variance exceeding 0.25n to sigmoidal
shape and then add an example comparing the latter to criterion (12)).

Example 4 Let us consider the binding polynomial

0.01λ3 + 1.01λ2 + 1.01λ + 1.

Then the maximal variance of the system is smaller than 0.75 (for a formal proof
see Sect. 6), which is the maximal value an independent system of three binding sites
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Fig. 2 Left side the variance of the number of occupied sites of the system of Example 4 as a function
of the ligand activity (constant temperature, a decadic logarithmic scale is used). Right side the variance
divided by λ of the same binding system

Fig. 3 Left side the variance of the number of occupied sites of the system of Example 5 as a function
of the ligand activity (constant temperature, a decadic logarithmic scale is used). Right side the variance
divided by λ of the same binding system

could reach. However, the corresponding function λ−1
V(λ) has a local maximum (cri-

terion (12) is also satisfied). Both curves are illustrated in Fig. 2 (for earlier work on
differences between the Hill coefficient and a sigmoidal shape, see also Ge and Qian
2009).

Example 5 Let us consider the binding polynomial 4λ3 + 2λ2 + 4λ + 1. Then the
maximal variance of the system is approximately 1.06which is greater than0.75,which
is the maximal value an independent system could reach. However, the corresponding
function λ−1

Vλ(|k|) does not have a local maximum (for a formal proof see Sect. 6).
Since here, themaximal variance exceeds the threshold 0.25n, criterion (12) is fulfilled,
too. Both curves are illustrated in Fig. 3.

Example 5 shows that there are cases in which Eq. (12) is fulfilled but the curve is
not sigmoidal. What remains to be shown is that the reverse case, which means having
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sigmoidal shape but not fulfilling Eq. (12) exists as well. We did not find an example
for this in the case of three binding sites. However, Example 6 describes a molecule
with five binding sites and these properties.

Example 6 The polynomial 10λ5+103λ4+(104+1)λ3+110λ2+103λ+1 defines a
sigmoidal curve (to see this, plot the function λ−1

V(λ) on the interval λ ∈ [10−2, 1])
but the variance does not exceed the bound given by Eq. (12) (see Sect. 6).

3.3 Non-real roots of the binding polynomial as a definition of cooperative
ligand binding

The use of the existence of non-real roots of the binding polynomial as a definition of
cooperative binding (Onufriev and Ullmann 2004; Martini 2014) has the big advan-
tage that it unifies and generalizes both previously mentioned concepts in a way: A
system with non-interacting, stochastically independent binding sites for every value
of λ possesses a binding polynomial with real roots only (see e.g.Martini and Ullmann
2013). Consequently, the appearance of non-real roots indicates that the polynomial
cannot belong to a system of independent binding sites. Conversely, if a binding poly-
nomial has only real roots then non of the previously described criteria can be fulfilled,
since it is not possible to distinguish the system from an independent system in which
the binding energies of the binding sites are transformed roots of the polynomial (see
e.g. Martini and Ullmann 2013; Martini et al. 2013b). Since both previously described
types of criteria measure an abnormal deviation from the behavior of an independent
system, both criteria imply that the binding polynomial has at least two roots which
are non-real.

Moreover, there are cases in which the system exhibits “abnormal” behavior which
can not result from an independent system, since the binding polynomial has complex
roots, but both previously discussed criteria are not fulfilled, which is illustrated by
Example 7. Still, the cooperativity of this system is captured by the property of the
polynomial possessing non-real roots.

Example 7 An example of a polynomial which shows a titration behavior which can
not result from an independent system but whose variance does not exceed the bound-
ary given by Eq. (12) and whose corresponding titration curve is not of sigmoidal
shape is

100λ3 + 191λ2 + 101.9λ + 1.

Two of its roots are non-real. The fact that the two criteria of a maximal variance
exceeding the threshold of 0.75 and being of sigmoidal shape are both not fulfilled is
illustrated in Fig. 4. A theoretical treatment of λ−1

V(λ) not having a local maximum
and the bound (12) not being exceeded is given in Sect. 6.

