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EVALUATION OF CASIMIR ENERGIES THROUGH SPECTRAL

FUNCTIONS

E. M. Santangelo∗

We consider applications of elliptic differential operators and their associated spectral functions in quantum

field theory problems. The role of zeta functions and traces of heat kernels in the regularization of Casimir

energies is emphasized, and the renormalization procedure is discussed with simple examples.

1. Zero-point energy in field quantization

We introduce the concept of the Casimir energy in this section, using two different regularization
methods to evaluate it in a simple example. The two methods are shown to be consistent after renormal-
ization [1]–[4].

1.1. The free massive neutral scalar field in the unbounded Minkowski space–time. To
introduce the problem of the vacuum (ground state) energy in quantum field theory, it is convenient to
start by reviewing the simple example of a free massive neutral scalar field in the unbounded Minkowski
space–time. The classical Lagrangian density is then given by

L =
1
2
(∂φ)2 − 1

2
m2φ2,

where m is the mass of the field φ. The Euler–Lagrange formalism implies the classical Klein–Gordon
equation of motion

(∂µ∂µ +m2)φ = 0.

The momentum canonically conjugate to the field is defined by

π =
∂L

∂(∂0φ)
= ∂0φ,

and the classical Hamiltonian is therefore given by

H =
∫

d3x
1
2
[
π2 + (∇φ)2 +m2φ2

]
.

The transition to the quantum theory is achieved by replacing the functions φ and π with operator-
valued functions, replacing the Poisson brackets with commutators, and imposing the equal-time commu-
tation relations

[φ̂(t, �x), π̂(t, �x′)] = iδ3(�x − �x′) (1)

with the right-hand sides of the other commutators vanishing.
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In the momentum representation with kµ = (k0, �k) = (ω�k,
�k) and ω�k = ω−�k =

√
�k2 +m2 > 0, both

fields can be expanded as

φ̂(t, �x) =
∫

dk̃ [â(�k)e−ikx + â†(�k)eikx],

π̂(t, �x) = −i
∫

dk̃ [â(�k)e−ikx − â†(�k)eikx] = ∂0φ̂(t, �x),

where

dk̃ =
d3k

(2π)32ω�k

is the Lorentz-invariant measure. We note that the ω�k are the square roots of the eigenvalues of the operator
∆ +m2.

Quantization condition (1) then becomes

[â(�k), â†(�k′)] = (2π)32ωkδ
3(�k − �k′).

with the right-hand side of all other commutators vanishing. The Hamiltonian operator becomes

Ĥ =
1
2

∫
dk̃ ω�k[â

†(�k)â(�k) + â(�k)â†(�k)] =

=
1
2

∫
dk̃ ω�k[2â

†(�k)â(�k) + (2π)32ω�kδ
3(0)].

The vacuum state is defined by

â(�k)|0〉 = 0, 〈0|0〉 = 1, 〈0|Ĥ|0〉 = 1
2

∫
d3k ω�kδ

3(0).

The mathematically meaningless factor δ3(0) in the formulas introduced appears because of the infinite
size of the system. To give meaning to the last expression, the system considered is enclosed in a cube of
volume V with periodic boundary conditions imposed on the field; the infinite-volume limit is then taken
with the result

〈0|Ĥ |0〉 = V

2

∫
d3k

(2π)3

√
�k2 +m2,

where V is the (infinite) space volume.
This shows why the zero-point energy per unit volume diverges in the case of a free scalar field: the

divergence is due to the sum of the zero-point energies of an infinite number of oscillators. For the free
theory in the unbounded Minkowski space, this vacuum expectation value can be defined to be equal to
zero by introducing the normal ordering prescription. But the question then naturally arises about the
value of the vacuum energy in the presence of a background field and/or in the case where the quantized
field occupies a bounded spatial region and therefore depends on the boundary conditions. The Casimir
energy is the vacuum energy evaluated under these additional conditions [2].

1.2. Massless scalar field subject to the Dirichlet boundary conditions in one spatial
direction. We suppose that the field is confined between two parallel plates separated by the distance a
in the x direction. The field satisfies the boundary conditions on the plates,

φ(t, 0, y, z) = φ(t, a, y, z) = 0.
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In this case, the negative and positive frequency components of the field are proportional to sin knx, where
kn = nπ/a, n = 1, 2, . . . , and ωn = (k2

n + k2
y + k2

z)1/2. The vacuum energy per unit area of the plates is
therefore given by

EV

A
=

1
2

∫ ∞

−∞

dky dkz

(2π)2

∞∑
n=1

((
nπ

a

)2

+ k2
y + k2

z

)1/2

.

As anticipated, this vacuum energy per unit transversal area is divergent: both the series and the
integral diverge. As usual, to interpret this expression, we must regularize it, isolate the divergences, and
then renormalize (whenever possible) the classical energy in accordance with physical considerations.

The first method that we use is the zeta-function regularization [5], [6]. It is based on the analyticity
properties of the zeta function of an operator, which in this case is minus the Laplacian. A formal definition
of the spectral function known as the zeta function is given in the next section.

