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ABSTRACT

Most models that demand a coarse grid resolution use Arakawa’ s B grid. Using this particular
grid, it is shown that the CFL condition, for the fastest travelling wave, is twice the value than for
both the non-staggered and the staggered C grid, respectively.

RESUMEN

La mayoria de los modelos que requieren poca resolucién horizontal utilizan la grilla B de
Arakawa. Mediante la técnica de estabilidad lineal, demostraremos que la condicién de estabilidad
para la onda de gravedad es el doble de la requerida para las grillas A y C de Arakawa. La onda
de gravedad es la de mayor velocidad de propagacion en el modelo de aguas someras.

1. INTRODUCTION

Bryan (1969), Gill and Bryan (1971), build up their numerical models, employing
Arakawa’ s B lattice, where the free surface elevation is evaluated at the center of the
grid, while both velocity components, u and v, are evaluated at the four corners of the
grid (Fig. 1). In computing both, the Coriolis and the nonlinear terms, quite an amount
of averaging is omitted.

The theoretical analysis of Mesinger and Arakawa (1976) strongly suggests that grid
C produce better numerical simulations than grid B. This situation holds true as long as
the gridpoint resolution is smaller than the Rossby radius of deformation. The reverse is
also true. Whenever the Rossby radius of deformation is smaller than the gridpoint size,
grid B gives better numerical simulations than grid C (Bryan, 1989; page 473). Most
numerical models that demand & coarse-grid resolution are designed using the B grid
(Semtner, 1986).

The aim of this study is to gain some understanding as to why lattice B works better
for numerical models with coarse-grid resolution. Following the pioneering work of
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Fig. 1. Spatial representation of Arakawa’ s B lattice.

O’Brien (1986) on stability conditions, a series of analytical studies is conducted. For this
purpose, the linear stability technique developed by von Neumann is used (Chamey et al.,
1950,.

In our analysis, we choose to index all the gridpoints and consider the distance
between grid points as Ax and Ay; where Ax and Ay, represent the gridpoint resolution
in the east-west and north south directions, respectively (Fig. 1). Other investigators
choose to call the distance between the same variable as the grid resolution. Our
indexation makes the interpretation of the stability results more interesting. The same
indexation criterion was followed by O’ Brien (1986) and O’ Brien & Inoue (1982) (Fig.
2). The results are quite conclusive. It is shown that the stability condition for the gravity
(fastest travelling) wave is twice the value than for the non-staggered and the C grids,
respectively (Mesinger & Arakawa, 1976; O’ Brien, 1986; O’ Brien & Inoue, 1982).

2. THE PROBLEM
The general stability condition of the finite difference scheme is determined by the
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general condition (Mesinger & Arakawa, 1976):

CAt/Ax < O (1)
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Fig. 2. Spatial representation of Arakawa’ s C lattice.
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3. STABILITY ANALYSIS
3.1. Analysis for the one - dimensional gravity wave
Consider the following set of partial differential equations:

du/dt=-gadh /9x
dh/dt=-H du/dx, (1)

where g represents the earth’ s gravity acceleration; u and v, the velocity components in
the east-west and north-south directions, respectively; h, the free-surface elevation; and
H the mean sea level depth.

A second order, centered in space and time finite difference scheme is employed. It
is obtained:

n+l n-

umy =umy - (@20 Aot + Do) - Choeger + )]
hoin = B - (HY/2) [(Umgiez + ez ) - (g + Oy )] Q)

where the superscript », stands for time level; the subscripts (m,}), the mesh of discrete
points in the x and y directions, respectively; A x and A y, the gridpoint resolution in the

x and y directions, respectively; ¥ is equal to At/ A x, and A t represents the time step
increment (Fig.1).

