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Summary. This paper deals with a-posteriori error estimates for piecewise linear 
finite element approximations of elliptic problems. We analyze two estimators 
based on recovery operators for the gradient of the approximate solution. By 
using superconvergence results we prove their asymptotic exactness under regu- 
larity assumptions on the mesh and the solution. 

One of the estimators can be easily computed in terms of the jumps of 
the gradient of the finite element approximation. This estimator is equivalent 
to the error in the energy norm under rather general conditions. However, 
we show that for the asymptotic exactness, the regularity assumption on the 
mesh is not merely technical. While doing this, we analyze the relation between 
superconvergence and asymptotic exactness for some particular examples. 

Subject classifications. AMS(MOS) 65N30, 65N15, CR: G1.8 

I Introduction 

In recent years, considerable interest has been shown in a posteriori error esti- 
mates and adaptive refinement for finite element approximations of second order 
elliptic problems. 

In the one variable case, a rather complete theory has been developed by 
Babu~ka and Rheinboldt [5, 7, 8]. In particular, they have proven that, under suit- 
able regularity assumptions on the solution, several estimators are asymptotically 
exact in the energy norm. The estimators they have considered are essentially of 
two kinds. The first one is based on the solution of local problems while the second 
one, on the computation of residuals and jumps of the approximate solution. 

These ideas have been generalized to problems in two variables [-6, 3, 9-1, 
but the analysis is much more complicated in this case. 
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Estimators based on the jumps of the normal derivative of the approximate 
solution can be constructed and analyzed by means of superconvergence results. 
In particular, for rectangular elements, the results of Zlfimal [25] can be used 
to device several error estimators [1, 12], and moreover to show that they 
are asymptotically exact [-12]. These estimators can be viewed as generalizations 
of a one-dimensional estimator of Babu~ka and Reinboldt [8]. 

Here we consider the case of linear triangular elements. Superconvergent 
recovery of the gradient for particular meshes has been considered by several 
authors. A fundamental result was obtained by Oganesjan and Ruhovec [19] 
for uniform meshes (like those in Fig. 1) that states that the difference between 
the gradient of the approximate solution Uh and the gradient of the Lagrange 
interpolation u ~ of the exact solution u is of higher order than the error itself 
whenever the solution is regular enough, that is, 

(1.1) IIV(uh-- ul) ll 0,~= O( hl +E) 

for some e > 0. We say that there is superconvergence whenever (1.1) holds. 
Later, several authors ([17, 16, 15, 2]) generalized (1.1) to other triangular 

meshes. In particular, Wheeler and Whiteman [23] proved that the superconver- 
gence result has a local character. 

In order to construct an asymptotically exact error estimator, we define 
a recovery operator for the gradient, that is, an operator G such that Guh 
is a higher order approximation of Vu than VUh itself; namely, 

IlVu-Guhllo.o=O(h x § 

for some e > 0. Given G, we define the error estimator e by 

e ,=Guh-Vu  n. 

In the case of a uniform mesh like that in Fig. 1, an operator G based 
on the interpolation of the average of the two gradients in the triangles sharing 
a common edge was introduced in 1-24]. 

In this work, we introduce a recovery operator G based on quadratic isopara- 
metric interpolation. We show that 

(1.3) JI V U --  G u I I1 0,0o ~ C h 2 ]J u II 3, t21, 
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for subregions f20~ 01 c f2 in which the mesh satisfies a regularity assumption 
(we call it quasi-parallelism and, intuitively, it means that the meshes are higher 
order perturbations of uniform meshes). 

The superconvergence result (1.1) is also valid for quasi-parallel meshes [23], 
therefore, the error estimator based on G is asymptotically exact in the sense 
that the relative error 

(1.4) [IE-Vello.~o ,0 
IIVello,~o h~O 

whenever the Hl-seminorm of the error e : = u - u  h is properly O(h). (Note that 
(1.4) implies asymptotical exactness as defined by Babu~ka and Rheinboldt [8].) 

Afterwards, we calculate the value of Gu I at each edge midpoint and we 
show that it is a weighted average of the restrictions of Vu I to the triangles 
containing that point. So, by interpolating linearly those values in each triangle, 
we obtain another operator G which is a generalization of the operator intro- 
duced in [24] for uniform meshes. 

