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1. INTRODUCTION

In the past few years much effort was focused on the
construction and understanding of the QCD phase dia-
gram. On the one hand, at low chemical potential and
high temperatures, one expects a so-called quark–gluon
plasma (QGP) phase, in which chiral symmetry is
restored. The signatures of that phase are being investi-
gated in relativistic heavy ion collisions. On the other
hand, in the region of low temperatures and chemical
potential, the chiral symmetry is broken due to the pres-
ence of a quark–antiquark condensate. But when
increasing the chemical potential, the quark–antiquark
channel is expected to vanish giving rise to a diquark
condensate. For two light flavors 

 

u

 

 and 

 

d

 

, the color
symmetry might be spontaneously broken resulting in a
two flavor color superconductivity (2SC) phase. When
the 

 

strange

 

 flavor is also taken into account, a color fla-
vor locking (CFL) phase appears. These phase regions
are of great interest in astrophysics, in particular in con-
nection with the physics of compact stars [1].

Due to difficulties when dealing with large baryon
densities, lattice QCD calculations are not yet able to
provide a detailed knowledge of that particular region
of the QCD phase diagram. Thus, most theoretical
approaches are based on the use of effective models of
QCD. In the present work, we study the competition

between chiral symmetry restoration and two flavor
color superconductivity in the framework of two cova-
riant nonlocal chiral quark models, under compact star
conditions of electric and color charge neutrality. The
first one is inspired by the instanton liquid model (ILM)
[2], and the second one arises from an effective one-
gluon exchange (OGE) [3] in a separable form.

2. THE FORMALISM

Let us write the Euclidean action for the nonlocal
chiral quark model in the case of two light flavors and
antitriplet diquark interactions,

(1)

Here, 

 

m

 

 is the current quark mass, which is assumed to
be equal for 

 

u

 

 and 

 

d

 

 quarks. As we mentioned above,
we introduce nonlocality arising from two alternative
scenarios called “Model I” and “Model II,” where the
effective interactions are based on ILM and OGE,
respectively. The currents 

 

j

 

M

 

, 

 

D

 

(

 

x

 

) in Eq. (1) are given by
the following nonlocal operators:
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(2)

for Model I, and

(3)

for Model II. Here we have defined 

 

ψ

 

C

 

(

 

x

 

) = 

 

γ

 

2

 

γ

 

4

 

(

 

x

 

)

and 

 

Γ

 

f

 

 = (

 

1

 

, ), while  and 

 

λ

 

a

 

, with 

 

a

 

 = 2, 5, 7,
stand for Pauli and Gell–Mann matrices acting on fla-
vor and color spaces, respectively. The functions 

 

r

 

(

 

x

 

 – 

 

y

 

)
and 

 

g

 

(

 

z

 

) in Eqs. (2) and (3) are nonlocal form factors
characterizing the corresponding interactions.

The effective action (1) might come from a more
fundamental interaction via Fierz transformations (in
the case of OGE or ILM interactions, the coupling ratio

 

H

 

/

 

G

 

 would be equal to 3/4). However, since the precise
derivation of the effective couplings from QCD is not
known, we will leave the ratio as a free parameter, ana-
lyzing our results for the range from 

 

H

 

/

 

G

 

 = 0.5 to 1.
After a proper bosonization of the theory, in the

mean field approximation, the thermodynamical poten-
tial per unit volume reads

(4)

where the inverse propagator 

 

S

 

–1

 

( , ) is a 48 

 

×

 

 48
matrix in the Dirac, flavor, color, and Nambu–Gorkov
spaces (details can be found in [4]). The mean field val-
ues  (scalar meson field) and  (scalar diquark field)
are obtained by solving the coupled pair of gap equa-
tions 

 

d

 

Ω

 

MFA

 

/  = 0 and 

 

d

 

Ω

 

MFA

 

/  = 0. In general, we
consider different chemical potentials 

 

µ

 

fc

 

 for each
quark flavor 

 

f

 

 and color 

 

c

 

. However, in our case [4] they
can be written in terms of only three independent quan-
tities: the baryon chemical potential 

 

µ

 

B

 

 (

 

µ

 

B

 

 = 3

 

µ

 

), a
quark electric chemical potential 

 

µ

 

Q

 

, and a quark color
chemical potential 

 

µ

 

8

 

. The corresponding relations read

(5)

where 

 

q

 

 = 

 

u

 

, 

 

d

 

, and 

 

Q

 

q

 

 are quark electric charges. Now
in compact stars, in addition to quark matter, we have
electrons. Under 

 

β

 

-equilibrium, and assuming that
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antineutrinos escape from the stellar core, we must
have

(6)

As we are interested in studying the phase diagram
under compact star conditions, we impose color and
electric charge neutrality, i.e.,

(7)

where ρe, ρfc stand for fermion densities. In this way, for

each value of T and µ, we should find the values of ,
, µe, and µ8 that solve the pair of gap equations, sup-

plemented by Eqs. (6) and (7).

