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Abstract In goldfish hepatocytes, hypotonic exposure leads to cell swelling, followed
by a compensatory shrinkage termed RVD. It has been previously shown that ATP is
accumulated in the extracellular medium of swollen cells in a non-linear fashion, and that
extracellular ATP (ATPe) is an essential intermediate to trigger RVD.

Thus, to understand how RVD proceeds in goldfish hepatocytes, we developed two
mathematical models accounting for the experimental ATPe kinetics reported recently by
Pafundo et al. in Am. J. Physiol. 294, R220–R233, 2008. Four different equations for
ATPe fluxes were built to account for the release of ATP by lytic (JL) and nonlytic mech-
anisms (JNL), ATPe diffusion (JD), and ATPe consumption by ectonucleotidases (JV ).
Particular focus was given to JNL, defined as the product of a time function (JR) and a
positive feedback mechanism whereby ATPe amplifies JNL. Several JR functions (Con-
stant, Step, Impulse, Gaussian, and Lognormal) were studied. Models were tested without
(model 1) or with (model 2) diffusion of ATPe.

Mathematical analysis allowed us to get a general expression for each of the models.
Subsequently, by using model dependent fit (simulations) as well as model analysis at
infinite time, we observed that:

– use of JD does not lead to improvements of the models.
– Constant and Step time functions are only applicable when JR = 0 (and thus, JNL = 0),

so that the only source of ATPe would be JL, a result incompatible with experimental
data.

– use of impulse, Gaussian, and lognormal JRs in the models led to reasonable good fits
to experimental data, with the lognormal function in model 1 providing the best option.
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Finally, the predictive nature of model 1 loaded with a lognormal JR was tested by sim-
ulating different putative in vivo scenarios where JV and JNL were varied over ample
ranges.

Keywords Extracellular ATP · Mathematical modeling · Simulations · Release of ATP

1. Introduction

Maintenance of cell volume in the face of fluctuating intra and extracellular osmolar-
ity is essential for cell function. It is especially significant for the animal cell because
they cannot withstand osmotic gradients across their membranes. Thus, it is not sur-
prising to find that cells have developed mechanisms that sense and oppose volume
changes. Since in most animal cells net water movements across the cell membrane
are driven almost exclusively by the osmotic gradient, a reduction of extracellular os-
molarity will lead to fast cell swelling. However, during continuous hyposmotic stress,
cells undergo a slower secondary shrinkage known as regulatory volume decrease (RVD),
thereby preventing cell disruption, and thus maintaining cell viability. Although the sig-
naling pathways activating this regulatory response have not yet been elucidated fully,
RVD is mediated to a large extent by KCl loss through electroneutral ion transport
pathways or by the separate activation of K+ and anion channels (Haussinger, 1996;
Jakab et al., 2002).

Recently, there has been a growing body of evidence showing that extracellular nu-
cleotides, mainly ATP, play a significant role as extracellular signals in cell volume regu-
lation, where they act by binding to specific cell surface P receptors (purinic and pyrimi-
dinic receptors, Lazarowski et al., 2003). At the same time, it was shown that most cells
are capable of releasing ATP to the extracellular space, particularly when cells are chal-
lenged by hypotonicity. Accordingly, Wang et al. (1996) presented the first experimental
evidence to support a model for autocrine and paracrine modulation of RVD by extra-
cellular ATP. Using rat hepatoma cells exposed to hypotonicity, cells first swell and then
release ATP in response to increases in cell volume. The resulting endogenous extracel-
lular ATP could bind to subtype 2 P receptors to activate Cl− permeability (the effector
mechanism) and RVD. The relevance of such findings has been confirmed using primary
cultured hepatocytes from humans (Wang et al., 1996) and fish (Pafundo et al., 2004).

A recent study of our group using goldfish hepatocytes exposed to hypotonic medium
provided new insights into this nucleotide dependent mechanism of volume regulation
(Pafundo et al., 2008). First, we showed that exogenous ATP triggered RVD in a dose
dependent manner. Second, swollen1 goldfish hepatocytes were able to release signifi-
cant amounts of ATP by both lytic and nonlytic mechanisms. Once in the extracellular
medium, extracellular ATP (ATPe) could decrease by diffusion and/or be degraded by ec-
tonucleotidases present at the surface. In addition, we showed that in these cells a positive
feedback mechanism exists, whereby extracellular ATP can activate the release of ATP by
a yet unidentified mechanism. Thus, in swollen goldfish hepatocytes, the concentration of

1Throughout the manuscript the phrase “swollen goldfish hepatocytes” refers to a condition where cells
were challenged by hypotonicity and the ATPe fluxes are active.
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ATPe located at the cell surface can be affected by several mechanisms interacting simul-
taneously in a complex way. This is why a simple, preliminary mathematical model was
developed accounting for the time course of ATP accumulation in the extracellular space
when goldfish hepatocytes are challenged by hypotonicity (Pafundo et al., 2008).

Given the experimental evidence supporting the importance of ATPe as the main trig-
ger of RVD of goldfish hepatocytes, in the present study, we exhaustively investigated and
generalized the previous mathematical model.

This work is structured as follows. The first part of the paper is devoted to a general
description of the sources (lytic and nonlytic release of ATP) and depletions (ATP con-
sumption by ecto-ATPase activity at the cell surface and ATPe diffusion) of extracellular
concentration of ATP ([ATP]e) as well as their incorporation in the general mathematical
model. This procedure resulted in two models described by linear nonautonomous or-
dinary differential equations. Subsequently, we propose several functions describing the
nonlytic release of ATP and considered the presence or not of ATP diffusion within the
extracellular compartment. In order to check if these functions as well as the presence
or not of ATP diffusion can produce results with physical meaning, the models are eval-
uated at infinite time. After that, simulations are performed to obtain the best values of
the functions parameters. Finally, the best model is chosen after the running model de-
pendent fits to recently published experimental data of our group (Pafundo et al., 2008).
The best model obtained allowed us to quantify the contribution of the different processes
that determine the kinetics of [ATP]e and at the same time predict different physiological
scenarios that goldfish hepatocytes may face. Moreover, since there is up to date no mole-
cular identification of ATP secretion pathways in liver cells, the model is useful in that it
includes several kinetic properties that a putative ATP transporter must fulfill.