We define1

EV

A
=

µ

2

∫ ∞

−∞

dky dkz

(2π)2

∞∑
n=1

((
nπ

aµ

)2

+
(
ky

µ

)2

+
(
kz

µ

)2)−s/2∣∣∣∣
s=−1

, (2)

where s is a complex variable with Re(s) sufficiently large to guarantee convergence. This expression defines
an analytic function of s in this region. The vacuum energy is then defined via the analytic extension of
this function to s = −1. The parameter µ with the dimension of mass is introduced to make the quantity
in the sum in (2) dimensionless; it must disappear from any physically meaningful result.

Using the representation [7]

z−s =
1

Γ(s)

∫ ∞

0

dt ts−1e−zt, Re(s) > 0, Re(z) > 0, (3)

we can now rewrite Eq. (2) as

EV

A
=

µ

2

∫ ∞

−∞

dky dkz

(2π)2

∞∑
n=1

1
Γ(s/2)

∫ ∞

0

dt ts/2−1 exp
{((

nπ

aµ

)2

+
(
ky

µ

)2

+
(
kz

µ

)2)
t

}∣∣∣∣
s=−1

.

For sufficiently large Re(s), the sum and the integral can be transposed with the result

EV

A
=

µ

2

∞∑
n=1

1
Γ(s/2)

∫ ∞

0

dt ts/2−1e−(nπ/(aµ))2t

∫ ∞

−∞

dky dkz

(2π)2
exp
{
−
[(

ky

µ

)2

+
(
kz

µ

)2]
t

}∣∣∣∣
s=−1

.

Both Gaussian integrals can now be evaluated, and Eq. (3) can be used again to obtain

EV

A
=

µ3

8π
Γ(s/2− 1)
Γ(s/2)

∞∑
n=1

(
nπ

aµ

)−s+2∣∣∣∣
s=−1

=
µ3

4π(s− 2)

(
aµ

π

)s−2

ζR(s− 2)
∣∣∣∣
s=−1

,

where we use the definition of the Riemann zeta function

ζR(s) =
∞∑

n=1

n−s, Re(s) > 1.

1For simplicity, we keep the same symbol for the renormalized quantity.
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This series defines an analytic function for Re(s) > 1, and its analytic extension to the entire s plane has
only a simple pole at s = 1. In particular, its value at s = −3 is 1/120.

Our final result for the vacuum energy is therefore given by

EV

A
= − π2

1440a3
. (4)

In this simple case, the zeta-function regularization gives a finite result and no further renormalization is
needed.

We now compare result (4) to the one given by another regularization method, the exponential cutoff.
As we see in what follows, it is based on using another spectral function known as the trace of the heat
kernel. We define

EV

A
=

1
2

∫ ∞

−∞

dky dkz

(2π)2

∞∑
n=1

((
nπ

aµ

)2

+
(
ky

µ

)2

+
(
kz

µ

)2)1/2

×

× exp
{
−
((

nπ

aµ

)2

+
(
ky

µ

)2

+
(
kz

µ

)2)1/2

t

}∣∣∣∣
t=0

.

The exponential is introduced to ensure convergence, thus allowing the interchange of the sum and the
integral. Again, the parameter µ with the dimension of mass is arbitrary. The previous equation can also
be written as

EV

A
= −µ

2
d

dt

∫ ∞

−∞

dky dkz

(2π)2

∞∑
n=1

exp
{
−
((

nπ

aµ

)2

+
(
ky

µ

)2

+
(
kz

µ

)2)1/2

t

}∣∣∣∣
t=0

=

= − µ

4π
d

dt

∫ ∞

0

dk k
∞∑

n=1

exp
{
−
((

nπ

aµ

)2

+
(
k

µ

)2)1/2

t

}∣∣∣∣
t=0

or, after interchanging the sum and the integral and changing variables,

EV

A
= −µ3

2
d

dt

∞∑
n=1

∫ ∞

(nπ/(aµ))2
dk e−k1/2t

∣∣∣∣
t=0

.

The sum can now be evaluated using the Euler–McLaurin formula

∞∑
n=1

f(n) = −1
2
f(0) +

∫ ∞

0

f(x) dx −
∞∑

k=1

1
(2k)!

B2kf
(2k−1)(0). (5)

It can be shown that the final result for the vacuum energy in this regularization scheme is given by

EV

A
=

3aµ4

2π2t4

∣∣∣∣
t=0

− µ3

4πt3

∣∣∣∣
t=0

− π2

1440a3
. (6)

We note that two divergences remain in Eq. (6) in the form of poles. The first divergent term in (6) is the
vacuum energy in the entire space (it comes from the integral in Eq. (5)). The second divergence is due
to the mode n = 0 (the first term in the right-hand side of the same equation) and is therefore caused by
the boundary conditions. Both divergences can be eliminated by the condition that EV /A → 0 as a → ∞.
This can in fact be understood as a renormalization of the classical energy, which, in view of the geometry
of our problem, is given by

Eclass = paA+ σA,

where p is the pressure and σ is the surface tension. The remaining finite part in (6) then agrees with the
result of the zeta regularization given by Eq. (4).