We also prove that 

(1.5) Il V u-GuII]  o.oo~ Ch2 ]lull 3.o, 

and so, defining g:=dUh--Vuh,  we obtain a result analogous to (1.4) for this 
estimator. 

The estimator g can be easily computed in terms of the jumps of the normal 
derivative of the approximate solution. Estimators of this kind are actually 
in use [14, 18, 20, 22]. 

On the other hand, the techniques by Babu~ka and Miller [4] can be applied 
for any general triangular mesh, regular in the usual sense, and for any problem 
whose solution u e H  1 (f2), to show that the estimator g is equivalent to the error 
in the energy norm; namely, there exist constants C1 and C2 such that 

C1 II~ll o , ~  IlVel{o.~ C2 II ~11o.~. 

Therefore, it is natural to ask if the asymptotic exactness is satisfied in regions 
where the meshes are not quasi-parallel. We show that this is not true. Specifi- 
cally, we consider a subregion where the meshes are of the so called criss-cross 
type. For  the case of Laplace equation, numerical evidence of the lack of super- 
convergence for this kind of meshes was presented by Levine [16]. We give 
here a proof of this fact and, by showing that (1.5) holds in these meshes for 
a family of functions, we provide examples where g is not asymptotically exact. 

Finally we analyze some particular problems and show that the asymptotical 
exactness of g fails even in cases where there is superconvergence. Also we 
use these examples to show that g is not asymptotically exact even in the weaker 
sense of Babu]ka and Rheinboldt [8]. As a conclusion, we can say that the 
assumption on the meshes is not only a technical matter; that is, the asymptotical 
exactness of g does not hold in general. 

The remainder of the paper is organized as follows. In Sect. 2 we introduce 
the model problem and notations; Sect. 3 deals with recovery operators and 
error estimators, and finally in Sect. 4 we analyze the case of criss-cross meshes. 
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2 Model problem and notations 

Let f2 be a bounded polygon in ~2.  We consider elliptic problems in which 
the function u satisfies 

(2.1) - d i v ( a V u ) + b u = f ,  in f2, 

with boundary conditions of the Dirichlet type, where a is a Lipschitz function 
such that a(x)> a0 > 0 and b > 0  are bounded functions. 

We use the standard notation for Sobolev spaces, H"(D), W "'~ (D) for m > 0  
and HI(D), and the usual norms and seminorms II'II,,,D, I'I,,,D, I1" ]1 . . . .  D and 
I '1 . . . .  D .  

Let {~ }  be a regular family of triangulations of ~, where, as usual, h stands 
for the mesh size. Let u h e Vh"= {V e H 1 (f2): v Ire ~1, V Te ~ }  be the piecewise linear 
finite element approximate solution of problem (2.1). (~m denotes the set of 
polynomials of degree not greater than m). Let e :=u-uh  denote the error of 
this approximation. 

From now on C will denote a constant independent of h and u, but not 
necessarily the same at each occurrence. 

3 Recovery operators and error estimators 

First, we define a recovery operator based on quadratic isoparametric interpola- 
tion. In order to do this, let us introduce some notation. Given an interior 
element T e ~  we denote by T~, i=  1, 2, 3 its neighbor triangles. Let K and 
Ki be reference triangles as in Fig. 2. We set 

3 3 

T * . ' = T w U  Ti and K * , = K u U  Ki 
i=I i=I 

and we define two transformations on K*, a quadratic F and a piecewise linear 
F both satisfying 

F(A~)=P(A~)=B,, i= 1 . . . . .  6, 

with the notation of Fig. 2. 
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We want to define a recovery operator G such that Gu ~ be a better approxi- 
mation to Vu than Vu ~. For  VeVh we define Gv locally in such a way that 
GriT takes into account only the information of the six nodal values v(Ai), 
i=1  . . . .  ,6. 

In order to make clear the idea behind the definition of G, let us first remark 
that in the simpler case that T=K and T~=Ki, i=  1, 2, 3, we would define 
for any v ~ Vh and x ~ K, 

Gv(x),=V(I2v)(x), 

where I2 is the standard quadratic interpolation operator at the nodes A~, i 
=1 . . . . .  6. 

To extend this definition of G to the general case, we need to assume that 
F: K*---,IR 2 is a one to one correspondence with a smooth inverse defined 
on T.'=F(K*). In such a case, for ve Vh we first define for x~ T*, 

(3.1) Gr v(x):=V((I2/3)0 i f -  ' )(PO e -  1 (x))), 

where z3=vo* e, and then for xeT,  

Gv(x):=Gr v(x). 

