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The Lipkin model is extended to yield a non-trivial Hartree-Fock (HF) solution for 
any coupling constant of the two-body force. In this model the multi-configuration 
Hartree-Fock (MCHF) approach is compared with the exact solution and with the 
HF solution. The results show a strong superiority of the MCHF method over the 
HF approximation. 

1. Introduction 

Recent ly  a va r ia t iona l  m e t h o d  for  the so lu t ion  of the  nuclear  many-  
b o d y  p r o b l e m  was p r o p o s e d  I t ak ing  ,as a t r ia l  wave funct ion,  a l inear  
combina t i on  of Slater  de terminants .  In  this mul t i -conf igura t ion  Har t ree -  
F o c k  ( M C H F )  me thod  one s imul taneous ly  varies bo th  the coefficients 
of the expans ion  and  the s ingle-part ic le  states. The  m e t h o d  yields the  
excited states apa r t  f rom giving selfconsistently the  cor re la ted  g round  
state. I t  was tested by  the s imple L ipk in  mode l  2' 3 for  which the exact  
so lu t ion  is k n o w n  2. This  mode l  has the  d r a w b a c k  of p roduc ing  only 
two par t ic le- two hole  excitat ions.  The  unpe r tu rbed  g round  state therefore  
is a l ready  the H a r t r e e - F o c k  ( H F )  state and  only for  no t  t oo  small  values 
of the in terac t ion  cons tan t  the unpe r tu rbed  solut ion becomes  unstable .  I t  
is desirable  to  have a mode l  which yields for  all values of the  coupl ing  
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constant a non-trivial HF solution in order to compare the MCHF 
approach with the exact and with the competing HF solution. Here we 
are proposing a model which has the same merit of being accesible to 
an exact group theoretical solution as the Lipkin model. But in contrast 
with this model it produces one particle-one hole excitation and therefore 
always has a non-trivial HF solution. 

In Section 2 the model is introduced and reformulated in the language 
of quasi-spin operators. The exact, the HF, and the MCHF solutions 
are given in Section 3. Finally the results are summarized in Section 4. 

2. The Model 

The model has two Q-fold degenerate single-particle levels which 
are separated by the single-particle energy e. We characterize the f2 lower 
levels by [ p o ' = -  1) and the upper levels by Ipa= + 1) (for p = 1, ... O) 
as LIPKIN et aL z' 3 does. The nucleons interact via a two-body monopole 
force with the strength V 

c*..., c vEc*  vcpvZ . (1) 
/ t p  / t v p  a u g  

Opposite to the Lipkin model the interaction can also produce forward 
scattering of one or both particles. 

Introducing the quasi-spin operators 

J z -  ~ Z Cp.~ Cp. , 
p 

(2) 
p 

which fulfill the angular-momentum commutation relations, one can 
write the Hamiltonian (1) into the following form: 

ffI=,l~+�89 + 2J~ + eJ=(J+-J_)+ e ( - J+  + j _ ) ~ _ j 2  _j~.-], (3) 

where the energy is given in units of e(v = V/e). 
It is now straightforward to construct N-particle eigenfunctions of 

the total quasi-spin operator and of the z-component of the quasi-spin 
operators. The problem becomes especially simple if we consider N= f2 
particles in the two levels. The unperturbed ground state for N =  f2 is 
the stretched configuration with the largest negative z-component of the 
quasi-spin: 

N 

In=O,c)=[J=�89  4 = - � 8 9  c ) =  1-Ic~- 10), (4) 
p = l  

where the number of particle-hole states is indicated by n. 
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The letter " c "  recalls one that the basis or "c"  representation is 
employed. The other states with the same total quasi-spin are constructed 
by the raising operator J+ .  Since the Hamiltonian (3) is not changing 
the total quasi-spin, the exact solution is found by diagonalizing (3) in 
the 2 J +  1 = N +  1 space of the total quasi-spin. The energy matrix can 
be calculated utilising the following results of angular-momentum algebra: 

J~ln)=(n-J) ln) ,  

J+ In) = [ ( 2 J -  n)(n + 1)]~ I n +  1) ,  

J_ [n)=[(2J-n+ l )n]~ln-1} .  

(5) 

3. The Solutions 

The exact solution is found by diagonalization of the matrix: 

(n ' ln ln)=(n-J)+�89 

+ 5,,,; ,, +12 [(2 J -  n)(n + 1)] =* + 5,,,; ,,_ 1 2 [(2 J -  n + 1) n] ~ 

- ,3.,;.  + ~ [ (2  J - n - 1) (n + 2) (2 , ;  - n)  (n  + 1)]  ~ 

--5,,; ,,-2 [ ( 2 J - n  + 2)(n - 1) (2 J -  n + 1) n]~}. 

