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Abstract. Let P be a class of finite families of finite sets that satisfy a property P. We call
QP the class of intersection graphs of families in P and CliqueP the class of graphs whose
family of cliques is in P. We prove that a graph G is in QP if and only if there is a family of
complete sets of G which covers all edges of G and whose dual family is in P. This result
generalizes that of Gavril for circular-arc graphs and conduces those of Fulkerson-Gross,
Gavril and Monma-Wei for interval graphs, chordal graphs, UV, DV and RDV graphs.
Moreover, it leads to the characterization of Helly-graphs and dually chordal graphs as
classes of intersection graphs. We prove that if P is closed under reductions, then
CliqgueP = Q(P* N H) (P* = Class of dual families of families in P). We find sufficient
conditions for the Clique Operator, K, to map QP into QP*. These results generalize several
known results for particular classes of intersection graphs. Furthermore, they lead to the
Roberts-Spencer characterization for the image of K and the Bandelt-Prisner result on
K-fixed classes.

1. Introduction

Let P be a class of finite families of finite sets that satisfy a property 2. We will
call QP the class of intersection graphs of families in P and CliqueP the class of
graphs whose family of cliques is in P. Please see other definitions in Section 2.

Several classes of graphs are defined as collections of intersection graphs of
families which have a particular property #. This is the case of interval graphs
class [5, 12], proper interval graphs class [20], UV -graphs class, DV-graphs class,
RDV-graphs class, [8, 9, 19], circular-arc graphs class [10], etc.

Other classes of graphs can be defined as collections of those graphs whose
family of cliques has a given property, as are the proper interval graphs (whose
cliques are intervals of a total order on its vertex set [20]), the ACI-graphs [17]
(whose cliques are intervals of an acyclic order on its vertex set), the Dually-
chordal graphs [3] (arba-graphs [2] or expanded-tree graphs [22] or TCG-graphs
[14, 15, 16], whose cliques are subtrees in a tree), the RET-graphs [23] (whose
cliques are directed paths in a rooted tree) and the Helly-graphs [1] (whose family
of cliques has the Helly property).

On the other hand, chordal graphs, originally defined by those graphs which
contain no chordless cycle of length exceeding three, can be defined as intersection
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graphs of subtrees in trees [7] and as graphs whose family of cliques is an a-acyclic
family [3].

Furthermore, in many classes of intersection graphs, if a graph G is or is not a
member can be tested by a property of the dual family of its cliques (Fulkerson-
Gross Theorem for interval graphs [6], Tree-clique Theorem for chordal- UV-DV -
RDV graphs [7, 8, 9, 19]).

We ask the following questions: Is it possible to generalize these results for
a generic class of intersection graphs? When is it possible to define a class of
intersection graphs by properties of its cliques?

In Section 3 we try to solve these problems. We obtain a general result: A
graph G is in QP if and only if there is a family of complete-sets of G which covers
all edges of G and its dual family is in P.

Moreover, if any family in P has the Helly property, then every family of
complete-sets, fulfilling the above conditions, contains the family of cliques of G.
Finally we will find sufficient conditions to prove that CliqgueP = QP* (P* = Class
of dual families of families in P).

The clique graph K(G) of a graph G is the intersection graph of its family of
cliques. Many authors have studied the behavior of the Clique Operator in several
classes of intersection graphs. For example in [18] Hedman proves that K maps
the class of interval graphs in the class of proper interval graphs and in [3, 22] it is
proved that K maps the class of chordal graphs in the class of dually-chordal
graphs. Is it possible that a relation exists between these results?

In section 4 we will prove that, under some conditions, the Clique Operator
transforms QP* into QP. These results and the characterization of QP obtained in
section 3 conduce to the Roberts-Spencer’s characterization of the image of K.
Moreover the Bandelt-Prisner’s result about K-fixed classes can be obtained as an
immediate corollary.

2. Definitions

All graphs considered in this paper are finite undirected graphs without loops or
multiple edges. Let G be a graph. We denote by V(G) and E(G) the vertex set and
edge set of G, respectively. If u and v are adjacent we write uv € E(G). A set
L CV(G) is a complete of G if uv € E(G) for any two distinct elements u, v € L. If
in addition there is no complete of G which properly contains L (i.e. L is maximal
with respect to the inclusion), it is a cligue of G. By €(G) we denote the family of
cliques of G.

Let # = (F;),,; be a finite family of finite sets, its dual family #* is the family
{7 (x)},cx Where X = ., F and F (x) = {i € I,x € F;}. We say that a graph G is
the intersection graph of (F;),., if V(G) = I, and two vertices i and j are adjacent if
and only if /; N F; # 0.