We have considered a simple example (there is no mass and the boundaries are flat). In what follows,
we study the connection between these two regularization methods and discuss the renormalization of the
Casimir energy in more general cases.
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2. Elliptic differential operators and boundary problems: Spectral
functions

In the previous section, we evaluated zero-point energies using two different regularization methods:
the zeta function and the exponential cutoff. They are based on using certain functions of the spectrum
of a given differential operator, called spectral functions. In this section, we discuss the conditions under
which such functions can be defined and consider some of their useful properties [8]–[12].

2.1. Differential operators on boundaryless compact manifolds. We let M be a compact
boundaryless manifold of dimension n and E be a complex vector bundle over M . A partial differential

operator of order m acting on sections of E can be written in local coordinates as

A =
∑

|α|≤m

aα(x)Dα
x , Dα

x =
n∏

j=1

(
−i ∂

∂xj

)αj

, |α| =
n∑

j=1

αj .

The coefficients aα(x) are q×q matrices in general.
As an example, we consider the operator

− d2

dx2
+ x

d

dx
+ 1.

In this case n = 1 and m = 2 and therefore j = 1 and |α| = α1 ≤ 2. The operator can be written in the
compact form ∑

α1≤2

aα1(x)(−i)α1

(
d

dx1

)α1

.

The coefficient a0(x) = 1 corresponds to the index value α1 = 0, a1(x) = ix corresponds to α1 = 1, and
a2(x) = 1 corresponds to α1 = 2.

The symbol of an operator A is defined as

σ(A) = σ(x, ξ) =
∑

|α|≤m

aα(x)ξα.

It is an mth-degree polynomial in the dual variable ξ obtained by formally replacing Dα
x with the monomial

ξα. In terms of the symbol, the action of an operator on functions in its domain can be written as

Af(x) =
∫

dξ eixξσ(x, ξ)f̃ (ξ),

where f̃(ξ) is the Fourier transform of f(x).
For the operator in the previous example, σ(x, ξ) = ξ2 + ixξ + 1. It can be easily shown that

(
− d2

dx2
+ x

d

dx
+ 1
)
f(x) =

∫
dξ eixξ(ξ2 + ixξ + 1)f̃(ξ).

The principal symbol is the highest-order part of the symbol. It is a homogeneous mth-degree poly-
nomial in ξ,

σm(A) = σm(x, ξ) =
∑

|α|=m

aα(x)ξα.
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In our example, σ2(x, ξ) = ξ2.
A differential operator is said to be elliptic if its principal symbol is invertible for |ξ| = 1 (it has no

zero eigenvalues for |ξ| = 1 or, equivalently, detσm(x, ξ) �= 0 for |ξ| = 1). The ellipticity is obvious in our
example.

Given an operator A, its resolvent is the operator (A−λI)−1. The ray K = {argλ = θ} in the complex
plane λ is called the minimum growth ray of the resolvent if there are no eigenvalues of the principal symbol
on this ray, i.e., the equation

σm(x, ξ)u = λu

has only the trivial solution for λ ∈ K. It can be proved that the L2 norm of the resolvent is O(|λ|−1) along
such a ray. In our example, the problem ξ2u = λu has only the trivial solution for any λ �= ξ2. Because ξ
is real, any ray in C − R+ is a minimum growth ray.

2.2. Complex powers of a differential operator. Given an elliptic differential operator A with
the minimum growth ray K and Re(s) > 0, we define

A−s =
i

2π

∫
Γ

λ−s(A− λI)−1 dλ,

where Γ is a curve starting at ∞, coming along the ray K to a small circle at the origin, and returning to
∞ along the ray (we note that this curve encloses the eigenvalues of the principal symbol in the clockwise
direction).

To describe the operator A−s, we can construct an approximation B(λ) to the resolvent (A − λI)−1,
known as the parametrix, which reproduces the behavior of the resolvent as λ → ∞ along the minimum
growth ray [8]. The parametrix is constructed by considering λ as a part of the principal symbol of the
operator A, as

σ(B) ∼
∞∑

j=0

b−m−j(x, ξ, λ)

under the condition

σ(B(A − λI)) = I.

The coefficients b−m−j are known as the Seeley coefficients. It can be verified (using the formula for the
composition of symbols of operators) that they satisfy the set of algebraic equations

b−m(am − λ) = 1,

b−m−l(am − λ) +
∑

(∂α
ξ b−m−j)(Dα

xam−k) = 0, l > 0.

Here, the sum must be taken over all k+ j+ |α| = l and j < l. The am−k are the symbols of the differential
operator A of different orders. With these coefficients, we obtain an approximation to the symbol of A−s,

σ(A−s) ∼
∞∑

j=0

i

2π

∫
Γ

λ−sb−m−j(x, ξ, λ) dλ.

Starting from this expression, it can be shown that the kernelK−s(x, y) ofA−s is continuous for Re(ms) > n.
For x �= y, it extends to an entire function of s. For x = y, it extends to a meromorphic function, whose
only singularities are simple poles at s = (n − j)/m, j = 0, 1 . . . . Each pole is due to a particular term
in the previous expression, and the residues are thus determined by the integrals of the Seeley coefficients
along Γ.
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2.3. The zeta function: Relation to the eigenvalues. For a given elliptic operator A, the first
spectral function that we consider is its zeta function defined as the trace

ζ(A, s) = trA−s.