The number of particle-hole states is indicated by n, 

(6) 

In)---IJ;Jz=n-J).  

In the HF approach we are looking for the selfconsistent single- 
particle states: 

( @ - t = t  c o s ~  sin 2fl---ttc;_ t 

Here we are allowing for only an orthogonal transformation. This is 
the restriction which is customarily imposed on H F  calculations in actual 
nuclei. The single-particle transformation (7) corresponds in quasi-spin 
space, to the following rotation: 

J~(c)= cos/3 Jx(a) + sin/~ Jz(a). 

J,(c)=J,(a). 

d~ (C) = c o s  ~ dz (a )  - sin/~ .Ix (a). 

(8) 
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Since the operators Ji are the generators of a rotational group, we 
can write 

N 

[J;Jz=n-J;c)= ~ [J ;n ' - J ;a ) (a ;J ;n ' - J lR( f l ) lY ;n -J ;a )  
n , = 0  

N (9) 
= Z n'-s; a). 

n ' = 0  

The operator R(fl) indicates a positive rotation around the y-axis. The 
rotational matrices d~r; M(fl) are defined, for example, by EDMONDS 4 
(Eq. (4.1.15)). 

The angle fl is found by minimising the ground state expectation value 
of the total Hamiltonian in the a-representation, 

(0, a[ H(a)10, a } - - - J c o s f i + v J [ 2 J c o s 2 f l + l + s i n Z f l + 2 s i n f l ] .  (10) 

The letter " a "  in H(a) denotes the transformation of the Hamiltonian (3) 
into the a-representation with the help of Eq. (8) 

H (a) = cos fl Y~ (a) + sin fl Y~ (a) + 2 v [cos2 fl y~ (a) + sin fl J~ (a) 

+ cos fl sin fl [Jz (a) Jx (a) +,Ix (a) Jz (a)] (11) 

+ J~ (a) + cos fl ,lx(a )-sin fl Yz(a) . 

The HF function can be expanded into the wave functions of the basis 
representation by employing the inverse transformation of Eq. (9), 

[O,a)- lJ- �89 (12) 
n 

with 

dSs;n-J(fl)=(-)" [ n!(N-n)!N! ]~ (cos ~__fl)N-, (sin ~ ) n .  

To find the MCHFsolution one has only to take a linear combination 
of the configurations which are different by at least two particle-two 
hole excitations, as proved in ref. 1. Here the trial function is restricted 
to the Op-Oh and to the 2p-2h configuration: 

~,= cos ~ 10, a )  + sin q~ [2, a ) .  (13) 

The two angles q~ and fl are found by numerically minimising the expecta- 
tion value of the total Hamiltonian: 

(~,] H [~)  =cos 2 ~b (0; al H 10; a )  +2  sin ~b cos ~b (2; a[ H 10; a )  
+ sin z q~ (2; a I H [ 2; a ) .  (14) 

4 EDMONDS, A.R.: Angular momentum in quantum mechanics. Princeton, New 
Jersey: University Press 1960. 
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Table 1. The total binding energies of the exact, of the HF, and of the M C H F  solutions. 
The first column lists the number of particles N, the second contains the coupling constant 
v, and the third gives the exact value of the total binding energy. The two last columns 
denote the differences between the M C H F  and the exact and between the H F  and the 
exact solutions. All the energies are given in units of ~, the energy gap between the two 

unperturbed single particle levels 

N v Exact EMCHF-- gExac t EHF-- EExae t 
x l0 s x 104 

10 -3 -- 1.9900069 0.0 0.1 
2 X 10 -3 --  1.9800281 0.0 0.1 
5 X 10 .3  --  1.9501787 0.0 0.8 

10 .2  --  1.9007311 0.0 3.1 
2 X 10 .2  -- 1.8030601 0.0 12.4 
5 • 10 . 2  --  1.5220968 2.2 79.1 

10 -1 --  1.1138018 70.0 247.5 

10 

10 . 3  --  4.9450324 0.0 0.2 
2 X 10 -3 --  4.8901323 0.0 1.0 
5 X 10 -3 --4.7258598 0.0 5.9 

10 -2 --  4.4536631 0.4 24.4 
2 • 10 -2 --  3.9168961 11.9 106.6 
5 X 10 -2 --  2.4505702 665.6 548.0 

10 -1 --  1.2499972 58.8 86.9 

20 

10 -3 -- 9.7901161 0.0 1.0 
2 X 10 -3 --  9.5804790 0.0 3.9 
5 x 10 .3  --  8.9532287 0.6 26.1 