Define C*=gH, 0 (=pAx)ando (= vAy), where p and v, are the east-west and
north-south wavenumbers, respectively. It is convenient to define Q = (u,v,h). Assume:
Qny =Quexp(impAx)exp(ilvAy) 3

Upon substitution of equation (3) into the set of equations (2), yields:

u, = u, -yg(2isinOcoso)h,
h.i= h,, -yH(21isin 8 cos o) u, “)

It is convenient to define an amplification factor, Z, such that:

Qu2= 2Q, &)

In doing so, equations (4) may be rewritten as:
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Ly, + L,h, =0
Lih, + Liu =0 (6)

The operators L,, L, and L; are defined as:

L1=Z”2 _ Z-l/2
L,=2igysinBcoso
L;=2iHysinOcoso N

The homogeneous set of equations (6) is solved by letting:
L2 -L,L, =0. (®

A second order equation for Z is obtained. Namely:
Z2-2(1-2C*y%sin’B cos’c)Z +1 = 0. (9)

Two complex conjugate solutions are obtained
Z = G- i(l-GH"”
Z,= G+ i(l-GH~" (10)

where
G=1-2(Cysin0cos o) (1)

To have a stable ( neutral ) condition the absolute value of Z should be less (equal)

than (to) one. Otherwise, the finite difference scheme under consideration will be
unstable. In multiplying the two solutions yields:

|Z = 2. Z =1 (12)

Therefore, if the term under the radical sign, 1 - G?, is positive, then the absolute
value of the amplification factor will be equal to one. This instance will hold certain if,
and only if:

(CysinBcoso) < 1. (13)

Given the fact that the absolute value of the sine and the cosine is less or equal to
unity, and recalling the definition of v, it follows that:
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CAt/Ax < 1, (14)

which is the classical C-F-L condition for computational stability.

3.2. Stability analysis for the inertial gravity wave

Let us consider the following set of partial differential equations:

du/dt= fv-gdh /ox
dv/dt = -fu
dh/ot=-H odu/dx, (15)

Upon using the same finite difference scheme as above yields:

U, ,=u,+ 2 fAtv, -yg(2isinOcoso)h,
Vn+1=Vn_1 - 2 fAt lln
h, =h,, - yH(2isin 0 cos o)u, (16)

Equations (16) may then be rewritten as:

Ll l.ln - L4 Vn + Lz hn = O
Lyv, + L,u, = 0
L,h, + Lyu, = 0 (17)

where L, = 2fAt.

Following the same procedure as above yields:
72 -2(1-2C?y%sin’Ocos’a- 2(fAt)Y )Z +1 = 0. (18)

The two complex conjugate solutions are:

Z. = G - i(1-G)”
Z,= G+ i(l-Gym (19)

where the value of G has changed. It is:
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G=1-2(fAt) - 2(Cysin8 cos gy

(20)

In multiplying the two complex conjugate solutions, as in the previous case, we will
arrive to a neutral stability condition, provided that the term under the radical sign, 1 -

G2, is positive. This will require that:

(fAty +(CysinBcoso) < 1

¢y

Thus, this is the same stability condition as the one for the unstaggered grid case (O’

Brien, 1986; page 177):
Cy < [ 1 -(fAt)y]"”
3.3. Stability condition for a two dimensional flow
Let us consider the following set of equations:
du/dt = fv-godh/ox
ov/dt = -fu-godh /Gy
odh/ot=-H (du/dx + ov/dy)
In using a centered in space and time finite differencing scheme, yields:
n,,=u,,+ 2 fAtv,-2iygsinOcosoh,

Va1 =V, - 2 FAtu, - 2ingcosBOsinoh,
h,=h,,-2iyHsinOcosou, - 2inHcosOsinov,

where 1 is equal to A t/ A y. This system of equations, 24, may be rewritten as:

Liu, - L,v, + Lyh, 0

Lv,+ Ljuy + Lsh, = 0

L,h, + Lyju, + Lgv, =0
where

L;=21i gnsinocos®
L¢=2iHmnsinocosO
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For this set of equations to have unique solution, it follows that:
L, (L2 - L,L, -LsLg +L;2) = 0 (27)
Following the same procedure as in the two previous cases, yields:

7} -2¢Z+1=0 (28)
where

Y=1-{2(fAt) +2C* (y’sin’Ocos’0+ n’sin*occos’0)} (29)
As before, a neutral stability condition will be obtained if:
(fAtY + C*(y*sin?0cos’0 + n?sinccos’8) < 1 (30)