However, compared to the criterion of measuring the maximal variance, the exis-
tence of non-real roots as a definition for cooperativity has the disadvantage that it
is not directly obvious whether and how the cooperative behavior can be quantified.
For a system with three binding sites, the number of non-real roots will either be
zero or two and a quantification of the cooperative effects in the system might only
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Fig. 4 Left side the variance of the number of occupied sites of the system of Example 7 as a function
of the ligand activity (constant temperature, a decadic logarithmic scale is used). Right side the variance
divided by λ of the same binding system

be possible when the imaginary parts of the roots are incorporated in an appropriate
measure. Moreover, having the definition of the existence of non-real roots in mind,
the question arises if it can make sense to distinguish between different types of coop-
erativity (positive and negative) for general systems based on macroscopic properties,
especially since the connection between macroscopic and microscopic definitions of
cooperative binding is not straightforward (We will show this later in Sect. 4). This
question is important since a lot of research investigates effects related to positive and
negative cooperativity (often with certain preconditions on the target molecule) (e.g.
Abeliovich 2005; Alvarado et al. 2010; Bush et al. 2012; Erion and Strobel 2011;
Kaczanowska et al. 2014).

3.4 Other measures of cooperativity based on the macroscopic behavior

Other additional approaches of capturing cooperative behavior as a real number exist.
However, these concepts will have consistency problems if no additional conditions,
typically such as a restriction to two binding sites [in this case several implications
between the different types of cooperativity exist (Onufriev andUllmann 2004;Martini
2014)] or the assumption of identical binding sites are imposed.

An example of another coefficient which captures cooperative effects is the α-
coefficient used in the review by Hunter and Anderson (2009). Assuming that the
concentration of the free ligand is constant (this assumption is more or less ful-
filled if the number of ligands is much higher than that of the target molecule
and it is the basic assumption for the validity of the grand canonical ensemble),
the coefficient α of a system with binding polynomial a2λ2 + a1λ + 1 is given
by

α = 4a2
a21

.
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This expression represents more or less the discriminant of the polynomial. Conse-
quently, the polynomial will have non-real roots if α > 1 and thus the α > 1-criterion
coincides with the appearance of non-real roots (n = 2). An open question is how to
define α in the case of more than two binding sites in the best way (as an αi for each
binding step or an overall α) and how to decide then whether the target molecule binds
its ligand cooperatively or not.

4 Cooperative binding as a property of the family of distributions on the
microstates

4.1 Cooperative binding defined by interaction energies of binding sites

We consider a molecule with n = 2 binding sites and the free energy differences of
each state k with respect to the chosen reference state {0}n=2 (all sites unoccupied).
As already previously mentioned, G(k) shall denote the difference between the free
energies of the molecule in state k and the reference state. For a molecule with only
two binding sites, the (relative) energies of the four states are

G((0, 0)) = 0, G((1, 0)), G((0, 1)), G((1, 1))

We call G((1, 0)) the binding energy of site 1, G((0, 1)) the binding energy of site 2
andW1,2 := G((1, 1))−G((1, 0))−G((0, 1)) the interaction energy. If the number of
binding sites n is greater than 2, we can obtain also interaction terms of higher order,
which will be illustrated later. For the moment, we consider a molecule with only
pairwise interaction, which means that for any number of binding sites, the energies
of every state are determined by the energies of states with one and two sites occupied.
With ki = (0, 0, . . . , 0, 1, 0, . . . , 0) (only site i is occupied), gi := exp(−G(ki )/RT )

and wi, j := exp(−Wi, j/RT ), we can describe a molecule with n binding sites and
only pairwise interaction by a tuple of n binding constants and n(n−1)

2 interaction
constants:

M = (g1, . . . , gn, w1,2, . . . , wn−1,n).

We can use the following definition of cooperative binding on microstate properties.

Definition 3 Let M be a molecule with n binding sites and only pairwise interaction.
Then sites i and j are said to bind the ligand

– positive cooperatively if wi, j > 1 (which corresponds to Wi, j < 0)
– non-cooperatively if wi, j = 1 (which corresponds to Wi, j = 0)
– negative cooperatively if wi, j < 1 (which corresponds to Wi, j > 0).

At first sight, Definition 3 seems to be an appropriate way to define cooperativity.
Advantages are that the definition is simple and unambiguous and that it captures the
concept of an altered affinity of a ligand to a certain site if another site is occupied
which often is the motivating idea (Berg et al. 2007; Stefan and Le Novère 2013): The
binding of a ligand to the first binding site of a molecule with two binding sites leads
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to a change of the energy level G(k1) if the other site is unoccupied but the molecule
gains G(k1) + W1,2 if the second site is already occupied.