For a boundary triangle T we choose an interior element S neighbor of 
Tand repeat the construction using T*..=S* to define Grv'.=Gsv. 

In order to prove the asymptotic exactness of the estimator defined by means 
of this recovery operator, we need to assume a further regularity assumption 
on the meshes. 

Given a subregion O1 c f2 we say that the meshes of the family {~h} are 
quasi-parallel on f2~ if for any triangle TeJh  such that Tcf2~, and for any 
neighbor T'e3--h sharing an edge with T (see Fig. 3), the opposite angles of 
the quadrilateral T~ T' differ in O(h). That is, according to the notation of 
Fig. 3, 

I~ -a l  =O(h), Ifl-Tl=O(h). 

An analogous assumption is that if D' is the point such that ABCD' is a parallelo- 
gram then dist(D, D')= O(h2). 

It is easy to show that quasi-parallelism is equivalent to the usual regularity 
for the isoparametric quadratic triangle T. Under this hypothesis,/~ has a smooth 
inverse (see [10]). Therefore, G is well defined for quasi-parallel meshes but 
this is not a necessary assumption. In fact, exception made of some degenerate 
meshes, ff will have always a smooth inverse and hence G will be well defined. 
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On the other hand there are several different assumptions implying quasi- 
parallelism that have been used in previous works about superconvergence in 
linear triangular elements; for instance those in [16] and [23]. In particular, 
whenever the nodes of the meshes in ~h are images of the nodes of uniform 
meshes under a fixed diffeomorphism, they are quasi-parallel. 

From now on, we assume that we have a family of quasi-parallel meshes 
on a subregion f21 C f2 and we shall prove some properties concerning the recov- 
ery operator G. 

Lemma 3.1. For any element TC f2~ the following estimate holds, 

(3.2) IlaTvllo, r .<CllVvllo,  r., Vv~Vh. 

Proof We have, 

(3.3) IlGrvl[o,~,r* = [IV(I2~~ oo,i "< liD/v-~lto,~,~ IIV(/2e)llo,oo,K,, 

where DF-  ~ is the jacobian matrix of F-1.  Now, 

(3.4) II V(I2 ~)II o.~,K,< C IIVe It o.oo,~,, 

in fact, with the notation of Fig. 3, it is easily seen that, 

Ox I2 o(PO= i= 1, 2, 3 

and 
0 00 

12 i= 1,2, 3 

and therefore V(I2O) can be thought of as a linear interpolant of V~ in K* 
and so (3.4) holds. 

On the other hand, 

[IV~ll o, oo,K._- < 11 DE II o,oo,K. H Vv II o,o~,r.. 

Therefore, from (3.3) we obtain, 

(3.5) Ilarvllo, o~,r*<CllOP -1 [Io, oo,7" IIDFII o, oo,K. IlVvllo, o~,T.. 

Now, it is known that (see [10]), 

I >C [IDF -1 o, oo,~'=~- and IlOiello, o~,K.<fh. 

Therefore (3.5) yields 

It Grvll o,| < C ll V ollo, oo,T. 

and using inverse inequalities we obtain (3.2). [] 

Lemma 3.2. Let Tcf21 and let v~H3(~F), then 

(3.6) [IVy-GrIN O.T ~ C h2 111) 11 3,~'" 
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Proof. Since 12 (~i)= 12 f3 we have, 

(3.7)  I lVv-GvIIIo,r  = I lVv-V(I2~oF-1)o(poP-~) l lo ,  r 

< I lVv-V(I2~oF-1)Ho,  r 

+ IIV(I2OoP-1)--V(I2~oP-X)o(PoP-1)llO, T . 

NOW, 

(3.8) }l V (I2 v ~ i f -  1)_ V (I2 ~o i f -  1)o (fro i f -  1)ll o, r 

~ I T I  1/2 II V(I2 t3 ~ i~- l ) - V ( I z O ~  1)~ p ~  1)11 0,~,T 
<[TI1/21I2~oP-112,~,~, s u p [ x -  Po~e-l(x)[. 

x ~ T  

But, under our hypothesis it is easily seen that, 

s u p l x -  P o F -  l (x)l < C h z 
x E T  

and using an inverse inequality for 12 f)o/~-1 we obtain from (3.8) that the second 
term on the right hand side of (3.7) is bounded by 

Ch2112~~ 2 [I vl12,~-, 

where the last inequality follows from the isoparametric interpolation theory 
[10]. 