2. Theory

In this section, mathematical models were used to analyze the [ATP]e kinetics of goldfish
hepatocytes challenged by hypotonicity. In order to analyze the contribution of ATPe
diffusion in the modeling, two main types of models were developed, i.e., a model without
(model 1) and a model with (model 2) ATPe diffusion. Both models were built considering
several ATP fluxes that either increase or decrease the [ATP]e .

2.1. Model 1 (without diffusion)

This is a two-compartment model, involving one intracellular and one extracellular com-
partment. Diffusion of ATPe within the extracellular medium is considered to take place
instantaneously. The [ATP]e is a state variable that can be controlled by the following ATP
fluxes (Fig. 1A).

(1) Flux of nonlytic release of ATP (JNL). That is, a release of ATP from the cells not
involving cell membrane rupture.

(2) Flux of lytic release of ATP (JL). The loss of cell viability leads to the release of ATP
to the extracellular medium.

(3) Flux of ATP consumption by ecto-ATPase activity (JV ), to account for ATP hydroly-
sis at the cell surface.
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Fig. 1 Schematic summary of the mathematical models used. (A) Model without diffusion. (B) Model
with diffusion. F , JNL , JL , JV , and JD stand for the positive feedback mechanism, nonlytic, lytic, Ec-
toATPase activity and diffusive flux, respectively.

2.1.1. Properties of the ATPe fluxes
2.1.1.1. Nonlytic ATP flux Viable goldfish hepatocytes undergo a nonlytic release of
ATP (JNL) in response to a hypotonic challenge. Since the molecular mechanism mediat-
ing this flux has not been identified, we evaluated a set of trial time functions (collectively
termed as JR(t)) denoted as Constant, Step, Impulse, Gaussian, and Log-normal.

In goldfish hepatocytes, addition of ATPγ S (a non-hydrolyzable analog of ATP), acti-
vates the release of ATP following a linear function with the concentration of the analog
(Pafundo et al., 2008). Assuming that ATP behaves similarly to ATPγ S, we included a
factor “F ” to account for a positive feedback process whereby ATPe can amplify JNL, as
follows:

F
¡[ATP]e

¢ = a[ATP]e + b. (1)

The values of “a” and “b” are obtained by fitting a linear function to experimental data
depicted in Fig. 2B.
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Fig. 2 Experimental data of viability, EctoATPase activity, and ATPe of hypotonically exposed goldfish
hepatocytes. All data was extracted from Pafundo et al. (2008) used with permission. (A) Time course
of extracellular ATP. Levels of endogenous extracellular ATP (ATPe) of hypotonically exposed goldfish
hepatocytes. In this experiment, 104 goldfish hepatocytes were exposed to 40 µl of hypotonic medium.
Results are means ± SEM of 10 independent preparations. (B) Positive Feedback. ATPmax

e vs. ATPγ S
concentration. Each point represents the maximal extracellular ATP found after exposing 104 goldfish
hepatocytes to 40 µl of hypotonic medium with 0–5 µM ATPγ S. The continuous line represents the best fit
by linear regression. Results are means±SEM, n = 5–6. (C) Viability. Time course of goldfish hepatocytes
viability (expressed as percentage). Results are means ± SEM, n = 60. Cells were loaded with calcein and
the retention of the intracellular fluorophore was assessed in hypotonic medium each second during 45 min.
Loss of fluorophore was interpreted as cell death. (D) Ecto ATPase activity. Ecto ATPase activity vs. ATP
concentration (50–1000 nM). Each point represents the initial rate of ATP extinction. The line represents
the best fit by linear regression. The slope of this line is the relation Vm/K1/2 used all along this work.
Results are expressed as means ± SEM, n = 4.

Then, JNL is modeled by the product of two independent processes, that is, a function
related to the release of ATP (JR) and the feedback mechanism (F ).

JNL applies only to viable cells, since membrane rupture gives rise to a different mech-
anism of ATP release as explained below.

2.1.1.2. Lytic flux Following the hypotonic challenge, a small but nevertheless signifi-
cant loss of cell viability takes place. In terms of the models, cell death leads to the release
of ATP to the extracellular medium by JL. This was estimated by using experimental data
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on the intracellular ATP content and the time course of cell viability (Fig. 2C). Cell viabil-
ity, assessed by fluorescence microscopy using calcein (Pafundo et al., 2008), diminished
2.0% during the first minute of hypotonic exposure, and remained constant thereafter. The
basic assumption is that the intracellular compartment contains the total mass of intracel-
lular ATP (mATP

i ) for any given number of cells, a mass which according to the model, is
released and diluted instantly into the extracellular compartment following cell death.

The ATPe concentration generated at any given time by JL can be modeled according
to the following expression:

[ATP]Le (t) = mATP
i α

(100 − viability(t))

100
. (2)

Where [ATP]Le is the concentration of extracellular ATP generated by cell death (i.e.,
by JL) and α is the total number of cells in the assay chamber. JL can be calculated as
follows:

JL(t) = d[ATP]Le
dt

. (3)

Although this lytic flux can be considered as an important source of ATPe, it was pre-
viously demonstrated that it does not suffice to account for the experimental time course
of [ATP]e (Pafundo et al., 2008).