As a first observation, we see that there are molecules which exhibit different types
of cooperativity according to Definition 3 but which are not distinguishable on the
macroscopic level (Example 8 is taken from Martini and Ullmann 2013):

Example 8 The followingmolecules (g1, g2, w1,2) are examples of positive, negative,
or non cooperative ligand binding according to Definition 3, but share the same overall
titration curve and thus all macroscopic properties.

(2, 1, 0.5),
�
1.5 + √

1.25, 1.5 − √
1.25, 1

�
,

�

0.1, 2.9,
100

29

�

.

Since the roots of the binding polynomial are real, the overall titration curve is the
sum of two standard Henderson–Hasselbalch (Henderson 1913; Hasselbalch 1916)
curves describing the independent binding curves of the sites of the second molecule
(Onufriev et al. 2001; Martini and Ullmann 2013; Martini et al. 2013b). Moreover,
since the sites are energetically not identical, the point of maximal variance of both
sites will not coincide, which means that the Hill coefficient of this system is smaller
than 1. This fact will lead to a classification as undecidable or negative cooperative
binding if the underlying assumption that the sites are equal is made. The curve is
not sigmoidal [undecidable (Stefan and Le Novère 2013)], the roots are non complex
(non cooperative binding), the coefficient α (Hunter and Anderson 2009) is smaller
than 1 (analogous to the Hill coefficient) and Definition 3 classifies the three systems
as negative, non and positive cooperative molecules.

Example 8 illustrates that it is not in general possible to distinguish between the
different types of cooperativity of Definition 3 based on the macroscopic binding
isotherm. However, for two binding sites, we still have the implication that non-real
roots of the binding polynomial imply a negative interaction energy (positive coop-
erative binding according to Definition 3 (Martini and Ullmann 2013, Corollary 2)).
For more than four binding sites, it is not possible to deduce positive cooperativity as
defined in Definition 3 from the existence of non-real roots. This point can be illus-
trated by a molecule with five binding sites (Example 3 of Martini and Ullmann 2013)
showing negative cooperativity between all binding sites (according to Definition 3)
and two non-real roots.

Another problem is that in larger systems (n> 2), negative cooperativity in terms of
interaction energy between different sites can also lead to microscopic effects which
are usually expected for “positive” cooperative relations (depending on the definition
of “affinity”): Example 9 illustrates that an occupation of a certain site can increase
the probability of another site being occupied, in a molecule which is purely negative-
cooperative, according to Definition 3.

Example 9 Let us consider the molecules

M1 = (g1, g2, g3, w1,2, w1,3, w2,3) = (100, 10, 1, 0.1, 0.1, 0.5)
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Fig. 5 Left side the (conditional) probability of site 2 being occupied in molecule M1 of Example 9 as
a function of the ligand activity (constant temperature, a decadic logarithmic scale is used): black line
unconditioned (or marginal) probability of site 2 being occupied. Blue curve conditional probability of site
2 being occupied, conditioned on site 3 being unoccupied. Red curve conditional probability of site 2 being
occupied, conditioned on site 3 being occupied. Right side analogous color encoding for site 2 of molecule
M2

and

M2 = (100, 10, 1, 0.01, 0.001, 0.9).

All sites cooperate negatively according to Definition 3, in both molecules. In partic-
ular, for any fixed state of site 1, the ligand has a higher affinity to site 2, if site 3 is
unoccupied than if site 3 is occupied: For instance for molecule M1, the state transition
from (0, 0, 0) to (0, 1, 0) gives the weight g2, while the transition from (0, 0, 1) to
(0, 1, 1) multiplies the factor g2w2,3 < g2 to the weight of the state. Analogously, if
site 1 is occupied, the transition from (1, 0, 0) to (1, 1, 0) produces the factor g2w1,2
while the transition from (1, 0, 1) to (1, 1, 1) gives the factor g2w1,2w2,3 for theweight
of the state.

However, if we compare the marginal probability of site 2 being occupied to the
conditional probabilities conditioned on site 3 being unoccupied and to the probability
conditioned on site 3 being occupied (Fig. 5), we see that the probability of site 2 being
occupied can be increased if site 3 is occupied. For molecule M2, an occupation of
site 3 does not decrease the probability of site 2 being occupied for any activity of the
ligand. This effect is caused by the circumstance that the influence of an occupied site
1 on the binding to site 2 is more negative than that of site 3 and an occupation of site
3 reduces the probability of site 1 being occupied.