The analyticity properties of the zeta function are derived from those of the kernel K−s(x, x). The residues
at the poles of ζ(A, s) are the integrals over the manifoldM of the residues corresponding to K−s(x, x) and
are therefore determined by the Seeley coefficients. Whenever an operator has a complete orthogonal set
of eigenfunctions, its zeta function can be expressed in terms of the corresponding eigenvalues.

We now suppose that the bundle has a smooth Hermitian inner product and M is endowed with a
smooth volume element dv. If the operator A is normal with respect to these structures (i.e., A†A = AA†),
then it has a complete orthonormal set of eigenfunctions Aφk = λkφk, and we can write

K−s(x, y) dvy =
∑

k

λ−s
k φk(x)φ

†
k(y) dvy .

Setting x = y and integrating over M , we then obtain

ζ(A, s) = trA−s =
∑

k

λ−s
k . (7)

As an example, we consider the operator

A = − d2

dx2
+ P

on the unit circle, where P is the operator of projection onto zero modes. The eigenvalues of A are given
by λn = n2 for n = ±1,±2, . . . and λ0 = 1 for the zero mode. Therefore,

ζ(A, s) = 2
∞∑

n=1

(n2)−s + 1 = 2ζR(2s) + 1.

This Riemann zeta function is known to be analytic for Re(2s) > 1, i.e., Re(s) > 1/2 = n/m. Its analytic
extension has a simple pole at 2s = 1.

2.4. The heat kernel and its trace. If all eigenvalues of the principal symbol lie in the region S0:
−π/2+ ε < argλ < π/2− ε, then the spectrum of A lies in the sector Sα: −π/2+ ε < arg(λ+α) < π/2− ε

for some α > 0, and we can define

e−At =
i

2π

∫
Γ

e−λt(A− λI)−1 dλ, t > 0,

where Γ is the boundary of Sα. It can be shown that this is the fundamental solution of the heat equation
Au + ∂u/∂t = 0 with the initial condition u(x, 0) = δ(x). The operator e−At is therefore called the heat
kernel of the operator A.

The approximation to the resolvent B(λ) then allows taking the limit as t → +0 in the previous
integral, and we thus obtain an asymptotic expansion for e−At in increasing (in general, noninteger) powers
of t. The coefficients in this expansion are also determined by the Seeley coefficients.
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As before, if A has a complete set of eigenfunctions, then the kernel of e−At can be written as

K(t, x, y) =
∑

k

e−λktφk(x)φ
†
k(y).

The trace

h(A, t) = tr e−At =
∑

k

e−λkt (8)

is the the second spectral function that we use in what follows.
There is a very close relation between the zeta function of an operator and the trace of its heat kernel.

In fact, it follows from Eqs. (7) and (8) that

ζ(A, s) =
∑

k

λ−s
k =

1
Γ(s)

∫ ∞

0

dz
∑

k

e−λkzzs−1 =
1

Γ(s)

∫ ∞

0

dz h(A, z)zs−1, (9)

i.e., the two spectral functions are related through the so-called Mellin transformation.

2.5. Elliptic boundary systems. Up to this point, we have considered boundaryless manifolds.
We now consider how the concepts introduced above extend to manifolds with boundaries. We let M be
a compact manifold of dimension n with a smooth boundary ∂M . In each local coordinate system, we
let x = (x1, . . . , xn−1) be the coordinates on ∂M . We let t ∈ R be the interior normal to the boundary.
Therefore, (x, t) ∈ Rn. We let Rn

+ be the half-space t ≥ 0. In Rn
+, we consider the mth-order differential

operator

A =
m∑

j=0

Aj(x, t)D
m−j
t , Dt = −i ∂

∂t
,

where Aj is a differential operator of an order not greater than j on Rn−1. With (ξ, τ) denoting the symbolic
variable corresponding to (x, t), we have

σ(A) =
∑

j

σ(Aj)(x, t, ξ)τm−j .

The principal symbol is

σm =
∑

j

σj(Aj)(x, t, ξ)τm−j .

Moreover, we define the partial principal symbol by

σ′
m =

∑
j

σj(Aj)(x, 0, ξ)D
m−j
t .

We now suppose that near the boundary, we have certain given operators (defining the boundary
conditions)

Bj =
m∑

k=1

BjkD
m−k
t , 1 ≤ j ≤ mq

2
,

where the Bjk are a system of differential operators (1×q matrices) acting on Rn−1. We concentrate on the
case where these boundary operators are merely multiplicative. Then

σ(Bj) =
m∑

k=1

σ(Bjk)τm−k, σ′(Bj) =
m∑

k=1

σ(Bjk)Dm−k
t .
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A collection of operators A,B1, . . . , Bmq/2 constitute an elliptic boundary system if A is elliptic and if
for arbitrary g = (g1, . . . , gmq/2), x ∈ Rn−1, and ξ �= 0, ξ ∈ Rn−1, there is a unique solution to the problem

σ′
m(A)(x, ξ,Dt)u = 0, t > 0,

lim
t→∞

u(t) = 0,

σ′(Bj)(x, ξ,Dt)u = gj for t = 0, j = 1, . . . ,
mq

2
.

These conditions are also known as the Lopatinski–Shapiro conditions [12]. Whenever they hold, an operator
AB can be defined as the operator A acting on functions u such that Bju = 0.