2.1.1.3. Flux of ATP consumption by ecto-ATPase activity We have previously iden-
tified and characterized ectonucleotidases present at the surface of goldfish hepatocytes
which promote the hydrolysis of extracellular ATP, i.e., enzymes displaying ecto-ATPase
activity (Schwarzbaum et al., 1998; Alleva et al., 2002; Pafundo et al., 2004). In the model,
JV accounts for the flux of ATP consumption mediated by ecto-ATPase activity. The ex-
pression for JV was derived empirically after analyzing data of ectoATPase activity vs.
[ATP]e of goldfish hepatocytes. In a first approach, a hyperbolic function was fitted to
experimental data reported by Pafundo et al. (2008; see 3A).

JV

¡[ATP]e
¢ = Vm[ATP]e

K1/2 + [ATP]e , (4)

where “Vm” represents the apparent maximal value of ecto-ATPase activity, and K1/2 the
concentration of extracellular ATP at which a half-maximal activity is obtained under
the specific conditions of the experiment. However, since the model simulates ATPe in
a concentration range with lies at least 300 times lower than the K1/2 value, JV can be
described by a linear function (Fig. 2D) as:

JV

¡[ATP]e
¢ = Vm

K1/2
[ATP]e. (5)

2.1.2. Development of a general mathematical expression of the model 1 (without
diffusion)

The model is one-dimensional and has two compartments (Fig. 1A), so that ATP can be
located either in an intracellular compartment (denoted as i) or in an extracellular com-
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partment (denoted as e). Formally, the model can be expressed by the following ordinary
differential equation:

d[ATP]e
dt

= JNL + JL − JV , (6)

where d[ATP]e/dt represents the rate of change of [ATP]e and JNL,JL, JV are the fluxes
mentioned above.

For the time course of viability (δ(t)), an exponential function was fitted to experimen-
tal data as follows (Fig. 2C):

δ(t) = A1e
−kLt + A2. (7)

Where A1 and A2 are mortality and viability, both evaluated at infinitum, whereas kL is
the rate coefficient of the lytic process. Thus, according to Eqs. (2), (3), and (7) JL can be
fitted to a simple exponential decay function:

JL(t) = ALe−kLt . (8)

Where AL depicts the amplitude of the lytic response calculated as AL = mATP
i

αA1kL

100 .
The expression for JNL includes JR , the feedback factor F and the time course of cell

viability. Thus,

JNL = JRFδ(t)

µ
α

100

¶
. (9)

Using Eqs. (1) and (7), we get

JNL

¡[ATP]e, t
¢ = JR(t)

¡
a[ATP]e + b

¢¡
A1e

−kLt + A2
¢
µ

α

100

¶
. (10)

Considering Eqs. (5), (6), (8), and (10), the following expression can be obtained:

d[ATP]e
dt

= JR(t)
¡
a[ATP]e + b

¢¡
A1e

−kLt + A2

¢µ α

100

¶
+ ALe−kLt

− Vm

K1/2
[ATP]e. (11)

Then Eq. (11) can be expressed as

d[ATP]e
dt

= [ATP]eS(t) + R(t), (12)

where

S(t) = JR(t)a
¡
A1e

−kLt + A2

¢µ α

100

¶
− Vm

K1/2
(13)

and

R(t) = JR(t)b
¡
A1e

−kLt + A2

¢µ α

100

¶
+ ALe−kLt . (14)
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Equations (12), (13), and (14) represent a simple mathematical model explaining the re-
lease of extracellular ATP in goldfish hepatocytes. Differential equation (12) governs the
kinetics of [ATP]e , the state variable of the model.

2.2. Model 2 (with diffusion)

This is a three-compartment model. Similar to model 1, we have considered the ATP
fluxes in one space dimension. However, unlike in model 1, here ATPe can be transported
randomly by diffusion within the extracellular compartment. To build this model, we have
assumed that the state variable ([ATP]e) can follow a nonuniform distribution. This con-
dition requires the continuous one-dimensional space to be discretized into a finite num-
ber of parts denoted as “extracellular compartments.” In this respect, the simplest model
would be one in which there is an intracellular compartment “i” and two extracellular
compartments “e1” and “e2” (Fig. 1B). Compartment e1 corresponds to the extracellular
compartment near the cell surface, whereas e2 represents the extracellular compartment
surrounding e1. Then the model 2 is represented by the following equations:

d[ATP]e1

dt
= JNL + JL − JV − JD, (15)

d[ATP]e2

dt
= JD, (16)

where [ATP]e1 and [ATP]e2 are state variables defining the extracellular concentrations
of ATP in e1 and e2 compartments, respectively. In this model, [ATP]e can be calculated
according to:

[ATP]e = [ATP]e1
V1

V
+ [ATP]e2

V2

V
, (17)

where V1 and V2 are the volumes of the extracellular compartments e1 and e2, and V

is the total volume resulting from the sum of V1 and V2. Intracellular ATP can be re-
leased (by lytic and nonlytic means) to a small volume surrounding the cells (denoted
as adjacent volume e1), with subsequent diffusion into the rest of the extracellular com-
partment (e2). Since EctoATPase activity is due to enzymes located on the extracellular
surface of the cells, we assume that JV can only act on the adjacent volume e1, so that
JV = JV ([ATP]e1). Similarly, it is supposed that the positive feedback mechanism (F )
is working on the nonlytic flux sensing the concentration of ATPe in the e1 compart-
ment, where F = F([ATP]e1) and JNL = JNL([ATP]e1, t ). Then in model 2, JV ,F , and,
consequently, JNL are the same functions defined for model 1, except that [ATP]e was
replaced by [ATP]e1. Diffusion of ATPe mediates the transport of ATP between e1 and e2
according to the following discrete expression:

JD = Dσ2

1x1 + 1x2

¡[ATP]e1 − [ATP]e2

¢
, (18)

where JD = JD([ATP]e1, [ATP]e2) is the diffusive flux of ATPe, D is the diffusion coef-
ficient of ATP in water (3 · 106 cm2 sec−1; Hubley et al., 1996), and σ is the area of the
measuring chamber (3.8 cm2). 1x1 is the length of compartment e1, arbitrarily taken as
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Fig. 3 Scheme of the time profiles of ATP release (JR ) from goldfish hepatocytes. Namely, Constant
(dotted black line), Step (continuous gray line), Impulse (dashed black line), Gaussian (dotted-dashed
gray line), and Lognormal (continuous black line).

the diameter of one hepatocyte (15.44 µm, Pafundo et al., 2008) and 1x2 is the length of
the most outer compartment defined as 1x2 = V

σ
− 1x1, with V being the volume of the

chamber where the experiments were performed (V = 40 µl).
By following a similar procedure as in Section 2.1.2, we arrived at a differential equa-

tion defining how [ATP]e varies in terms of the concentrations of ATPe in each compart-
ment.

d[ATP]e
dt

= ρ(t)[ATP]e1 + θ [ATP]e2 + ω(t), (19)

ρ(t) =
µ

JR(t)a
¡
A1e

−kLt + A2

¢µ α

100

¶
− Vm

K1/2

¶
V1

V

+ Dσ2

1x1 + 1x2

µ
1 − 2

V1

V

¶
, (20)

θ =
µ

Dσ2

1x1 + 1x2

¶µ
2
V1

V
− 1

¶
(21)

and

ω(t) =
µ

JR(t)b
¡
A1e

−kLt + A2

¢µ α

100

¶
+ ALe−kLt

¶µ
V1

V

¶
. (22)

2.3. Profiles of nonlytic release of ATP (JR)

In Eq. (9), we show that JNL can be obtained by multiplying the number of viable cells by
JR and F (the feedback mechanism). Here, we tested different expressions (illustrated in
Fig. 3) accounting for JR , so as to check which one allows the model to display the best
fit to experimental data.
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Types of JR functions:

(a) Constant. This function is defined as

JR(t) = K. (23)

Where K is a positive constant.
(b) Step. Strictly, this is a Heaviside function, defined as

JR(t) =
½

0 if t ≤ tmin,
K if t > tmin.

(24)

Where K and tmin are constants. The constant function can be regarded as a Step
function in which tmin = 0.

(c) Impulse. This function is defined as

JR(t) =
(0 if t < tmin,

K if tmin < t < tmax,
0 if t > tmax.

(25)

Where K , tmin, and tmax are constants. JR has the form of a rectangular pulse that can
be triggered and shut off at variable times.

(d) Gaussian.

JR(t) = AG

2πωG

e
− ( t

tG
)2

2ω2
G . (26)

Where AG, ωG, and tG are constants. The function displays a symmetrical nonlinear
increase to and decrease from a maximum value.

(e) Lognormal.

JR(t) = AL

2πωLt
e

− (log( t
tL

))2

2ω2
L . (27)

Where AL, ωL, and tL are constants representing an amplitude of the flux, a time
dispersion factor, and a critical time factor. This function is similar to a Gaussian
expression except that the rise and decay phases might not be symmetrical.

Introduction of each of these JR functions (a to e) into general Eqs. (12)–(14) as well
as (19)–(22) allows to test both, models 1 and 2, respectively, with five different types of
JNL. It remains to be determined which is the best JNL describing the actual process of
release of ATP by goldfish hepatocytes.

3. Analysis of models at infinite time

3.1. Model 1 (without diffusion)

In swollen goldfish hepatocytes, [ATP]e first increases to a maximum after which it de-
creases continuously with time toward 0. This suggests that limt→∞[ATP]e(t) = 0.
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In order to investigate whether the model without diffusion can reproduce the exper-
imental ATPe kinetics, we evaluated d[ATP]e/dt in Eq. (12) at infinite time. Since the
coefficients of Eq. (12) are time dependent (R = R(t) and S = S(t)), and the values of
R and S depend on the specific JR(t) function being used, we first evaluated each JR at
infinitum. Using Eqs. (23) and (24) for constant and step time profiles, we find that

lim
t→∞JR(t) = K. (28)

Taking into account Eqs. (13) and (14), we get

lim
t→∞S(t) = KaA2

µ
α

100

¶
− Vm

K1/2
, (29)

lim
t→∞R(t) = KbA2

µ
α

100

¶
. (30)

Then for time tending to infinite, the kinetics of [ATP]e will converge asymptotically to
the solution of the following differential equation:

d[ATP]e
dt

=
µ

KaA2
α

100
− VM

K1/2

¶
[ATP]e + KbA2

α

100
. (31)

Calling μ = (
VM

K1/2
100)/(aA2α), it is straightforward that the solution will diverge if K >

μ, showing that limt→∞[ATP]e → ∞, a solution lacking physical meaning. In contrast,
only if K < μ the solution converges at infinitum. However, even in this case, only when
K = 0 the concentration of ATPe evaluated at infinitum is zero. Since in this situation JNL

is null, the only source of ATPe will be JL. However, it was previously demonstrated that
JL alone cannot account for the experimental results. Then model 1 loaded with Constant
and Step functions cannot be used for this system.