The 2 — section of 7, denoted by %, is the graph with V(#,) = {J,., F; and
two vertices x and y are adjacent if and only if there exists i € I such that x,y € F;.

By P we will denote the class of all families & that satisfy a property 2. We
will say that a property 2 is the dual property of 2 when the families that satisfy 2
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are the dual families of those that satisfy 2. In this case, by P* we will denote the
class Q.
We adopt the following notation for some properties.
A: Helly property, i.e., if J C I and F;NF; # 0 for all i, j € J then (., F; # 0.
%: Conformal, i.e., every clique of &, is a set of #. (Dual property of ).

£1: Reduced, i.e., for all i,j € I; F; C F; implies i = j.

Z»: There exists a total order < on |J,; F; such that for all i € 1, F; is an interval
with respect to <.

33: 31 and gz.

Z4: There exists a tree T such that V(T) = I, which satisfies:
For all i,j € I if k is a vertex belonging to the path of T from i to j, then
F; N F; C Fy. (Dual property of ¥s).

Zs: There is a tree T such that V(T) = |J,., i and each F; induces a subtree
of T.

Pt There is a tree T such that V(T) = |J,., F; and each F; induces a path of 7.

#7: There is a directed tree T such that V(T) = (J,., i and each F; induces a
directed path of 7.

Zg: There is a rooted directed tree T such that V(T) = (J,., Fi and each F; induces
a directed path of T.

Z9: There exists a circular order o on J,., F; such that for all i € /, F; is an
interval (arc) with respect to o.

Through this notation we have:

QL, = IG (Class of interval graphs).

QL3 = CliqueLs = PIG (Class of proper interval graphs).

QL4 = CliquelLs = DUALLYCHORDAL (Class of dually-chordal graphs) [3].
Q(CNH) = Clique H= HELLY (Class of clique-Helly graphs) [1].
QLs = CliqueLy = CHORDAL (Class of chordal graphs).

QL¢ = UV (Class of UV-graphs).

QL; = DV (Class of DV -graphs).

QLg = RDV (Class of RDV-graphs).

QLy = CAG (Class of circular-arc graphs).

CliqueLs = ACI (Class of ACI-graphs).

Cliquel; = RET (Class of rooted expanded tree-graphs).

We will say that a class P is closed under reductions if the family of maximal sets
(with respect to the inclusion) of any family of P is also in P and a class P is closed
under augmentations if for every family (F;),, in P, (F; U {i}),., is also in P.

3. A Characterization of Intersection Graphs
Before we give the characterization, let us recall a couple of results.
Lemma 3.1. If . is a family of complete-sets of G which covers all edges of G (i.e.,

if vu € E(G), then {u,v} is contained in some element of ¥) then G is the inter-
section graph of the family ¥* = {Z(v)},cy(c)-
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Proof. From the assumption on the family % it follows: uv € E(G) if and only if
there is L € . such that u,v € L, if and only if #(u) N #(v) # (. Then G is the
intersection graph of {Z(v) },cy(g)- O

Lemma 3.2. If G is the intersection graph of a family F then its dual family F* is a
family of complete-sets of G which covers all edges of G.

Proof. Let F = (Fy)ep(g)> and let x € U,ep(g) Fo- If u,0 € F(x) then x € F, N F,
and since G is the intersection graph of %, we have that uv € E(G). Therefore for
all x € U,ep(g) Fo» 7 (x) is a complete of G. On the other hand, if uv € E(G) then
F,NF,# 0 and u,v € # (x) for all x € F, N F,. Thus the dual family of # covers
all edges of G. O

Theorem 3.3. G € QP if and only if there is a family of complete-sets, &, of G such
that:

(1) &L covers all edges of G.
Q) £ ={Z)}er) € P

Proof. Let # be a family in P such that G is its intersection graph and let
¥ = F" be its dual family. By Lemma 3.2 we have that . is a family of com-
plete-sets of G which covers all edges of G. Moreover the dual family ¥* of
¥ =F%is F. Because & € P, & fulfills the conditions of the theorem. Con-
versely, suppose that . is a family of complete-sets of G such that % covers all
edges of G. By Lemma 3.1, G is the intersection graph of ¥ = {Z(v)},cy(g); in
addition {Z(v)},cy(g) € P, thus G € QP. O

This theorem generalizes one of Gavril’s Theorem [10] for circular-arc graphs.
Observe that CAG = QLy and not every family in Ly has the Helly property.
However, in the case that property & implies the Helly property s# we obtain the
following result.