A collection A,B1, . . . , Bmq/2 constitutes a strongly elliptic boundary system in a cone K ⊂ C including
the origin if

a. for (ξ, τ) �= (0, 0), σm(A) has no eigenvalues in K and
b. for each x and each (ξ, λ) �= (0, 0) with λ ∈ K, the boundary problem

σ′
m(A)(x, ξ,Dt)u = λu,

lim
t→∞

u(t) = 0,

σ′(Bj)(x, ξ,Dt)u = gj for t = 0, j = 1, . . . ,
mq

2
,

has a unique solution.

We note that this reduces to the Lopatinski–Shapiro condition for λ = 0. The cone K is known as the
Agmon cone [11].

When the strong ellipticity condition holds, an approximation to the resolvent (AB − λ)−1 can be
found [9], and we can use it to obtain

(AB)−s =
i

2π

∫
Γ

λ−s(AB − λI)−1 dλ,

where Γ is a curve in the cone where (AB −λI)−1 exists. The coefficients in the expansion of the parametrix
must now satisfy not only the condition that the operator AB − λ be invertible but also the boundary
conditions. In addition to the volume Seeley coefficients b−m−j, there then exist new boundary coefficients
dm−j , and their determination leads to a set of differential (not algebraic) equations.

The conditions that determine the pole structure of K−s(x, y) are similar to those in the boundaryless
case, but the residues at the poles are now given by volume integrals of the coefficients b plus boundary
integrals of the coefficients d. As before, the zeta function can be defined as the trace of the −sth power.
In particular, if the operator AB has a complete set of eigenfunctions, then expansions (7) hold and

h(AB , t) =
∑

k

e−λkt. (10)

Spectral functions (7) and (10) are again related through the Mellin transformation.
As an example, we consider the Laplacian on the boundary of a cylinder with the Dirichlet boundary

conditions. We let A = −∂2
x−∂2

y act on functions ϕ(x, y) such that ϕ(0, y) = ϕ(1, y) = 0, which are periodic
in the y direction. The boundary then corresponds to x = 0, x = 1. The boundary operator is merely
multiplicative, B = 1. We let (τ, ξ) be the Fourier variables associated with (x, y). Then

σ(A) = σ2(A) = ξ2 + τ2,

σ(B) = σ0(B) = σ′
0(B) = 1.

(11)
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It can then be shown that the differential operator A is elliptic. In fact, σ2(A) = ξ2+τ2 �= 0 for (τ, ξ) �= (0, 0)
because τ, ξ ∈ R.

It can also be shown that the boundary problem is elliptic in the weak (Lopatinski–Shapiro) sense. We
consider the boundary at x = 0. Then x is the variable normal to the boundary. For ξ �= 0, the differential
equation

σ′
2(A)u = (−∂2

x + ξ2)u = 0

has a solution of the form

u = Ce|ξ|x +De−|ξ|x.

The condition that this solution vanish as x → ∞ requires C = 0. For the remaining part, the problem
u(0, ξ) = g has a unique solution D = g for arbitrary g, which shows that weak ellipticity holds at x = 0.
It can be similarly shown to hold at x = 1.

The differential operator A has an Agmon cone. Indeed, the equation

σ2 u = (τ2 + ξ2)u = λu

with (τ, ξ) �= (0, 0) has nontrivial solutions only for λ = τ2 + ξ2 ∈ R+. The differential operator therefore
has the Agmon cone K = C − R+.

It also follows that the boundary problem is strongly elliptic in our example (has an Agmon cone).
Again, we consider the boundary at x = 0. For (ξ, λ) �= (0, 0), the differential equation

σ′
2(A)u = (−∂2

x + ξ2)u = λu

has a solution of the form

u = Ce
√

ξ2−λ2x +De−
√

ξ2−λ2x.

The condition that it vanish as x → ∞ requires C = 0, i.e., the problem u(0, ξ, λ) = g has a unique solution
D = g for arbitrary g. Together with the fact that the differential operator A has an Agmon cone, this
shows that the boundary problem is strongly elliptic in K = C − R+.

3. Comparison of the zeta and exponential regularizations of Casimir
energies

In this section, we show that both the zeta and the exponential regularizations, in general, give divergent
results for the Casimir energy. A general relation between the two results is established, and the existence
of a unique, physically meaningful result after renormalization is discussed [13], [14].

3.1. The general result. In Sec. 1, we studied a simple example of evaluating the Casimir energy:
a massless scalar field between “conducting” plates. We obtained a finite result for the vacuum energy
in the zeta regularization and pole divergences in the exponential cutoff regularization. Moreover, these
divergences showed a dependence on the distance between the plates consistent with the classical action
and differed from the dependence of the finite part on the distance between the plates. The energy could
therefore be renormalized away.