On the other hand, Eqs. (25)–(27) show that in the cases of Impulse, Gaussian, and
Lognormal functions, the following behavior can be obtained at infinitum.

lim
t→∞JR(t) = 0 (32)

and using Eqs. (13) and (14):

lim
t→∞S(t) = − Vm

K1/2
, (33)

lim
t→∞R(t) = 0. (34)

Equations (33) and (34), together with Eq. (12) show that limt→∞[ATP]e = 0. Then if
JR are Impulse, Gaussian, or Lognormal functions, [ATP]e will be 0 at infinitum, and
consequently the model will be in a stationary state.
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3.2. Model 2 (with diffusion)

As in the previous section, to analyze the [ATP]e behavior at infinite time for model 2
loaded with the Constant or Step functions the differential equations coefficients must be
evaluated at infinitum, so that Eq. (20) can be transformed into

lim
t→∞ρ(t) =

µ
KA2αa

100
− VM

K1/2

¶
V1

V
+ Dσ2

1x1 + 1x2

µ
1 − 2

V1

V

¶
. (35)

Similarly, Eq. (22) turns to

lim
t→∞ω(t) = KA2αb

100

V1

V
. (36)

Calling limt→∞ ρ(t) = β and limt→∞ ω(t) = ε, Eq. (19) converges asymptotically to the
following expression:

d[ATP]e
dt

= β[ATP]e1 + θ [ATP]e2 + ε. (37)

Since, as mentioned in Section 3.1, experimental evidence shows that [ATP]e tends to
0 at infinite time, we investigated whether Eq. (37) has stationary behavior, that is, we
studied Eq. (37) when d[ATP]e

dt
= 0. Thus, assuming β 6= 0, the stationary [ATP]e in both

compartments ([ATP]se1 and [ATP]se2) will be ruled by:

[ATP]se1 = −θ [ATP]se2 − ε

β
. (38)

Since [ATP]se1 is not necessarily equal to [ATP]se2, the stationary [ATP]e could be nonuni-
formly distributed—within the extracellular compartment—at infinite time. Experimental
results show that [ATP]e tends to zero at infinitum (Fig. 2A). Physically, concentrations
and volumes cannot be negative. Thus, the only possibility to obtain this behavior using
model 2 loaded with constant and step functions is to assume that [ATP]se1 = [ATP]se2 = 0,
a condition that can only be achieved when K = 0. Following the reasoning shown in the
previous section, the only source of ATPe in this case is the lytic flux. The fact that mod-
eling with this single ATP flux cannot explain the experimental results makes model 2
loaded with Constant and Step functions useless.

Next, models with diffusion loaded with Impulse, Gaussian, and Lognormal function
were analyzed at infinitum. Then calling limt→∞ ρ(t) = ψ and limt→∞ ω(t) = χ in the
context of model 2 we obtained

ψ = Dσ2

1x1 + 1x2

µ
1 − 2

V1

V

¶
− VM

K1/2

V1

V
, (39)

χ = 0. (40)

Considering these equations, expression (19) converges asymptotically to

d[ATP]e
dt

= ψ[ATP]e1 + θ [ATP]e2. (41)
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By imposing the stationary condition d[ATP]e
dt

= 0, and assuming that ψ 6= 0, expression
(41) gives

[ATP]se1 =
µ−θ

ψ

¶
[ATP]se2. (42)

Two conclusions can be extracted from expressions (38) and (42). First, the only pos-
sibility to obtain a stationary solution of model 2 loaded with Impulse, Gaussian, and
Lognormal functions is [ATP]se = 0, in contrast to model 2 loaded with Constant and
Step functions. Secondly, since V1 < V2, then θ 6= 0. Thus, use of Impulse, Gaussian, and
Lognormal JR in model 2 drives to the fact that [ATP]se2 is zero only if [ATP]se1 is zero,
and vice versa. This case implies that [ATP]se = 0, which is the behavior suggested by
the experimental results. It is interesting to highlight that for model 2 loaded with either
Impulse, Gaussian, or Lognormal functions the fact that [ATP]se1 = [ATP]se2 makes the
[ATP]e uniform within the extracellular medium.

4. Simulations

4.1. Preliminary information and methods

The kinetics of [ATP]e was studied by mathematical modeling. For this purpose, a com-
puter program was developed that uses algorithms coded in visual basic to both numeri-
cally solve the differential equations involved in each type of model and fit the model to
experimental data (software and source code are available). Initially, the program is loaded
with one type of model including a specific JR function accounting for the nonlytic release
of ATP. To perform the simulations, Eqs. (12)–(14) (no diffusion) and (19)–(22) (diffu-
sion) were integrated numerically, employing the Euler method with an integration step
of 1 sec. This step guaranties the order of accuracy and the stability of the Euler method,
since small deviations from the true solution do not tend to grow as the solution is iterated.

The initial condition of the mathematical model was [ATP]e(t = 0) = 0. This is be-
cause in the real experiments, at time 0, goldfish hepatocytes were exposed to a hypotonic
medium where ATPe was absent (Pafundo et al., 2008).

Model dependent fit to experimental data: Algebraically, the problem of fitting consists
in the exploration of the free parameters space in order to minimize a given function, in
this case, the sum of the squares of the residues between the experimental data of [ATP]e
and that simulated by the model under study. We called the latter procedure a model-
dependent fit to emphasize the fact that during the fitting the constraints imposed by the
mathematical model were taken into account. In the present study, model dependent fit
to experimental values of [ATP]e vs. time allowed to obtain the best values for the pa-
rameters defining JR . To make the model more versatile, the value of the ratio Vm/K1/2

(see JV in Eq. (5)) was allowed to vary within 1 standard error of the mean experimental
value. To choose among different functions describing JR the second-order Akaike in-
formation criterion was applied (Akaike, 1992). Accordingly, after model dependent fits,
the JR function that provided the lowest Akaike score (AIC) was selected. As explained
in Section 2, model 1 (without diffusion) is one-dimensional and has two compartments,
so that ATP can be located either in an intra or extracellular compartment (Fig. 1A). The



1038 Chara et al.

only state variable is [ATP]e , ruled by Eqs. (12), (13), and (14). These equations were
loaded, with each of the JR functions under study. Solving these equations results in a
prediction of the time course of [ATP]e following the hypotonic insult. During the simu-
lation, model dependent fits were applied to experimental data as follows: Five different
simulations (with one type of JR function at a time) were performed where the model is
fitted to experimental values of the kinetics of [ATP]e (Fig. 2A) by adjusting the values
of the parameters defining JR . This procedure generates five different time profiles of JR .
The model simulates [ATP]e vs. time during the hypotonic challenge as follows:

[ATP]e(t) =
Z t

0

d[ATP]e
dt

dt. (43)

Where
R t

0
d[ATP]e

dt
dt is the concentration of ATPe at time t . Model 2 has an intracellular

compartment “i” and two extracellular compartments “e1” and “e2” (Fig. 1B). The model
simulates [ATP]e vs. t as follows:

[ATP]e(t) =
R t

0
d[ATP]e1

dt
dt.Ve1 + R t

0
d[ATP]e2

dt
dt.Ve2

Ve1 + Ve2
. (44)

[ATP]e1 and [ATP]e2 are the state variables defining the concentrations of ATPe in com-
partments e1 and e2, while Ve1 and Ve2 are the volumes of the corresponding compart-
ments, defined as Ve1 = 1xe1σ and Ve2 = 1xe2σ .

4.2. Simulation results

As predicted in Sections 3.1 and 3.2, simulations of the models assuming either a Constant
release of ATP (Eq. (23)) or a Step function (Eq. (24)) did not converge to experimental
data, regardless of the presence of one or two extracellular compartments (i.e., without or
with diffusion; data not shown).

On the other hand, using an Impulse (Eq. (25)), a Gaussian (Eq. (26)) and a Lognor-
mal (Eq. (27)) functions the model reproduces qualitatively the experimental behavior.
Figure 4 shows the simulated curves fitted to experimental data, with the values of best fit
of the parameters shown in Table 1.

In order to choose the JR function to be used in the model, the Akaike criterion was
applied (Akaike, 1992). Thus, Table 1 shows the Akaike score obtained after running the
simulations with each of the JR functions in both models. Results showed that, irrespec-
tive of the model used, the Gaussian and Lognormal functions allowed a good model
dependent fit, with the lognormal function providing the best option.

5. Analysis of model 1 (without diffusion) with lognormal flux of ATP

As mentioned above, the model that provides the best fit to experimental data is one in
which there is no diffusion and where JR follows a lognormal function.

Using this lognormal model without diffusion, we analyzed the relative importance of
each of the ATP fluxes that contributed to the kinetics of [ATP]e . Figure 5 shows that the
lytic and nonlytic ATP fluxes displayed maximum values during the first two seconds,



Kinetics of Extracellular ATP from Goldfish Hepatocytes 1039

Fig. 4 Results of simulations using the mathematical model here developed with (B, D, F) or without (A,
C, E) diffusion. (A and B) Impulse function; (C and D) Gaussian function; (E and F) Lognormal function.
In all cases, the continuous black line represents the model dependent fit to experimental data, which is, in
turn, represented as a gray continuous line.
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Table 1 Parameters of the models. Results are values of best fit obtained by fitting the models to experi-
mental data (see Fig. 4). Models in the absence (model 1) and presence (model 2) of ATPe diffusion were
employed, using different types of JR functions

Parameter Model 1 Model 2 Units

Models with Impulse JR

tmin 2 0 sec
tmax 3 1.1 sec
K 2 · 10−08 5 · 10−07 (cells sec)−1

Vm/K1/2 2.5 · 10−05 2.2 · 10−05 sec−1

AIC −88419.9 −88434.1

Models with Gaussian JR

tc 4 6 sec
ωG 1 1
AG 4 · 10−08 1 · 10−07 (cells sec)−1

Vm/K1/2 2.6 · 10−05 2.6 · 10−05 sec−1

AIC −88533.4 −88491.3

Models with Lognormal JR

tL 0.3 4.8 sec
ωL 2.8 2.2
AL 1.2 · 10−07 2.5 · 10−07 (cells sec)−1

Vm/K1/2 2.8 · 10−05 2.8 · 10−05 sec−1

AIC −88770.6 −88763.6

Fig. 5 Time course of JNL , JL and JV predicted by the mathematical model without diffusion loaded
with the lognormal time profile. JNL is plotted in a continuous black line, JV in a continuous gray line
and JL in a dashed black line.

whereas ATP depletion by ecto-ATPase activity (JV ) shows a maximum after 2 minutes.
Interestingly, a single, nonlinear burst of ATP is sufficient to increase [ATP]e to a max-
imum within the first 2 minutes. During the first 2 seconds, [ATP]e is highly governed
by lytic and nonlytic ATP efflux—both potentiated by a positive feedback mechanism—
irrespective of ecto-ATPase activity.

The above considerations show the utility of the model in explaining the experimental
results. In addition, the model can be used to predict the behavior of [ATP]e kinetics in
different scenarios. Thus, to further analyze the effects of ectoATPase activity and the
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Fig. 6 Parameters of simulated Ecto-ATPase activity (JV ). (A) Concentration of extracellular ATP (ATPe,
in nM) as a function of both time (min) and Vm/K1/2 (in arbitrary units). (B) ATPmax

e vs. Vm/K1/2.
(C) tmax vs. Vm/K1/2. (D) Kd vs. Vm/K1/2. In all cases Vm/K1/2 ranged from 0.1 to 10 times the value
of best fit. ATPmax

e (nM) is the maximal value of ATPe (nM), tmax (sec) is the time taken to reach ATPmax
e

and Kd (sec−1) is the constant accounting for the decay of [ATP]e from ATPmax
e .

feedback loop mechanism on [ATP]e , we performed new simulations using the lognormal
model without diffusion with different values of “Vm/K1/2” (Fig. 6) and with different
values of “a” (Eq. (1)) of the feedback mechanism (Fig. 7). We studied the time evolution
of [ATP]e focusing on three parameters: the maximal value of ATPe (ATPmax

e ), the time
taken to reach ATPmax

e (tmax) and the constant accounting for the decay of [ATP]e from
ATPmax

e (decay constant Kd ).
Regarding ectoATPase activity (Fig. 6), by varying Vm/K1/2 from 0.1 to 10, we ob-

served that Kd varies directly and tmax and ATPmax
e inversely with Vm/K1/2.