10 .2  --  7.9148866 19.0 116.7 
2 x 10 - z  --  5.8911480 572.0 587.0 
5 x 10 .2  --2.4999985 32.3 88.3 

10 -1 --  1.2500000 0.7 10.0 

40 

10 -3 --  19.180445 0.0 4.0 
2 x  10 -3 --  18.361875 0.2 16.8 
5 • 10 .3  --  15.913814 23.5 121.8 

10 .2  -- 11.885143 853.0 671.3 
2X 10 -2  --  6.2499934 85.9 189.4 
5 X 10 -2 -- 2.5000003 0.5 10.1 

10 -1 --  1.2500124 1.2 1.5 

T h e  f i r s t  m a t r i x  e l e m e n t  is g i v e n  in  E q .  (10) .  T h e  r e m a i n i n g  o n e s  c a n  b e  

c a l c u l a t e d  u t i l i s i n g  E q s .  (5) a n d  (11),  

a )  = - v  c o s  f l [ J ( 2 J - 1 ) ]  ~ (2;alHI0; 2 

( 2 ,  a [ H 12, a )  = (2 - J )  c o s  13 + v [2  c o s  z fl (2 - j ) 2  (15)  

+ (1 + s in  z fl) ( J  (d  + 1) - ( 2 -  J )  2) - 2 (2 - J )  s in  f l ] .  
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Table 2. Overlap of the wave functions corresponding to the exact solutions with those 
of the H F  and M C H F  methods for four values of the number of particles N and two 

values of the coupling constant v in units of 

N v (Exact[ I-IF) (Exactl M C H F )  

4 0.01 0.999922 1.000000 
4 0.05 0.997826 0.999997 

10 0.01 0.000335 0.999999 
10 0.05 0.973252 0.997758 
20 0.01 0.996401 0.999969 
20 0.05 0.998558 0.999955 
40 0.01 0.969568 0.997368 
40 0.05 0.999932 0.999999 

Table 3. Mixing coefficients of the exact solution, of the H F  approach, and of the 
M C H F  method for the number of particles N =  10 and the coupling constants v=O.01 
and v=O.05. The entry n indicates the number of particle-hole states into which the 

total wave function is expanded 

v = 0.01 v = 0.05 

n Exact HF MCHF Exact HF MCHF 

0 0.9986 0.9993 0.9986 0.8467 0.7573 0.8435 
1 --0.0365 --0.0387 --0.0367 --0.3765 --0.5726 --0.4105 
2 0.0373 0.0010 0.0372 0.3289 0.2905 0.2804 
3 --0.0020 --0.0000 --0.0022 --0.1519 --0.1134 --0.1811 
4 0.0013 0.0000 0.0001 0.0918 0.0359 0.0869 
5 --0.0001 --0.0000 --0.0000 --0.0363 --0.0094 --0.0311 
6 0.0000 0.0000 0.0000 0.0162 0.0021 0.0086 
7 --0.0000 --0.0000 --0.0000 --0.0051 --0.0004 --0.0018 
8 0.0000 0.0000 0.0000 0.0016 0.0001 0.0003 
9 --0.0000 --0.0000 --0.0000 --0.0003 --0.0000 --0.0000 

10 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 

The MCHF function can be expanded into functions of the basis represen- 
tation 

N 

~ =  Z {cosq5 s ~ a d 2 - s ; , - s ( - P ) } l n ,  c ) ,  (16) d _ s ; n _ s ( _ f i ) + s i  n s 
n = 0  

The results are given in Table 1. A comparison shows that the energy 
difference between the MCHF and the exact solution is by one order of 
magnitude smaller than the difference between the HF and the exact 
total energy. 

4. Conclusion 

The Lipkin z, 3 model has been extended in order to provide a non- 
trivial HF solution for any value of the coupling parameter. The exact, 
the MCHF, and HF solutions have been calculated. The MCHF always 

26a Z. Physik, Bd. 218 
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lies between the H F  solut ion and  the exact solution. The difference with 
the exact energy is normal ly  by one order of magni tude  smaller for the 
M C H F  case than  for the H F  case. This encourages applications of the 
M C H F  theory to real nuclei. 
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