Finally, to bound the first term on the right hand side of (3.7) we use again 
the known results for isoparametric interpolation and we obtain (3.6). [] 

Let us now define the error estimator 

e:=GUh--Vuh. 

Let 0 o ~ 2 1  be subdomains of f2 and assume as before that the mesh is quasi- 
parallel in f21. It has been proven [23] that, for h small enough, 

IIVul-VuhllO,no<C(h 2 Hull 3,~, + ]le II o,m)- 

Therefore, applying Lemmas 3.1 and 3.2 we have, 

il V u -  auh  II o,~o <= II Vu -- a n  ~ II O,~o + II a ( u  ~ -  uh)ll O,~o 

<= C(h2 llull § lle)l O 0,) 

and consequently 

) t e -Ve l lomo<C(h  2 PIulP 3,m + Ilell o,m). 

Remark 3.1. The last formula shows that II ~ - V e  II O,no = O(h x +9, whenever 

(3.9) IleHo,ol=O(hl+~) for some e~(0, 1]. 

For a convex polygon, if the solution ueH2(O), then it is easily seen that 
(3.9) holds. For  a nonconvex polygon, (3.9) also holds for instance for the Laplace 
operator withfeL2(f2) and homogeneous Dirichlet boundary conditions. In fact, 



114 R. Durfin et al. 

Fig. 4 

in such a case, the solution of (2.1) belongs to H~+S(O) for all s<Tt/co where 
o) is the largest angle of the polygon (see Grisvard [13]) and Ilello,m 
<ChZ~lula+s,o. 

From now on we assume that (3.9) holds and also that the error is properly 
O (h) in f2o ; that is, 

(3.10) lel l,ao > C h 

for some constant C depending on u but not on h. This last requirement is 
not very restrictive, being satisfied in all but trivial cases (see [4]). 

Therefore, if the solution is in H3(Q1), then the estimator e is asymptotically 
exact in f2 o, that is, 

II e -  Ve I10.ao _ O(h~). 
IlVeHo,~o 

In order to define a simpler error estimator, let us compute the values of 
Gv, for ve Vh, at the midpoint of any interior edge. 

Lemma 3.3. Denoting by T -  and T § two adjacent triangles and Q the midpoint 
of the common side, for any ve Vh we have, 

IT+I IT-I  VVlT_ + VVlT+. 
(3.11) Gv(Q)=IT_I+]T+I IT_I+IT+[  

Proof. We use the notation of Fig. 4. 
Applying the chain rule to (3.1) we have 

GT v(Q,)= [ (DP-  ')(P(Q,))] [V(Iz 0)(03]. 

Now let us observe that for any quadratic function g defined on K*, 

Vg(Qi)= V(gIIK) + V(g'lK). 
2 

hence 

and also 

V(I2 ~)(~) = V~IK+V~I~, 
2 

(DP)(03 = Off lx + DFIK, 
2 
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Therefore, 

(3.12) GT 1)(Qi) = [ (DF)(0i)]  -1 V~IK ~- V~[K, 
2 

=(DPIK + DFIK,)- ' (V eIK + V ~IK,) 

depends only on VIT and VlT,. 
In the simpler case in which F is affine (and hence F=i~), (3.11) holds. 

In fact, 

mr wlK + wlK, 
GT 1)(Qi) 2 

and V ~ = (Dff) (V v o if); hence 

VVlK+VvlK, 
GT v(Qi)= 2 

In view of this, we may assume that T= K and restrict ourselves to consider 
the case described in Fig. 5 for any aeP,. and fl>0. 

In this case, a straightforward computation yields 

IT-I VVlT-~ IT+I Vvlr+) V~IK-+VOlK+ 
(DF)(Q) IT_t+IT+I  IT- I+ IT+I  = 2 

and so, by using (3.12) we conclude the lemma. [] 

In particular, (3.11) shows that Gv is continuous at those midpoints. This 
fact allows us to define a second recovery operator: 

: Vh ~ [L 2 (f2)]: 

by interpolating the values of G v at the midpoints of the sides by a piecewise 
linear function, that is, 

and 
E, V l T ~  XS~I, VTe~ 

Gv(Q)=Gv(Q), VQe~I, 
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where Jg  is the set of midpoints of all the edges of the mesh. 