We now face several questions: Is renormalization still possible in a more general case? Does the zeta
function always give a finite result? Are the divergences in the exponential regularization always poles?
What is the relation between the results given by the two regularizations in a more general case?
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To answer these questions, we use the general results in Sec. 2 regarding the structure of the zeta
function and the trace of the heat kernel, as applied to second-order operators. We recall that in the scalar
case, for instance, the vacuum energy is given by

EV =
1
2

∑
n

ωn,

where ωn are the zero-point energies. We consider a scalar field in a (d+1)-dimensional space–time, where
d is the dimension of the compact spatial manifold, with or without a smooth boundary. We set ωn = λ

1/2
n ,

where the λn satisfy the associated boundary problem

DBϕn = ηnϕn (12)

with

ηn =

{
λn for DB = D,

0 for DB = B.

Here,D is a second-order differential operator onM , andB is the operator defining the boundary conditions.
The zeta-regularized [5], [6] vacuum energy is defined as

Eζ ≡ µ

2

∑
n

(
λn

µ2

)−s/2∣∣∣∣
s=−1

=
µ

2
ζ

(
s

2
,
DB

µ2

)∣∣∣∣
s=−1

=
µ

2
tr
(
DB

µ2

)−s/2∣∣∣∣
s=−1

, (13)

and the cutoff-regularized expression is given by

Eexp ≡ µ

2

∑
n

λ
1/2
n

µ
exp
{
−tλ

1/2
n

µ

}∣∣∣∣
t=0

= −µ

2
d

dt

(
h

(
t,
D

1/2
B

µ

))∣∣∣∣
t=0

, (14)

where

h

(
t,
D

1/2
B

µ

)
=
∑

n

exp
{
−tλ

1/2
n

µ

}
= tr

(
exp
{
− t

µ
D

1/2
B

})
. (15)

We recall that µ is an arbitrary parameter with the dimensions of mass in both cases.
To study the relation between the two regularizations, we use the following known result.

Lemma 1 [10]. Let D be a second-order differential operator acting on a smooth compact d-dimen-

sional manifoldM , and let B be the differential operator defining boundary conditions on ∂M . If boundary

problem (12) is strongly elliptic with respect to C − R+, then

a. the function

µ−sΓ
(
s

2

)
ζ

(
s

2
,
DB

µ2

)
is analytic for Re(s) > d and extends analytically to a meromorphic function with the singularity

structure

µ−sΓ
(
s

2

)
ζ

(
s

2
,
DB

µ2

)
=

N∑
j=0

2aj

s+ j − d
+ rN

(
s

2

)
,

where rN (s/2) is analytic for Re(s) > d − N − 1 and the coefficients aj are determined by the

integrated Seeley coefficients, and

b. for each real c1 and c2 and any δ < θ0,∣∣∣∣µ−sΓ
(
s

2

)
ζ

(
s

2
,
DB

µ2

)∣∣∣∣ ≤ C(c1, c2, δ)e−δ| Im s/2|,

∣∣∣∣Im s

2

∣∣∣∣ ≥ 1, c1 ≤ Re
s

2
≤ c2.
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This lemma clearly shows that the vacuum energy evaluated through the zeta regularization as given
by (13) involves a pole singularity whenever ad+1 �= 0. To study exponential cutoff–regularized expres-
sion (14), we prove the following lemma.

Lemma 2. Under the hypothesis of Lemma 1, the function

dh(t,D1/2
B /µ)

dt
=

d tr
(
exp
{
−tD1/2

B /µ
})

dt
=
∑

n

−λ
1/2
n

µ
exp
{
−tλ

1/2
n

µ

}
has the asymptotic expansion

dh(t,D1/2
B /µ)

dt
=

d∑
k=0

(−k) 1
2µ

Γ((k + 1)/2)
Γ(1/2)

ad−k

(
t

2µ

)−k−1

+

+
K∑

k=1

(−k) 1
2µ

Γ(−k + 1/2)
Γ(1/2)

2ad+2k

(
t

2µ

)2k−1

+

+
K∑

k=0

(2k + 1)
1
2µ

(−1)k
Γ(1/2)Γ(k + 1)

(
t

2µ

)2k
[
rd+2k+1

(
−k − 1

2

)
+

+ ad+2k+1

(
Ψ(1) +

k−1∑
l=0

1
k − l

)
+

d+2k∑
j=0

2aj

j − d− 2k − 1
+

+ 2ad+2k+1

(
(2k + 1) log

(
t

2µ

)
− 1
2k + 1

)]
+ ρK(t) (16)

as t → 0, where

ρK = O

((
t

2µ

)2K+1+ε)
, 0 < ε < 1.

We note that for t → 0, this asymptotic expansion contains not only poles (in the first sum in (16)) but
also logarithmic divergences (for k = 0 in the last sum). In fact, it involves poles of the orders d+1, d, . . . ,−1
with the coefficients determined by ad−k, k = 0, . . . , d. The coefficient of the logarithm is determined by
ad+1.