Corollary 3.4. If P C H and G € QP then every family of complete-sets fulfilling the
conditions of Theorem 3.3 contains €(G).

Proof. Let & = (L;),.,; be a family of complete-sets of G fulfilling the conditions
of Theorem 3.3. Let R be a clique of G; since G is the intersection graph of
L = {ff(v)}ve,/@ (see Lemma 3.1), for every pair u, v in R there is some L; € &
containing the edge uv, hence L; € Z(u) N Z(v) # 0. But {Z(v)},ep () € P and
P C H, thus this family has the Helly property and there is a complete L; € &
such that L; € [,z £ (v). Therefore, for all vin R, L; € £(v) thus v € L; and, by
the maximality of R, L; = R. Hence we have that every clique of G is a member of
the family . O

Since G is the intersection graph of the dual family ¢ = {%(v)},cy () of ¢(G),
if {€(v)},ep(c) is in P we obtain that G € QP. Thus, from Corollary 3.4 we can
give sufficient conditions to characterize the elements in QP in terms of the dual
family of its cliques.
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Theorem 3.5. If P C H and P* is closed under reductions then G € QP if and only if
¢ (G) ={%(0)}rer(c) € P

Proof. If G € QP then there is a family . fulfilling the conditions of Theorem 3.3
and by Corollary 3.4, & contains ¢(G). Because €(G) is the family of maximal
sets of % and P~ is closed under reductions ¢(G) € P* thus the result follows. [J

Lemma 3.6. If P = L, L4,Ls,L¢, L7 or Lg, P* is closed under reductions.

Proof. Case. P=1Ls: Let (F),, €Ls then there is a tree 7 such that
V(T) = U Fi and each F; induces a subtree of 7 . Suppose that there are two
vertices x,y € V(T) such that # (x) C # (), if z is the next vertex to x on the only
path in T from x to y, then 7 (x) C Z(z) C Z(y). By coalescing x and z and
eliminating the edge between them, we obtain a new tree 7’ from 7. Since all F;
which contains x contains z, we have that ' = (F —{x}),, €Ls and
{7 (v)} ey € Ls™. In this manner we can obtain that the family of maximal sets
of {7 (v) }yep(ry 18 in Ls™.

Cases L,,Lg,L7 and Lg are similar.
Case. P = Ly is trivial because Ly* = Ls which is closed under reductions. [

This result shows that Theorem 3.5 generalizes Fulkerson-Gross’s Theorem
[6], which characterizes interval graphs, Gavril’s results [7, 8, 9] for chordal
graphs, UV-graphs, and RDV-graphs, and the Clique-tree Theorem [19] for
DV -graphs and other families.

Another form of Theorem 3.5, interchanging P by P* is: If P* C H and P is
closed under reductions then QP* = CliqueP. Observe that P* C H is equivalent
to P C C because # and % are dual properties. Thus, by taking P N C, which is
closed under reductions because P and C have this property, the result will be a
characterization of Clique(P N C). But the family of cliques of any graph is
conformal, then CligueP = Cligue(P N C) and we obtain a characterization of
CliqueP as a class of intersection graphs of Helly families, as follows.

Corollary 3.7. If P is closed under reductions then Q(P* N H) = CliqueP.

Proof. Since (PN C)* = P* N H, the result follows. O

In this way we obtain the already known result for HELLY, by taking P = H,
and a new result for DUALLYCHORDAL, by taking P = Ls.

Corollary 3.8. HELLY = Q(CNH) [1].
DUALLY CHORDAL = Q(Ls N H).

4. The Clique Operator

The results obtained in the previous section permit to study the behavior of the
Clique Operator in some particular classes of intersection graphs.
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Theorem 4.1. If P C C and P is closed under reductions then K(QP*) C QP.

Proof. By Theorem 3.5, if G € QP* then ¢"(G) = {%(v)},ep() € P* and 4(G)
€ P. Therefrom K(G), the intersection graph of the family ¢(G), is in QP. [

For the converse situation, we will need that any graph of QP can be repre-
sented by a reduced and conformal family.

Theorem 4.2. [f QP = Q(PNCNLy) then QP C K(QP*).

Proof. Let G € QP. By Theorem 3.3 there is a family ¥ of complete-sets of G
such that:

(1) & covers all edges of G.
2 " ={ZV)}iep) EPNCNL.

Let H=%5. Since &* is a conformal reduced family ¢ (H) = %*. Then
K(H) = G because K(H) is the intersection graph of the family of cliques of H and
G is the intersection graph of #* = @(H) (see Lemma 3.1). On the other hand, H
is the intersection graph of {€(v)},cy ) = €"(H) = & € P* thus H € QP. O

In the following corollaries we will see how these results can be used in par-
ticular classes.