Example 9 shows that in a system which is fully negative cooperative according
to Definition 3, the binding of a ligand to a certain site can increase the probability
of another site being occupied. This is caused by the principle that “the enemy of my
enemy is my friend” and this principle can also lead to a macroscopic behavior which
will be classified as positive cooperativity, which is illustrated by Example 10.

Example 10 Let us consider the molecule M with five binding sites, described by

M = (g1, g2, g2, g4, g5, w1,2, w1,3, w1,4, w1,5, w2,3, w2,4, w2,5, w3,4, w3,5, w4,5)
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Fig. 6 Left side the variance of the number of occupied sites of the system of Example 10 as a function
of the ligand activity (constant temperature, a decadic logarithmic scale is used). Right side the variance
divided by λ of the same binding system

= (103, 103, 103, 103, 105, 1, 1, 1, 10−2, 1, 1, 10−2, 1, 10−2, 10−2).

According to Definition 3, all sites do either not cooperate or cooperate negatively.
However, the polynomial

Φ(λ) = 109λ5 + 10004 · 108λ4 + 406 · 107λ3 + 107λ2 + 104000λ + 1

has non-real roots and it is sigmoidal (based on Definition 2). Moreover, the vari-
ance exceeds the threshold of 1.25, which would be assessed as positive cooperative
behavior (see Fig. 6).

Finally, another problem with Definition 3 appears when we deal with larger sys-
tems: The advantage of a simple discrimination between positive, non and negative
cooperativity can vanish in larger systems, since additional interaction terms of higher
order can contradict the pairwise interaction terms.

Example 11 Let M be a system with three binding sites with microstate constants

g((1, 0, 0)) = 1, g((0, 1, 0)) = 1, g((0, 0, 1)) = 1,

g((1, 1, 0)) = 0.1, g((1, 0, 1)) = 0.1, g((0, 1, 1)) = 0.1,

g((1, 1, 1)) = 1

Then the binding behavior can not be captured by a model with only pairwise inter-
action. Moreover, all pairwise terms wi, j are smaller than 1 which would indicate
negative cooperativity if Definition 3 would be extended to a model with interaction
terms of higher order. Since the interaction term of order three w1,2,3 equals 103,
the question arises whether the sites should be called negatively cooperating or not.
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4.2 Conditional probability functions

Another idea to distinguish between different types of cooperativity on microstates
and which has already been mentioned in the context of Example 9 is the comparison
of the conditional probabilities

P(ki = 1|k j = 0) vs. P(ki = 1|k j = 1)

as functions of λ (for which the conditional probabilities exist, i.e. P(k j = 0) �=
0 �= P(k j = 0)). Here the problem arises that a simple separation into positive, non
and negative cooperativity may not be possible if the whole functions are considered,
which has already been illustrated by molecule M1 of Example 9 (see Fig. 5), in which
the conditional probability functions intersect. A variant to characterize a system’s
cooperative behavior by conditional probabilities was used by Ben-Naim (2001) who
used the function

P(k1 = 1, k2 = 1)

P(k1 = 1)P(k2 = 1)
= P(k1 = 1|k2 = 1)

P(k1 = 1)
= P(k2 = 1|k1 = 1)

P(k2 = 1)
(14)

for systems with two binding sites and analogous generalizations for larger systems.
Of special interest is here the limit

lim
λ→0

P(k1 = 1|k2 = 1)

P(k1 = 1)
(15)

which can be used to distinguish between negative, positive and non-cooperativity
by comparing the limit to the reference value 1 (Ben-Naim 2001). Obviously, Eq. (14)
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Fig. 7 Left side the pairwise “correlation” defined by Eq. (14) of sites 2 and 3 of system M1 of Example 9
as a function of the ligand activity (constant temperature, a decadic logarithmic scale is used). Middle
analogously for systemM2 ofExample 9.Right side the pairwise “correlation” ofmoleculeM ofExample 11
which includes interaction terms of higher order
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Fig. 8 Left side the pairwise correlation defined by Eq. (16) (rescaled by the products of the square roots
of the variances) of sites 2 and 3 of system M1 of Example 9 as a function of the ligand activity (constant
temperature, a decadic logarithmic scale is used). Middle analogously for system M2 of Example 9. Right
side the pairwise correlation of molecule M of Example 11 which includes interaction terms of higher order

equals the constant function 1 if the sites are stochastically independent.Exemplarily,
the pairwise “correlation” functions (Ben-Naim 2001) defined by Eq. (14) of sites 2
and 3 of molecules M1 and M2 of Example 9 are illustrated in Fig. 7.