Proof of Lemma 2. The proof is only sketched here (see [13] for the details). We first note that

Γ(s)ζ
(
s

2
,
DB

µ2

)
=
∫ ∞

0

ts−1h

(
t,
D

1/2
B

µ

)
dt

is the Mellin transform of h
(
t,D

1/2
B /µ

)
. This can also be written as

Γ(s)ζ
(
s

2
,
DB

µ2

)
=

Γ(s)
Γ(s/2)

[
Γ
(
s

2

)
ζ

(
s

2
,
DB

µ2

)]
=

=
2s−1

√
π
Γ
(
s+ 1
2

)[
Γ
(
s

2

)
ζ

(
s

2
,
DB

µ2

)]
. (17)

From Lemma 1 and the known singularity structure of Γ((s+ 1)/2), it follows that (17) is analytic for
Re(s) > d and

h

(
t,
DB

µ2

)
=

1
2πi

∫ c+i∞

c−i∞
ds

(
t

µ

)−s 2s−1

√
π
Γ
(
s+ 1
2

)[
µ−sΓ

(
s

2

)
ζ

(
s

2
,
DB

µ2

)]
, (18)

538



where the integration path is such that c > d. From this expression, we obtain

dh(t,DB/µ
2)

dt
=

1
2πi

∫ c+i∞

c−i∞
ds

(−s)
µ

(
t

µ

)−s−1 2s−1

√
π
Γ
(
s+ 1
2

)[
µ−sΓ

(
s

2

)
ζ

(
s

2
,
DB

µ2

)]
, (19)

where the integral is performed along the same contour as before.
Using Lemma 1 together with

Γ
(
s+ 1
2

)
= O

(
exp
{(

−π

2
+ ε

)∣∣∣∣ Im s

2

∣∣∣∣})
for any ε > 0, it is now possible to obtain an asymptotic expansion for d h(t,DB/µ

2)/dt by moving the
integration path in (18) through the poles of

Γ
(
s+ 1
2

)[
µ−sΓ

(
s

2

)
ζ

(
s

2
,
DB

µ2

)]
.

These poles are located at s = d − j. For s = d − j = k ≥ 0, j ≤ d, they are simple poles, and their
contribution to the Cauchy integral is given by

−k
2µ

Γ((k + 1)/2)
Γ(1/2)

ad−k

(
t

2µ

)−k−1

, k = 0, 1, . . . , d.

For s = d− j = −2k, k = 1, 2, . . . , they are also simple poles, and their contribution is

−k 1
2µ

Γ(−k + 1/2)
Γ(1/2)

2ad+2k

(
t

2µ

)2k−1

.

For s = d− j = −(2k + 1), k = 0, 1, . . . , they are simple and double poles with the contribution

2k + 1
2µ

(−1)k
Γ(1/2)Γ(k)

(
t

2µ

)2k[
rd+2k+1

(
−k − 1

2

)
+

d+2k∑
j=0

2aj

j − d− 2k − 1

]
×

× 2k + 1
2µ

(−1)k
Γ(1/2)Γ(k + 1)

(
t

2µ

)2k

ad+2k+1

[
2 log

(
t

2µ

)
− 2 + Ψ(1) +

k−1∑
l=0

1
k − l

]
,

where the sum over l must be taken for k > 0. Therefore, moving the integration contour in (18) until the
singularity at s = −(2K + 1) is included, we have

dh(t,DB/µ
2)

dt
=

d∑
k=0

(−k) 1
2µ

Γ((k + 1)/2)
Γ(1/2)

ad−k

(
t

2µ

)−k−1

+

+
K∑

k=1

(−k) 1
2µ

Γ(−k + 1/2)
Γ(1/2)

2ad+2k

(
t

2µ

)2k−1

+

+
K∑

k=0

(2k + 1)
1
2µ

(−1)k
Γ(1/2)Γ(k + 1)

(
t

2µ

)2k
[
rd+2k+1

(
−k − 1

2

)
+

+ ad+2k+1

(
Ψ(1) +

k−1∑
l=0

1
k − l

)
+

d+2k∑
j=0

2aj

j − d− 2k − 1
+

+ 2ad+2k+1

(
(2k + 1) log

(
t

2µ

)
− 1
2k + 1

)]
+ ρK(t). (20)
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The remainder ρK(t) is given by the same integral as (19), but with c < −2(K + 1). Lemma 1b and
the estimate for |Γ((s + 1)/2)| already discussed imply that this remainder is O

(
|t/(2µ)|2K+1+ε

)
, which

completes the proof.

Evaluated at t = 0, this asymptotic expansion gives exponentially regularized vacuum energy (14) as

Eexp = − µ

2
dh(t,DB/µ

2)
dt

∣∣∣∣
t=0

= − 1
2

d∑
k=1

(−k)Γ((k + 1)/2)
2−kΓ(1/2)

ad−k

(
t

µ

)−k−1∣∣∣∣
t=0

−

− 1
4Γ(1/2)

[
rd+1

(
−1
2

)
+ ad+1(Ψ(1)− 2) + 2

d∑
j=0

aj

j − d− 1

]
+
1
2

ad+1

Γ(1/2)
log
(

t

2µ

)
. (21)

Returning to Lemma 1, the zeta-regularized vacuum energy is given by

Eζ =
µ

2
ζ

(
s

2
,
DB

µ2

)∣∣∣∣
s=−1

=
1

2Γ(−1/2)

d∑
j=0

2aj

j − d− 1
+

+
1

2Γ(−1/2)rd+1

(
−1
2

)
+

µs+1

Γ(s/2)
ad+1

s+ 1

∣∣∣∣
s=−1

=

= − 1
2Γ(1/2)

d∑
j=0

aj

j − d− 1
− 1
4Γ(1/2)

rd+1

(
−1
2

)
+

+
1

2Γ(1/2)
ad+1

(
Ψ(1)
2

+ 1− log(2µ)
)
− 1
2Γ(1/2)

ad+1

s+ 1

∣∣∣∣
s=−1

. (22)

We can conclude from (21) and (22) that both regularization methods give divergent results in general.
Two cases must be distinguished.