Lemma 3.4. Let Tcf21 and v~ V~, then 

(3.13) II~,VlIo,T<CtlVVlIo,T.. 

Proof. Since Gv is piecewise linear and interpolates Gv at Q~Mg we have, 

II Gvl[ o,| IrGvll o,~.r 

therefore (3.13) follows from (3.2) by using inverse inequalities. [] 

Lemma 3.5. Let Tcf21 and v E H 3 ( T ) ,  then 

(3.14) [I V v -  d v~)ll o,z < Ch 2 tl v II 3,~. 

Proof. Let ~ v be the nonconforming piecewise linear interpolation of V v, that is, 

Cv:= y~ Vv(Q) ~o e, 
Qe~g 

where ~pQ is piecewise linear, q~e (Q)= 1 and <pQ(P)= 0 for P e~Cg, P + Q. 
Then, given T e ~ ,  we have 

(3.15) ]1Vv- ~v  Ill O,T < I[Vv--~V[I 0,r + II ~V-- GU IPI 0, T 

and from the standard interpolation theory we know that 

(3.16) I] V v -  f) V[l o,r < C h2 H vl] 3,r. 

For the second term on the right hand side of (3.15) we use an inverse inequality 
and the fact that [] (Po }[ o, ~, r < C to obtain, 

I[~v-C'vllo,r = ~ E~v(Qi)-Gvl(Qi)] 
i = l  O,T 

3 

< ~ I[~v-Gvlllo,| II~%,llo,r 
i=1 

3 ~rll  <C ~ f~v-GvIllo, rhrl[q~e, llo,~, r 

<CIIr r, 

where Qi are the midpoints of the sides of T and hr its diameter. Therefore, 
(3.14) follows from (3.6) and the triangular inequality. []  

The recovery operator ~ provides a simple error estimator which is based 
on the jumps of the normal derivative of the approximate solution. Indeed, 

R. Durfin et al. 
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if r/i is the outer normal to T in Qi in Fig. 4, and we denote the jump of a 
function ~b at Qi by [[(o]~Q,=~blr(Qi)-4~lr,(Qi), then for any veVh we have 

rh. ~,v(Q3=Vvlr-I IZl +IT~I Q, 

Therefore, if we define 

g:=:duh-- V Uh, 

we have for any interior triangle T 

~(Q')= I TI + IT~I [[ff~-~ J] e, 
r/i 

and since g is linear on T we obtain 

2 ITI ~ 2 
ItgHo,r=~-(I (Q1)I +lg(O2)12+lg(Q3)l 2) 

3 , = .  

Now, using Lemmas 3.4 and 3.5 we may conclude that if the solution is 
regular enough then the estimator ~" is asymptotically exact. That is, if uffH3(~21) 
and if (3.9) and (3.10) hold, then 

II~'-Vello,~o = O(h~). 
NVello,oo 

Remark 3.3 By using the techniques developed by Babuska and Miller [4] it 
is possible to prove that the estimator ~" is equivalent to V e in the L2-norm 
for very general meshes and without any extra assumption of regularity of the 
solution. Namely, if the family of meshes Jh  is regular in the sense of [10], 
u e H  1 (f2) and (3.10) holds, then there exist two constants C1 and C2 such that 

4 Non  asymptotic exactness of  

Estimators like ~ based on the jumps of ~ are widely used in practical computa- 

tions (v.g. [14, 18, 20, 21, 22]). We have just proved that ~ is asymptotically 
exact in those regions where the meshes are quasi-parallel; therefore, it arises 
naturally the question of whether or not this extra regularity of the triangulations 
is essential. 

In this section, we analyze the behavior of the estimator ~ in regions where 
the meshes are very regular but not quasi-parallel. Specifically, we consider 
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a region where the meshes are of the criss-cross type and uniform (see Fig. 6) 
and the differential operator is the Laplacian. 

Numerical evidence of the lack of superconvergence for this kind of meshes 
was presented by Levine [-16]. First, we give here a proof of this fact. Let 
us denote by R the square in Fig. 6. In what follows, we use the notation in 
that figure. 