4.3 The covariance function

Another possibility to characterize the cooperative behavior is to use the covariance
function (or the stochastic correlation)

Cov(k1, k2) := Ek1k2 − Ek1Ek2. (16)

The basic concept that underlies this approach is coinciding with Eq. (14): If the
sites bind the ligand independently, the covariance will be zero and still a function
instead of a single value has to be used to characterize the cooperativity between the
sites fully. Compared to the approach of Eq. (14), we have the disadvantage here
that the limit for λ → 0 does not give any information. The stochastic correlations
(covariance of k1, k2 divided by the square root of the product of both variances)
of sites 2 and 3 of the molecule M of Example 11 and of molecules M1 and M2
of Example 9 are illustrated in Fig. 8. Both concepts of correlation highlight the
fact that the degree of interaction between sites depends on the state of the envi-
ronment. In particular, interacting binding sites can behave in an independent way
at certain non-trivial ligand concentrations (when Eq. (14) equals one and Eq. (16)
equals zero). The use of correlation functions instead of single values seem to be
more appropriate to capture the interaction between sites. In particular, this concept
also solves the problem of possibly contrary interaction energy terms of different
order.
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5 Summary and outlook

In this work, we discussed the relation between different definitions of cooperative
binding and presented extreme examples to illustrate differences between the con-
cepts of cooperativity. For cooperativity defined on the overall titration curve, i.e. on
macroscopic properties, we highlighted that a Hill coefficient larger than 1 shows
that the variance of the distribution on the macrostates of the considered system is
at half-saturation higher than the maximal variance a system consisting of indepen-
dent binding sites can reach. In this context, we underlined that the reference point
of half-saturation does not in general offer special information and discussed gen-
eralizations of the Hill coefficient which also consider “abnormally high” variances.
The most general criterion measuring “abnormally high” variances is the threshold
given by Eq. (12) (Abeliovich 2005), which we proved also for systems consist-
ing of non-identical binding sites. Moreover, we showed that a sigmoidal shape of
an overall titration curve in a linear plot also indicates that the considered system
cannot consist of independent binding sites and that—contrary to the Hill coeffi-
cient of Definition 1 and its generalizations—this criterion does not consider the
value of the variance as important characteristic, but the behavior of the change in
variance with respect to a change of λ. We presented different examples to show
that these two concepts of measuring “abnormal” variance (by considering its value
or its change) do not coincide. In this regard, we highlighted that non-real roots of
the binding polynomial can be a unifying definition for cooperativity. This criterion
offers the advantage that both previously mentioned concepts imply that the binding
polynomial has at least two roots which are non-real and thus it is a generalization.
Moreover, the appearance of non-real roots is actually also the only relevant obser-
vation to see that the observed titration curve cannot be a result of an independent
system. Any binding polynomial which has real roots only can be regarded as an
independent system of binding sites whose binding energies are given by transfor-
mation of the roots of the binding polynomial (Onufriev et al. 2001; Martini and
Ullmann 2013; Martini et al. 2013b). Conversely, if the polynomial has non-real roots
it can not belong to a system of independent binding sites, since the independence
of the sites would lead to a binding polynomial which is the product of the poly-
nomials (linear factors) of all individual sites and which consequently would have
only real roots. However, based on this definition, it is not clear how the degree of
cooperativity can be quantified and whether the discrimination between positive and
negative cooperativity can be well defined. For cooperativity defined on the measures
on microstates, we also showed that a single value alone as a description of the coop-
erative ligand binding behavior of a molecule might not be enough to characterize
the system’s properties. Instead different correlation functions could be used. How-
ever, even based on the definitions on microstates it is not clear how to distinguish
between positive and negative cooperativity well, since the qualitative behavior of the
correlation can depend on the ligand activity, already if systems with three binding
sites are regarded. Concerning the relation between the definitions of cooperativity on
the macro- and microstates, we presented examples showing that “negative” cooper-
ativity on the microscopic level can produce phenomena which are usually assigned
to “positive” cooperative ligand binding. Considering additional information on the
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macroscopic binding kinetics might allow the deduction of more microscopic proper-
ties from the macroscopic binding behavior (Martini et al. 2013a; Martini and Habeck
2015). The presented examples create the suspicion that a real ligand activity inde-
pendent discrimination between “positive” and “negative” cooperativity, based on
the overall binding isotherm only, is impossible if general binding systems are consid-
ered. Overall, this work showed that scientists investigating cooperative effects should
clearly state what cooperativity means in the context of their work and check whether
preconditions have to be satisfied by the target molecule for consistency of the used
definition(s).