We then studied the feedback loop by varying the best fitting value of factor “a” from
0.1 to 10 times. It can be seen that Kd varies inversely, whereas both tmax and ATPmax

e

varies directly with “a” (Fig. 7).
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Fig. 7 Parameters of the feedback loop mechanism. (A) Concentration of ATPe as a function of both time
(min) and a (0.1, 0.5, 1, 2, 3, 4 and 5 times the value of best fit). (B) ATPmax

e vs. a. (C) tmax vs. a. (D) Kd

vs. a. In B, C, and D, a ranged from 0.1 to 10 times the value of best fit. Values of “a” have arbitrary units
(A.U.). The meaning and units of ATPmax

e , tmax and Kd are given in Fig. 6.

6. Discussion

In goldfish hepatocytes, as in most animal cells studied so far, volume regulation in the
face of osmotic gradients is an important strategy to prolong cell survival. Particularly
during hypotonic exposure, cell swelling is counteracted by a process of volume down-
regulation termed RVD.

This regulatory response has been shown to be finely regulated by extracellular ATP,
which accumulates in the extracellular medium when it is released by swollen cells (Jans
et al., 2002; Wang et al., 1996). Thus, to understand RVD, as well as many other biologi-
cal responses (Chessell et al., 2005; Burnstock, 2006, 2007) that are mediated by endoge-
nous ATPe, it is essential to understand the kinetics of [ATP]e . Accordingly, in this work,
mathematical models were used to study how and why [ATP]e varies when goldfish he-
patocytes are exposed to a hypotonic medium. The different features of the models were
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developed by taking into account previously published data on [ATP]e levels, ectoATPase
activity, and cell viability of goldfish cells (Pafundo et al., 2008).

Experimental data had shown that when challenged by hypotonicity, goldfish hepato-
cytes release ATP by both lytic and nonlytic pathways. Once in the extracellular medium,
ATP could further enhance the efflux of ATP, be hydrolyzed enzimatically by ectonu-
cleotidases, and/or diffuse within the extracellular compartment.

In the present study, two models were developed which either exclude (model without
diffusion) or include (model with diffusion) the diffusion of ATPe. That is, in model 1,
there is no equation accounting for ATPe diffusion, since the nucleotide is assumed to
diffuse instantaneously in the extracellular medium, whereas model 2 includes an explicit
expression to allow ATPe diffusion. We arrived to a general mathematical form for each
model (Eqs. (12) and (19)).

Regarding model 2, it is interesting to analyze to what extent this model can be used
to mimic the effect of an unstirred layer (USL) on the kinetics of ATPe. In a USL model
adjacent to the cell membrane, there is a stagnant layer that can limit the diffusion of
solutes, in our case, ATPe (Schulman and Teorell, 1938; Dainty, 1963; Dainty and House,
1966; Finkelstein, 1987). In model 2, compartment e1 would account for the USL whereas
e2 stands for the bulk. It has been shown that the thickness of the USL is a dynamic
parameter which depends on the diffusion coefficient of a particular solute, the viscosity
of the solution, and both the osmotic and stirring fluxes (Pohl et al., 1998). Within the
USL, the solute concentration is a function of the distance to the membrane (Finkelstein,
1987).

Although an assessment of the above mentioned parameters is beyond this study, we
have investigated the consequences of varying the length of compartment e1 (1x1), and
consequently the length of e2. As we increase 1x1 from 6 to 105 µm, the length of e2
(1x2) decreases concomitantly from 99 to 0 µm. In the latter situation, model 2 becomes
model 1. After running model dependent fits at different values of 1x1, we found no
significant differences in the goodness of fit assessed by the Akaike criterion (data not
shown).

These results agree well with the best model where the extracellular compartment is
not fragmented, that is, model 1. Following the Occam’s razor principle, since models 1
and 2 fit reasonably well to experimental data, model 1 would be better because it relies on
fewer assumptions. This reasoning was quantitatively corroborated by using the Akaike
criterion (see Table 1).

6.1. Cellular relevance of the functions describing ATP release (JR)

One of the main features of models 1 and 2 is the possibility to study several functions
accounting for the nonlytic release of ATP. Accordingly, Eqs. (12) and (19) were loaded
with functions of increasing complexity: Constant, Step, Impulse, Gaussian and Lognor-
mal functions.

What could be the physiological correlate of these different types of ATP release?
Following the hypotonic challenge, the release of ATP would be produced by activation

of a putative population of ATP transport proteins that still remains unidentified in goldfish
hepatocytes as well as in most cellular systems (Sabirov and Okada, 2005).

The Constant time profile would represent a hypothetical situation in which, following
hypotonicity, cells sense the osmotic gradient and subsequently generate and maintain
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a constant ATP efflux instantaneously (from t = 0). This behavior is consistent with a
synchronous and irreversible activation of channels or transporters responding to the hy-
potonic challenge.

The Step type function is qualitatively similar to the constant function, but a delay is
imposed prior to the appearance of a constant ATP efflux. As explained by Hernández
and Cristina (1998), such a time lag is to be expected between the perturbation of the
extracellular osmolality, with subsequent activation of intracellular signaling pathways
and the final triggering of ATP efflux.

The Impulse function is similar to the step type function, except that the release of ATP
can be shut off after a period of time. This response assumes that all the putative chan-
nels or transporters are activated and shut off with equal kinetics, a simple but unlikely
situation in vivo. A more realistic picture would be to use a smoother function such as a
Gaussian.