Lemma 4.1. Let veH3(R) and cpe Vh be the basis function corresponding to the 
node P, then 

(4.1) If  (Vu-Vv ' ) .Vcp-~  f Avl~Ch2]vl3,R. 
R R 

Proof For veH3(R)let Lv,= f (Vv-Vv') .Vq~-~ f Av. First we prove that Lv=O 
R R 

for any w~2 .  Since q~=0 on 8R we have 

(4.2) 
h 2 

R R R 

On the other hand, 

V I __ 4 

f Vv:V~= E f Vv'V~0= 2 f ~0 On Z f 
R T C R  T T c R  OT i = 1 [P,Pi] 

frO&]] 
q) H~-~i H[p,pi] ' 

where ~h is the unit normal to the side [P, PJ as in Fig. 6. Now, 

~r/i lltP,ed 

v (Pz) - 2 v (P)  + v (P4) 

h/V~ , i= 1, 3 

v(P3)-2v(P)+v(P1) i--- 2, 4 

h/k/~ 



Asymptotic exactness of error estimators 119 

and 
h 

I q ~ = ~ ,  i= 1, 2, 3, 4. Hence 
[P, P,] 

(4.3) vv~.v~o= 4v(P)- v(P~ = - T A r ,  
R i=1 

where we used that ve~2. Therefore, subtracting (4.3) from (4.2) we have 

h 2 
I ( V v - - V v l ) ' V ( P = 6  - A v = ~ I  Av,  
R R 

and so L v = O  for any yeN2. On the other hand, by using that HVtplIO,R=2, 
the usual interpolation theory and the Cauchy-Schwarz inequality we have 

ILvl ~ II V~ II 0,R IlVu--Vv =11 O,R +11 j" Avl ~ Chlvl2,R + h  Ivlz,R. 
R 

Therefore, a standard application of Bramble-Hilbert Lemma (see for instance 
[11]) yields 

Igvl<Ch2lvl3 ,R 

for any vffH3(R) thus concluding the proof. [] 

Theorem 4.1. Let f2 o c f2 be a region where the mesh is like in Fig. 6. Let  u e H 3 (Oo) 
be such that I ~ Aul>ct  fo  r some constant c~>0. Then, 

f2o 

hct Ch z 
H V Uh-- V ul N O"Qo ~-~ 12 I~0]ol - ]/'~ ] 3.~Qo" 

Proof. Let R c O o  and q)eVh as in the previous lemma. Then 

S (Vu.-W').v~= S (vu~-Vu').v~o= ~ (w-vu').v~o 
R 12 fJ 

= I ( v u - v u ' ) . v ~ o = ~  S A u + a . ,  
R R 

with [fiR[ <= C h2 ]U] 3,g'because of Lemma 4.1. Therefore, 

HVuh--VU'No,R IIV~0110,R>I I (Vuh--VuX)'Vq)]=I[ ~. AU+~RI 
R R 

and using that []VtPtl0,R=2 we have 

IlVuh-Vutlh 2 - O,~o- Y', IlVu~ - v u I  ~ IIo,~ 
R~-Qo 

1 1 
->- 144 ~" (I AU+~R)2> =144card,RcO0~(~, I A u +  Z 6,) 2. 

R ~ ' O  R -Qo R~-Qo 
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Now card{Rcf2o} = - 1 ~ ;  so, 

h 
IIVuh--VuXlIo,~ ~ - - ( I  S AuI-I  ~ 6RI) 

12V[s Oo R=Oo 

h 
12 ]]/]~o] Ioo S Aul-Ch2[ul3'~176 

which concludes the theorem. [] 

This theorem shows that on any subregion where the mesh is of the criss-cross 
type and for problems with rather general solutions, there is no superconvergence 
in the sense of (1.1). 

In order to apply Theorem 4.1 to the analysis of the estimator ~ we also 
need the following property. 

Lemma 4.2. Under the assumptions of Theorem 4.1 we have, 

II~uh-6utlJO,Oo~ 
ha 

12 3r 
Ch21ul3,oo �9 

Proof Let R be as in Fig. 6, then it is enough to prove that for any VeVh, 

II~Vllo,R~3 3 IIVv[10,R. 

Some simple calculations show that for any ve Vh, 

4 

IVvl 2= ~ fv(P3-v(P)] 2, 
R i = l  

R i = 1  

where Qi is the midpoint of the side I-P, PJ, and 

1~ v (Qi)l 2 > 2 [v  (Pi) - v (P) ]  z 
h 2 i=1,2,3,4.  