6 Proofs

Proof of Proposition 1 (a) Let Φ � denote the numerator of Eq. (3) (this is also the
derivative of Φ with respect to log(λ)). Then the constant n of Eq. (4) has to
coincide with the number of binding sites, since if an �= 0 the overall binding
curve will tend to the number of binding sites for λ → ∞. By precondition, we
know

Φ �

Φ
= n

Kλα

1 + Kλα

which states that a function β(λ) exists such that

β(λ)(1 + Kλα) = Φ and β(λ)Kλα = 1

n
Φ � (17)

which implies

β(λ) = Φ − 1

n
Φ � (18)

and thus β(λ) is a polynomial of degree smaller or equal to (n − 1), since it is
a difference of two polynomials with the same leading coefficient. Moreover, the
constant term of β(λ) is 1, since the constant term of Φ is 1. Thus, α has to be a
natural number (a positive integer), since otherwise β(λ)(1+ Kλα) would not be
a polynomial.

(b) In the case of α = 1, the statement is true. Let us consider now the case α > 1. Let
β(λ) = bn−1λ

n−1+· · ·+b1λ+1. Equation (17) implies that bi = 0, ∀i > n−α.
Moreover, it shows that

bi + bi−αK = ai and bi−αK = i

n
ai (19)

which implies

n − i

i
bi−αK = bi ∀i ∈ {α, . . . , n}. (20)
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For i = n, Eq. (20) is always fulfilled, since both sides are zero, independent of
the value of bn−α . However, for i �= n, this equation states that bi = 0 implies
bi−α = 0, which gives

bi = 0, ∀i ∈ {n − jα + 1, . . . , n − ( j − 1)α − 1| j ∈ N}
for any j , since bi = 0, ∀i > n − α. Thus,

β(λ) = bn−αλn−α + bn−2αλn−2α + · · · + bn−mα	 
� �
=1

(21)

and thus α divides n.
(c) 0 < an = bn−αK ⇒ bn−α > 0, since K > 0. Eq. (20) gives 0 < bn−α =

α
n−α

bn−2αK which implies bn−2α > 0, as long as 2α ≤ n. This implies that

an−iα = bn−iα + bn−(i+1)αK > 0.

�
Proof (Hill coefficient of a Hill equation) Using Definition 1, the Hill coefficient of
an equation of shape (4) is

d

d log(λ)

⎛

⎝log

⎛

⎝
nK exp(α log(λ))
1+K exp(α log(λ))

n − nK exp(α log(λ))
1+K exp(α log(λ))

⎞

⎠

⎞

⎠ = d

d log(λ)
(log(n) + α log(λ)) = α.

�

Proof of Proposition 2 See Hill (1985), result in Eq. (11.41). �
Proof of Proposition 3 Ψ = Φ �

Φ
is a quotient of two polynomials in the variable λ. We

introduced the notation f � for the derivative with respect to log(λ).

Ψ � = Φ ��Φ − Φ �Φ �

Φ2

is also a rational function in the variable λ. To see that Ψ � has a local extremum we
consider its derivative with respect to λ, which is a rational function in λ, since Ψ � is
a rational function. Thus, ∂

dλ
Ψ � = 0 means that its enumerator is equal to zero. Since

this enumerator is a polynomial, it equals zero on a finite number of points λ1, . . . , λm .
We assume the equality