This function as well as the impulse function provide symmetric time profiles, i.e.,
a symmetric increase and decrease of [ATP]e over time. So, to account for a possible
asymmetry in the release of ATP, a lognormal expression was also studied.

6.2. Modeling the kinetics of ATPe with specific JR functions

Experimental data shows that [ATP]e , after attaining a maximum, decreases continuously
until the nucleotide concentration is not significantly different from zero (Pafundo et al.,
2008).

Regardless of ATPe diffusion, a model loaded with either the Constant or Step func-
tions shows that [ATP]e evaluated at infinitum is equal to zero only when JNL = 0. How-
ever, in this case, JL would be the only source of ATPe, a situation where the experimen-
tal [ATP]e kinetics could not be quantitatively mimicked (Pafundo et al., 2008). Then the
Constant and Step JR functions are not useful components of the nonlytic flux. In general,
any JR whose stationary value 6= 0 will behave as a Constant or Step function at infinite
time and, therefore, will be useless when contrasting the model with experimental results.

In fact, simulations showed that irrespective of ATPe diffusion, the use of Constant
and Step time profiles in the models failed to reproduce the experimental [ATP]e kinetics.

In contrast to the previous two JRs considered, Impulse, Gaussian, and Lognormal
functions yielded a null nonlytic flux of ATP at infinite time (limt→∞ JNL = 0) always.
In other words, irrespective of the parameters values of the three functions studied, these
JR functions must obey limt→∞ JR = 0 (Eq. (33)), so that [ATP]e evaluated ad infinitum
is 0, a result in agreement with the observed experimental behavior (Pafundo et al., 2008)
(see Sections 3.1 and 3.2). Moreover, having discarded the Step and Constant functions,
we found the use of either the Impulse, Gaussian, or Lognormal functions allowed the
model to fit reasonably well to experimental data (Fig. 4). A comparison of the good-
ness of fit (by the Akaike criterion) showed that the use of the lognormal function in the
model (compared to Gaussian and Impulse) provided the best fit to experimental values,
irrespective of ATPe diffusion.

In summary, the model analysis at infinite time, together with the simulations of the
model using the different JR functions, suggest that the experimentally observed kinetics
of [ATP]e is compatible with a nonmonotonic nonlytic ATP release tending to [ATP]e = 0
at infinitum. This release, in turn, is compatible with a lognormal kinetic where diffusion
on the extracellular media is rapid enough to be negligible during the modeling.
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6.3. Model predictions

As mentioned above, the model without diffusion loaded with the lognormal JR provides
the best explanation of the experimental results. We found interesting to analyze the pre-
dictive nature of this “lognormal” model under different conditions mimicking putative
in vivo scenarios for goldfish hepatocytes as well as for other cell systems. Accordingly,
simulations were performed considering different ectoATPase activities as well as poten-
cies of the positive feedback mechanism. We focused on three key parameters accounting
for the ATPe kinetics, i.e., the maximal value of [ATP]e (ATPmax

e ), the time taken to reach
ATPmax

e (tmax) and the constant accounting for the decay of [ATP]e from ATPmax
e (the de-

cay constant Kd ). We first evaluated how changes in ectoATPase activity (JV of Eq. (5))
would affect the simulated changes of [ATP]e with time. The lognormal model predicts
that a 100-fold increase of Vm/K1/2 (of JV ) would decrease both ATPmax

e by 31% and
tmax by 15-fold, whereas the decay constant (Kd ) increases 10,000 times (Fig. 6). Thus,
ecto-ATPase activity affects mainly the decrease and increase phases of the curve, with a
relatively weaker action on the maximal [ATP]e attained.

In vivo, a change in the value of Vm/K1/2 could be obtained by changing the density of
active ectoenzymes with similar kinetic properties (e.g., a cell system with partial inhibi-
tion of ecto-ATPase activity, downregulation or upregulation of functional ecto-ATPases),
by cellular production of enzyme isoforms with different ATPe affinity or a combination
of both. The predicted strong decrease of Kd at relatively low Vm/K1/2 implies that sig-
nificant ATPe concentrations would be present during longer times. In many cell systems,
this could provoke desensitization of P2 receptors (Burnstock, 2007) with concomitant
inactivation of the downstream processes leading to RVD or other biological responses
(Chessell et al., 2005; Jans et al., 2002; Okada et al., 2001).

Another hypothetical situation can be envisaged when the potency of the positive
feedback mechanism is altered, where—as explained before—JNL is a linear function
of [ATP]e . By testing different values for the slope (a) of this function, the model predicts
a strong increase of both ATPmax

e and tmax, whereas the decay constant decreases slightly
(Fig. 7). While the molecular mechanism enabling the feedback has not been identified
in any cell system, though there are several systems where such an activating effect have
been described (Anderson et al., 2004; Suadicani et al., 2006), it is interesting to speculate
that a “high slope,” i.e., very sensitive-feedback system would allow a small amount of
ATP at the cell surface (e.g., produced by the death of a minor proportion of cells or else
by diffusion of ATPe from another cell’s surface) to trigger the RVD both autocrinally
and paracrinally.

7. Concluding remarks

The models presented here constitute an attempt to understand the mathematical rules be-
hind the non-linear, time dependent changes of [ATP]e of goldfish hepatocytes challenged
by a decrease of extracellular osmolarity.

Model 1, condensed in Eq. (12), is theoretically simple and when used together with
specific functions describing the nonlytic release of ATP, shows good agreement with
experimental data. Many different physiological stimuli are able to trigger the release
of ATP to the extracellular compartment. Moreover, ATPe has been shown in most cell
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systems studied so far to interact with specific surface receptors and be hydrolyzed by
specific ectoenzymes.

Further studies could use this theoretical background as a starting point to elucidate the
complex kinetics of ATP fluxes governing the kinetics of [ATP]e , the latter an important
trigger of numerous biological responses.
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