Corollary 4.3. [18]

(1) K(PIG) = PIG.
(2) K(IG) = PIG.

Proof. (1) L3 C C and Lj is closed under reductions, hence QL;* = CliguelLs,
furthermore K (QL3*) C QLs, i.e., K(PIG) C PIG. On the other hand, since L3 C L,
the conditions of Theorem 4.2 are true, and the other inclusion follows. O

(2) Since Ly, C H, L,* C C and L," is closed under reductions, we obtain that
K(QL,) C QLy*. In addition L, C C and L, is closed under reductions then
QL,* = CliqueL, and this last class is CliqueL;. Therefrom K(IG) C PIG and by
(1) we obtain K (IG) = PIG. O

Corollary 4.4. (1) [3] [22] K(CHORDAL) = DUALLYCHORDAL.

(2) [17] K(DV) = ACI and K(ACI) = DV.
(3) [23] K(RDV) = RET and K(RET) = RDV .

Proof. (1) We will prove the conditions of Theorems 4.1 and 4.2 for P = L4. By
Lemma 3.6 Ls* = L4 is closed under reductions. Since every family in Ls has the
Helly property [4], Ly C C. Then QLy = Q(Ls N C). On the other hand, if G is the
intersection graph of a family (F,),cp ) € Ls N C then also is of (F, U {v}),cp(q)
and it is easy to see that Ly and C are closed under augmentations, thus this family
is belonging to Ly N C too. Therefore QLy = Q(LsNC N Ly).

(2) Since L; C H, L; C C, QL7 = Q(L7 N L) and, analogously to the proof for
Ly, QL7* = Q(L7* N Ly). Therefrom the result follows.

(3) Analogously to the above by taking P = Lg. O
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Observe the difference between (1) and (2)—(3):

K(DUALLYCHORDAL) # CHORDAL because not every chordal graph is in the
image of K.

But if we take PN C N H in Theorems 4.1 and 4.2 we obtain the following
result for classes P closed under augmentations.

Theorem 4.5. If P is closed under reductions and augmentations then

K(CligueP N HELLY) = Q(P N C N H).

Proof. Since P, C and H are closed under reductions and augmentations we have
that P N C N H has these properties too. Thus Q(PNCNH) =QPNCNHNL).

Then the hypotheses of Theorems 4.1 and 4.2 are true for PN CNH thus
QPNCNH)=K(QPNCNH))=KQPNH) NH) because C* = H.

On the other hand, by Corollary 3.7 for PNH, QPNH) NH)=
Clique(P N H) and this is equal to CligueP N HELLY because HELLY is the class
of Clique-Helly graphs.

Hence Q(PNCNH) = K(CliqueP N HELLY). O

Corollary 4.6. K(CHORDALNHELLY) = DUALLY CHORDAL and K(DUALLY-
CHORDAL) = CHORDAL N HELLY .

Proof. 1f we take P = Ly, since Ly C C, L4 is closed under reductions and aug-
mentations we obtain

K(CliqueLs N HELLY) = Q(Ls N H),i.e., K(CHORDAL N HELLY) = DUALLY-
CHORDAL (see Corollary 3.8).

The other equality follows by taking P = Ls, since Ls is closed under reduc-
tions and augmentations we obtain

K(CliqgueLs NHELLY) = Q(Ls N\CNH) =Q((LsNH)"NH). Then, by Cor-
ollary 3.7, Q((Ls N H)" N H) = Clique(Ls N H).

Hence K(DUALLY CHORDAL) = CHORDAL N HELLY . O

In addition, the Roberts-Spencer’s results for the image of K can be obtained
as a corollary considering ¢ as the class of all graphs.

Corollary 4.7. [21] K(9) = QC

Proof. As we said earlier, the family of cliques of any graph is conformal, thus
% = CliqueC. Since C is closed under reductions, we have that CliqgueC = QC*
and K(CliqueC) C QC. The other inclusion follows because QC = Q(C N L;) (see
proof for Ly in Corollary 4.4). Finally the characterization of intersection graphs
(Theorem 3.3) conduces to Roberts-Spencer’s Theorem. O

Another result that can be obtained as a corollary is that of Bandelt-Prisner
about K-fixed classes (a class of graphs 2 is K-fixed when K(%) = ).
Corollary 4.8. [1] If P = P*, P C C, P is closed under reductions and augmentations
then QP = CliqueP is K-fixed.
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