Ψ �|λ=aλ0
= Ψ �

|λ=a−1λ0
(22)

which we will deduce from Eq. (9) later. Ψ � is continuous (on λ ≥ 0) and it has only
a finite number of local extremes, since ∂

dλ
Ψ � has only a finite number of zeros. Let
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 > 0 be a number smaller than the distance of λ0 to the nearest root of the enumerator
of ∂

dλ
Ψ �. Then the ball B
(λ0) does not includemore than one extremum (whichwould

have to be in λ0). Let (an)n∈N → 1 be a strictly monotonously increasing sequence
with anλ0 ∈ B
(λ0) ∀n. Then anλ0 → λ0 increases strictly monotonously, and
Ψ �(anλ0) → Ψ �(λ0) is strictly monotonously (either increasing or) decreasing, since
otherwise another root of the denominator of ∂

dλ
Ψ � within the ball B
(λ0)would exist.

Then, the sequenceΨ �((a−1
n λ0)) → Ψ �(λ0) is strictlymonotonously (either increasing

or) decreasing, due to Eq. (22), but with a−1
n λ0 strictly monotonously decreasing.

Consequently,Ψ � has a local extreme inλ0. To proveEq. (22),we regard the following:

Ψ �(λ) = d

d log λ
(Ψ (λ) ◦ elog λ) =

�
d

dλ
Ψ (λ)|λ=elog λ · λ

�

.

Thus, Eq. (22) is true if

d

dλ
Ψ (λ)|λ=elog aλ0 · aλ0 = d

dλ
Ψ (λ)|λ=elog a

−1λ0
· a−1λ0 (23)

which means (if λ0 �= 0)

d

dλ
Ψ (λ)|λ=aλ0 = a−2 d

dλ
Ψ (λ)|λ=a−1λ0

. (24)

To see that Eq. (24) is true, we consider the functions f (a) := aλ0 and g(a) = a−1λ0
and rewrite Eq. (9)

Ψ ◦ f (a) + Ψ ◦ g(a) = n (25)

Calculating the derivative with respect to a gives

d

dλ
Ψ (λ)|λ=aλ0 · λ0 − d

dλ
Ψ (λ)|λ=a−1λ0

λ0a
−2 = 0

which gives Eq. (24). �
Proof of Proposition 4 Let Xi denote the Bernoulli variable describing whether site i
is occupied or not. The variance of the distribution on the macrostates V(λ) is given
by the sum of the variances Vλ(Xi ) and covariances Covλ(Xi , X j )

V(λ) =
n�

i=1

Vλ(Xi ) +
n�

i=1, j=1,i �= j

Covλ(Xi , X j )

We will show that V(λ) exceeding the threshold of Eq. (12) implies that

n�

i=1, j=1,i �= j

Covλ(Xi , X j ) > 0,
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which in particular implies that the sum of the covariances is not zero and which again
means that the considered system cannot consist of independent binding sites. For this
purpose, we show that

n�

i=1

Vλ(Xi ) ≤ Ψ

�

1 − Ψ

n

�

.

With pi,λ denoting the probability of site i being occupied at ligand activity λ, and
thus with Ψ = �n

i=1 pi,λ, the upper equation means

n�

i=1

Vλ(Xi ) =
n�

i

pi,λ(1 − pi,λ) ≤
�

n�

i=1

pi,λ

� �

1 − 1

n

n�

i=1

pi,λ

�

which is true if and only if

n
n�

i

p2i,λ ≥
�

n�

i=1

pi,λ

�2

.

This “sum of squares equation” is a result of Lagrange’s identity (see e.g. Weisstein
2002, with one of the vectors of Lagrange’s identity with constant entry 1). This
means that Eq. (12) implies

�n
i=1, j=1,i �= j Covλ(Xi , X j ) > 0 and consequently that

the observed overall titration curve cannot result from a system of independent binding
sites. �
Proof of Lemma 1 Let a λ0 exist such that

d2Ψ

dλ2 |λ0
> 0. (26)

Since the second derivative of an overall titration curve will be negative if λ is suffi-
ciently large, and since it is continuous, a λ1 exists such that dΨ

dλ
has a local maximum

at λ1. Moreover, since

V(λ) = dΨ

dλ
· λ (27)

this implies that

V(λ)

λ

has a local maximum at λ1 (analogously the converse). �
Proof of Proposition 5 Let us assume that an independent system exists which pro-
duces the observedoverall titration curve.Wewill prove the statement by contradiction.
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We can write the variance of |k| as the sum the variance of the independent Bernoulli
variables

V(λ)

λ
=

�n
i=1 Vλ(Xi )

λ
.