So the lemma holds. [] 

We want to exhibit some particular problems for which g is not asymptoti- 
cally exact. Note that this is not an immediate consequence of the previous 
lemma since for nonquasiparallel meshes ~(u I) is not necessarily a supercon- 
vergent approximation of Vu. In the next lemma, we estimate the difference 
Vu- d~(u~t). 
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T*: E 

C 

Fig. 7 

bA 

Lemma 4.3. Let Tbe an interior element and T* the union of Twith its neighbor 
- a2v (~2v IfveH3(T*), then elements as in Fig. 7. Let Wv:=~-x~ Oy2. 

h Wvl <= IlVv-~(vbqlo T - - ~ I  ~ ChZlvl3 T*. 
' 8 1 , / 3  to ,Bl  

Proof Let Cv.'= f Wv and Ev: T* -~ R 2 be the function defined by 
[D,BI 

S-Q SET*. Ev(S),=Cv 2]/~h' 

Let us define an operator L: H3(T*)~EI_?(T)] 2 by Lv:=Vv-GvI-Ev. First, 
we prove that Lv=O for any ve~'2. Indeed, in this case Lve(~l x~l)  and so 
it is sufficient to prove that Lv vanishes at P, Q and R. 

After some computations we obtain for ve~2 : 

(4.4) 
Vv(P)= / v(F)~hv(D)4 

[v(B)--v(D)\ 

Vv(Q)=Iv(F)~v(C) )' 

vv(a)= 
v(F)~hV(B) + v(A)~hhV(C) ]' 

and for any we Vh : 
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(4.5) 

5w(p)={w(F--~)-h w(D) 

lw(F)h w(D) 

~w(Q)= 

Gw(R) = 

w%w,E,], 
'w(B)-h w D) 1 
w(F)hW(C)_ ]' 

w(F)-w(B)h f ~ ) - 1  

w(F)-w(B)h -~ w(A)~hhW(D) ]" 

Therefore,  subtract ing (4.5) with w = v 1 f rom (4.4) we obtain:  

v(F)-v(D) v - 1 
(Vv-Gv')(P)= 2h -~ %v(B)  

v(F)-2hV(D) v(C)~hhV(B)]' 

(V v-  G d)(Q)=(O0), 

v(F)--v(B) v(C)-v(D)' 
2h 2h 

(Vu-Gvl)(R)= v(F)-v(B) v(C)-v(D) 
2h 2h 

Now,  since ve~2,  Wv is cos tant  and we have 

hence 

and 

Wv= v(B)-2v(Q)+v(D) v(F)-2v(Q)+v(C). 
(h/2) 2 (h/2) 2 

(V v-Gvl)(R)=h wv(ll). 

Moreover ,  Cv = h Wv and so, comput ing  the values of  Ev, we see that  (V v - G v t) 
and Ev coincide at P, Q and R. Therefore,  Lv=O for ve~2 .  

On the other  hand,  since It G v 1 l[ o, r < C II V v I I1 o, r*, it is easily seen that  

h 3 / 2  �9 

tlLvllo, r < IIVvllo, r + [I ~ V [ I o , T + ~  II Wvllo.to,Rl<C([vll,T*+hlV[E,r*+hEIv[a,r*), 
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where we used a trace theorem to bound the last term. Now, a standard applica- 
tion of the Bramble-Hilbert Lemma yields, 

(4.6) 

and since 

IILvllo.r <= ChZlvl3,r,. 

h 

the lemma follows from (4.6). [] 

Lemma 4.3 says, in particular, that Gv ~ is a superconvergent approximation 
to Vv for smooth functions such that Wv=O. Collecting all the lemmas we 
have the following theorem which says that, in general, g is not asymptotically 
exact in the sense that the relative error does not tend to zero. 

Theorem 4.2. Let f2 o ~ 01 c f2 be subregions where the meshes are of the criss-eross 
type like in Fig. 6. Let ueH3(f21)mH2(g2) be such that Wu=O and p S A u l > ~  
for some _~>0. Then, for h small enough, ~o 

IlVello,~o 

for some positive constant ft. 

Proof For  h small enough U { T*: T c  f2o} c f2 t ; then we may apply Lemmas 4.2 
and 4.3: 

I[~-Vello,~o= IlGuh-- Vullo,~o 
>= I/C,u~-- d d  [I O..o- I[ ( ~ d -  Vu [I O,~o 

he 
>. ChZlul3,m. 