Several cases are considered:

a)ForL, =2 Ax(4 Ax)andL,=2 Ay (4 Ay), i.e., 0 =0 =n (=n/2), where L and L,
are the wavelengths in the x and y directions, respectively, yields:

[fAt] < 1 for stability 3D
This same resulit holds for very long waves. Namely for& =o=0.
b)For L,=8 AxandL, =8 Ay,i.e.,0=0=mn/4, yields:
(fAt)? + C(y*+n¥) < 1 (32)
If Ax= Ay= A, yields:

CAt/A < {2(1-(f At))}” (33)

Following O’ Brien (1986), the CFL condition for the 2 D gravity wave for the
unstaggered grid, is:

CAt/A < { (1-(f AtP)23” (34)

This same result is obtained, for the C grid, using this same type of indexation (O’ Brien
& Inoue, 1982). Without considering the Coriolis parameter, Mesinger and Arakawa
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(1976, page 52) show that the stability criterion for the 2 D dimensional gravity wave, for
the unstaggered grid, is:

CAt/A < {12}" (35)

which is similar to O’ Brien (1986) and O’ Brien & Inoue (1982). Therefore, the CFL
condition for the B grid, is less restrictive. The stability condition for the gravity wave
is twice the value of the stability condition of both the unstaggered grid and grid C.

In their reduced gravity model, Adamec & O’ Brien (1978) used a A t = 10* sec. The
product f At could be of order one. Therefore, the CFL condition, for the reduced gravity
models, could easily be violated, if caution is not taken care.

4. CONCLUSIONS

Stability conditions of a series of problems, for the staggered lattice B, leading to the
shallow water wave equations are considered. Comparison with stability conditions with
both the unstaggered grid and the staggered grid C are made (Mesinger & Arakawa, 1976;
O’ Brien, 1986; O’ Brien & Inoue, 1982). It is shown that the stability condition is double
the value than for the other two grids (equations (33) through (35)) This represents a clear
improvement of Mesinger and Arakawa’ s (1976) solutions.

Therefore, numerical models that require a coarse-grid resolution are designed using
the B lattice. In doing so, more accurate solutions, for a coarse grid resolution, are
obtained.

Acknowledgments

This study was supported by Universiti Pertanian Malaysia under contract No. 50213-94-05. The
authors gratefully acknowledge this support. Corrections made by an anonymous reviewer
contributed in the improvement of this paper. The authors gratefully acknowledge this contribution.

REFERENCES

Adamec, D. & J. J. O’ Brien, 1978. The seasonal upwelling in the Gulf of Guinea due to remote
forcing. J. Phys. Oceanogr., 8, 1050-1060.

Bryan, K., 1969. A numerical method for the study of the circulation of the world ocean. J. Comp.
Phys, 4, 347-376.

Bryan, K., 1989. Oceanic circulation models. combining data and dynamics. NATO ASI series.
Kluwer Academic Publishers, London, 465-500.

Charney, J. G;, R. Fjortoft and J. von Neumann, 1950. Numerical integration of the barotropic

163



Stability condition for Arakawa’ s B grid

vorticity equations. Tellus, 2, 237-254.

Gill, A. & K. Bryan, 1971. Effects of geometry on the circulation of the three-dimensional southern
hemisphere ocean. Deep Sea Res., 18, 685-721.

Mesinger, F. and A. Arakawa, 1976. Numerical methods used in atmospheric models. GARP
Publications Series, No. 17, World Meteorological Organization, Geneve, Switzerland, 64 pages.
O’ Brien J. J. & M. Inoue, 1982. A note on the CFL condition for the shallow water wave
equations (unpublished manuscript), 15 pages.

O’ Brien, J. J., 1986. Advanced Physical Oceanographic Numerical Modeling. D. Reidel
Publishing Co., 174 - 181.

Semtner, A. J., 1986. History and methodology of modeling the circulation of the world -ocean.
Advanced Physical Oceanographic Numerical Modeling. D. Reidel Publishing Co., 23-32.

164