The variance of a Bernoulli variable which is independent of the remaining system is
given by

giλ

(giλ + 1)2

with gi characterizing the affinity of the ligand to the i th binding site and thus

V(λ)

λ
=

n�

i=1

gi
(giλ + 1)2

.

The right side of this equation is a sum of monotonously decreasing functions and
thus cannot have a local maximum at λ1. �
Proof of Example 4 Example 4 shall demonstrate that a system in which the variance
of the number of occupied sites is always below the bound 0.25 ·n can be of sigmoidal
shape in a linear plot, which means V(λ)

λ
has a local maximum.

The first property of V(λ) being smaller than 0.75 can be seen in Fig. 2, however,
we give a short proof to exclude the possibility that the local maximum is higher but is
not recognized in the plot because of the choice of the lattice on which the function is
evaluated. It is clear from the plot that values of λ exist such that V(λ) < 0.75. What
we have to show is (since V(λ) is continuous) that V(λ) − 0.75 does not have a root
on the positive real numbers. Writing

V(λ) − 0.75 = E|k|2 − (E|k|)2 − 0.75 = Z1

Φ
− Z2

Φ2 − 0.75

with E denoting the expectation operator, Φ the binding polynomial and Zi the cor-
responding numerators gives that we are interested in the roots of the polynomial

Z1 · Φ − Z2 − 0.75Φ2 = 0.

The computer algebra program Maxima tells us that a positive root does not exist.

Moreover, to avoid discussions about the exact definition of a sigmoidal shape
(exactly vs. at least one inflection point), we show that the function has exactly one
inflection point, the following way: We use the computer algebra program Maxima,
calculate the derivative of V(λ)

λ
with respect to λ (diff(%, x, 1)) and calculate the exact

roots of the numerator, which is a polynomial (allroots(..), ratnumer(..)). There is
exactly one root in the positive numbers. �
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Proof of Example 5 The fact thatV(λ) is not bounded by 0.75 is obvious. What has to
be shown is that the curve is not even slightly sigmoidal. Analogously, to the procedure
described in the former proof, we calculate the derivative of V(λ)

λ
using the computer

algebra program Maxima and determine the roots of the numerator. None of them is
positive. �
Proof of Example 6 The statement is that the binding isotherm defined by 10λ5 +
103λ4 + (104 + 1)λ3 + 110λ2 + 103λ + 1 is sigmoidal, but Eq. (12) is not fulfilled.
To see that the binding curve is sigmoidal, plot the function λ−1

V(λ) on the interval
λ ∈ [10−2, 1] to see that it has a local maximum. Equation (12) is not satisfied
if

V(λ) ≤ Ψ (λ)

�

1 − Ψ (λ)

n

�

∀λ ≥ 0.

To see that this is true, we rewrite this equation to

Φ ��

Φ
− Φ �Φ �

Φ2 ≤ Φ �

Φ

�

1 − Φ �

nΦ

�

.

The binding polynomial Φ has only real non-negative coefficients with constant term
1, and is consequently positive for all non-negative λ. We multiply both sides with Φ2

to obtain

Φ ��Φ − Φ �Φ � ≤ Φ �Φ
�

1 − Φ �

nΦ

�

and thus

Φ ��Φ − (1 − 1/n)Φ �Φ � − Φ �Φ ≤ 0

Plugging the polynomial of Example 6 into this equation, we have to show
that

−0.2 · (2999900λ8 + 59973000λ7 + 598860006λ6 − 19200120λ5

−59993400λ4 + 359970λ3 + 3998900λ2) ≤ 0 ∀λ ≥ 0

The left side represents a polynomial with negative leading coefficient with value 0 at
λ = 0. Calculating its roots shows that it does not have any other root on the positive
real numbers, which implies the statement. �
Proof of Example 7 The corresponding titration curve is not sigmoidal: We used the
computer algebra program maxima to calculate the derivative of λ−1

V(λ), which is a
rational function. A local maximum has to be a root of its numerator. None of its roots
is a positive real number.
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To see that Eq. (12) is not fulfilled, calculate Φ ��Φ − (1−1/n)Φ �Φ � −Φ �Φ, which
is a polynomial of degree four with negative leading coefficient and no positive root. �
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