Now, since u~H2((~), then I[el]l,~o<Chlu[2,9, and hence the theorem is 
proved. []  

A trivial example of a function satisfying the hypothesis of the Theorem 4.2 
is u(x, y ) = x Z + y  2. Note that in this case G(ul)=Vu. 

So, we have shown that the estimator g is not asymptotically exact in general. 
However, there are still two natural questions. 

i) Is ~" asymptotically exact whenever there is superconvergence in the sense 
of (1.1)? 

ii) It is asymptotically exact in the weaker sense of [8]? I.e.: does the so 
called effectivity index 

0r~o,= II~llo,~o ,1'~ 
I]Vello,~o h~o " 

We are going to show that the answer to these two questions is negative. 
In order to do that, let us consider a problem such that the solution ue~2 
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B,~ A 3 

B1 A 1 

Fig. 8 

Ba 

A2 

B2 

and meshes which are criss-cross in the whole O. In this simple case we may 
calculate explicitly u h. 

For each square R as in Fig. 6 the equation corresponding to the node 
P gives: 

h 2 1 4 
(4.7) Uh (P) = ~ f  +-4 ~ uh (Pi). 

i=1 

Considering a patch like that in Fig. 8 and eliminating the unknowns corre- 
sponding to the middle point of each square we obtain: 

4 4 
4Uh(C)-- ~ uh(A,) 4Uh(C)-- ~ Uh(B,) 

1 i = 1  1 i= 1  
h 2 + 2 2 h  2 =f"  

Therefore, the difference scheme associated with the linear elements in a 
criss-cross mesh is an average of two five-points finite difference schemes, which, 
as it is well known, are exact for u ~ 2 .  Hence, for each square R (with the 
notation of Fig. 6) we have 

uh(P~)=u(P~), i=1 ,2 ,3 ,4 ,  

and, by using (4.7), we obtain 

uh(P)=~7(8u(P)+i~ 1 u(Pi))=u(P)+~ h2 Au. 

Using these values of uh we obtain (with the notation of Fig. 7) 

(4.8) 

u(B)-u(D) u) 
Vuh]r= h h ' 

2 u (F) - Uh(B) - u (D) F ~ A 
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and using the values of V u of (4.4) we obtain after some simple calculations: 

Ve(p)=h -Au- Wu+ 2 ~ l ,  
1. 02u I ~ a u + W u - 2 ~ ]  

0 
Ve(Q)=h �89 Wu)' 

Ve(R)=h [ AU+ Wu+ 2 aO~y i 
1 0 2 U  " 

On the other hand, using (4.5) for w= Uh, it is easily seen that: 

(4.9) 

u(F)-u(D) 
- - h  + 

GUh(P) I u(F)-u(D)h 

. u(F)-u(B) 
h 

~uh(R)= u(F)--u(B) 
h 

u(B)-u(E) I 2h + ~--~ Au 
u(~)-u(e) ]' 

2h + h A u  

/ 
t u(A~-~(D) 4-h Au ]' 

and subtracting (4.8) from (4.9) we obtain: 

/ ~ 9 2 u \  

. h I Ox e y ~  
~(e)=~/,  O2u J, 

h 0 
~(Q)=-4 (-�89 Au + Wu)' 

11 ~2u \ 
3 A u + - -  hf, 

\,au + o- d 
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Now,  let  us cons ider  two examples.  Fi rs t ,  for u(x, y ) =  x 2 _y2 ,  we have 

h 2 h 2 I[~l[o,r-l/~, and IlVello,7 

Therefore,  for any  subregion  I2 o as in Fig. 6, 0~o=~22~ 1, independen t ly  of 

the mesh size h. No te  tha t  in this case there is superconvergence  (moreover  
Uh--= Ul); however  the e s t ima to r  g is no t  a sympto t i ca l ly  exact. 

Secondly,  for u (x, y ) =  x Z +  yZ, we have 

h2] /~  h 2 
II~[Io,T = 6l//~ , and  I l V e [ 1 0 , T - ] / ~ ,  

so, 0Oo = V ~  Therefore,  in bo th  examples  the e s t ima to r  ~ is not  a sympto t i ca l ly  
6 " 

exact  even in the weaker  sense of [8].  
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