Case 1. If ad+1 = 0, the zeta regularization gives a finite result, which coincides with the minimal
finite part in the exponential regularization. This last method yields poles of the orders 2, 3, . . . , d+1. The
residue at the pole of the order k+1 is given by Γ(k+1) times the residue of (µ/2)ζ(s/2, DB/µ

2) at s = k,
k = 1, . . . , d.

Case 2. In the general case (ad+1 �= 0), the exponential regularization, in addition to the poles,
involves a logarithmic divergence whose coefficient is minus the residue of (µ/2)ζ(s/2, DB/µ

2) at s = −1.
As a consequence, the difference between the minimal finite parts in the exponential regularization and in
the zeta regularization is

−1
2
ad+1√
π
Ψ(1) =

1
2
ad+1√
π
γ, (23)

where γ is the Euler–Mascheroni constant. Both schemes show a logarithmic dependence on µ (as discussed
in [15] for the zeta case). If the difference between the two regularization results consists of renormalizable
terms, then a physical interpretation is possible, and all the dependence on µ disappears.

All these results are also valid in the case of boundaryless manifolds.

3.2. The massive scalar field in 1+1 dimensions. We can now return to our example of the
massless scalar field in d+ 1 = 4 and verify that it falls into case 1 in Sec. 3.1.

540



As a simple example of case 2, we consider a massive scalar field in d + 1 = 2 dimensions satisfying
periodic boundary conditions in the spatial direction, ϕ(t, L) = ϕ(t, 0). It is easy to see that

ωn =
[
m2 +

(
2nπ
L

)2]1/2

, n ∈ Z.

Using the zeta regularization, we then obtain

Eζ =
µ

2

∞∑
n=−∞

[(
2nπ
Lµ

)2

+
(
m

µ

)2]−s/2∣∣∣∣
s=−1

=

=
µs+1

2

(
2π
L

)−s ∞∑
n=−∞

[
n2 +

(
mL

2π

)2]−s/2∣∣∣∣
s=−1

.

Using representation (3), this can be rewritten as

µs+1

2

(
2π
L

)−s ∞∑
n=−∞

1
Γ(s/2)

∫ ∞

0

dt ts/2−1 exp
{
−
(
n2 +

(
mL

2π

)2)
t

}∣∣∣∣
s=−1

=

=
µs+1

2

(
2π
L

)−s 1
Γ(s/2)

∫ ∞

0

dt t
s
2−1 exp

{
−
(
mL

2π

)2

t

}
Θ
(
0,

t

π

)∣∣∣∣
s=−1

,

where

Θ(x, y) =
∞∑

n=−∞
e2πxn−πyn2

is the Jacobi theta function, which has the useful inversion property

Θ(x, y) =
1
√
y
eπx2/yΘ

(
x

iy
,
1
y

)
.

Using this property, we can show that

Eζ =
µs+1

2

(
2π
L

)−s 1
Γ(s/2)

[(
2π
mL

)s−1

Γ
(
s− 1
2

)
+

+ 2
∫ ∞

0

dt t(s−1)/2−1 exp
{
−
(
mL

2π

)2

t

}
exp
{
−n2π2

t

}]∣∣∣∣
s=−1

.

Here, we can see how the pole at s = −1 arises: it comes from the pole of the gamma function. After
performing the integration and expanding around s = −1, we obtain

E
(1)
ζ = −m

π

∞∑
n=1

1
n
K1(nmL) +

m2L

4π

[
1

s+ 1

∣∣∣∣
s=−1

− log
(
m

2µ

)
− 1
2

]
. (24)

The series in (24) converges because of the behavior of the modified Bessel function K1 as n → ∞.
The exponential cutoff regularization gives

E(1)
exp = −µ

2
d

dt

( ∞∑
n=−∞

exp
{
−t
((

2nπ
Lµ

)2

+
(
m

µ

)2)1/2})∣∣∣∣∣
t=0

.
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This series can be rewritten using the Poisson resummation formula

∞∑
n=−∞

f(n) =
∞∑

p=−∞
cp,

where

cp =
∫ ∞

−∞
dx e2πipxf(x).

After differentiating and setting t = 0, we obtain

E(1)
exp = −m

π

∞∑
n=1

1
n
K1(nmL) +

m2L

4π

[
− log t− log

(
m

2µ

)
+ 2
(
mt

µ

)−2

− γ − 1
2

]∣∣∣∣
t=0

. (25)

This result is also divergent and, as predicted, involves divergences in the form of poles and logarithms.
Comparing the coefficients in this expression with the coefficients in Eq. (24) also shows a complete agree-
ment with our general result.

Both results admit a renormalization under the condition E → 0 as R → ∞ or, equivalently, E → 0
as m → ∞ (as proposed in [16]), thus yielding a physically meaningful result with no dependence on µ.

An open question is what happens in more complicated geometries, in particular, for curved boundaries.
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