3. NUMERICAL RESULTS
AND CONCLUSIONS

In the present study we use the Gaussian form factor
for both models I and II (see [4] for details). The input
parameters for both models are those which reproduce
the empirical values for the pion mass mπ and decay
constant fπ, and lead to a phenomenologically accept-
able value  = –250 MeV for the chiral condensates
at vanishing T and µB. The parameters considered here
for Model I are m = 5.14 MeV, Λ = 971 MeV, and GΛ2 =
15.41, while for Model II we have taken m = 5.12 MeV,
Λ = 827 MeV, and GΛ2 = 18.78 [5]. As stated, we con-
sidered different values for the coupling ratio H/G
between 0.5 and 1. The corresponding phase diagrams
for Models I and II are shown in Fig. 1, in which we can
see the regions corresponding to different phases as
well as the position of triple points (3P) and end points
(EP). Besides the low T – µ region, in which the chiral
symmetry is broken (CSB), one finds normal quark
matter (NQM) and two-flavor superconducting (2SC)
phases. Between the CSB and NQM phases, one has
first order and crossover transitions, represented by
solid and dotted lines, respectively. Between the NQM
and 2SC regions, in all cases a second order phase tran-
sition appears (dashed lines in the diagrams of Fig. 1).
Close to this phase border, the dashed–dotted lines in
the graphs delimit a narrow band that corresponds to
the gapless 2SC (g2SC) phase. In some cases we find a
2SC-NQM mixed phase in which the system realizes
the constraint of electric neutrality globally: the coex-
isting phases have opposite electric charges which neu-
tralize each other at a common equilibrium pressure.
For both models the 2SC phase region becomes larger
when the ratio H/G is increased.

We also have found that Model II predicts a larger
quark mass gap and a chiral symmetry breaking (CSB)
phase transition line compared to Model I. The critical
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temperature for the 2SC phase transition is a rising
function of µ for Model I, whereas it is rather µ inde-
pendent in Model II due to the different µ dependences
in the form factors associated with the scalar diquark
gaps. The prediction for the critical temperature at µ = 0 in
Model II, TCSB ~ 140 MeV, is closer to the results of
recent lattice QCD simulations.

As an application of the developed approach, we
consider the question whether a phase transition to
quark matter is likely to occur in neutron star interiors.
We apply a two-phase description with a low-density
hadronic matter phase described within the Dirac–
Brueckner–Hartree–Fock (DBHF) approach using the
Bonn-A nucleon–nucleon potential [8]. The quark–
hadron phase transition is obtained by applying Gibbs
criteria of phase equilibrium, in particular, equality of
pressures and chemical potentials of the coexisting
phases (see Fig. 2, left panel). In the right panel of
Fig. 2, we show the mass–radius relationships for had-
ronic and hybrid star configurations obtained from a
solution of the Tolman–Oppenheimer–Volkoff equa-
tions with the corresponding EsoS. Increasing the
diquark coupling lowers the phase transition density
and leads to a lower critical star mass for the formation of
a quark matter core. For details concerning the astrophys-
ical constraints on the equation of state, see [9, 10, 11].

As a general conclusion, it can be stated that even
under compact star constraints, provided the ratio H/G
is not too low, the nonlocal schemes favor the existence
of color superconducting phases at low temperatures
and moderate chemical potentials. This is in contrast
with the situation in the NJL model [6], where the exist-
ence of a 2SC phase turns out to be rather dependent on
the input parameters. Our results are also qualitatively
different from those obtained in the case of noncovari-
ant nonlocal models [7], where above the chiral phase
transition the NQM phase is preferable for values of the
coupling ratio H/G & 0.75, and a color superconducting
phase can be found only for H/G ≈ 1.
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Fig. 1. Phase diagrams for Models I (left) and II (right) and
different values of the ratio H/G, compact star constraints.
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Fig. 2. (Left panel) Pressure vs. baryochemical potential for the hadronic phase (DBHF) and the quark matter phase (Model II—
OGE approach) for different values of the diquark coupling constant H. The intersection defines the critical chemical potential for
the deconfinement transition. (Right panel) Compact star configurations with and without deconfinement corresponding to the equa-
tions of state given in the left panel.



PHYSICS OF PARTICLES AND NUCLEI      Vol. 39      No. 7      2008

NONLOCALITY EFFECTS IN THE PHASE DIAGRAM OF NEUTRAL QUARK MATTER 1043

ACKNOWLEDGMENTS

This work was supported in part by CONICET and
ANPCyT (Argentina), grants PIP 02368, PIP 6009,
PICT02-03-10718, and PICT04-03-25374, and by a
scientist exchange program between Germany and
Argentina funded jointly by DAAD and ANTOR-
CHAS, grants no. DE/04/27956 and 4248-6, respec-
tively.

REFERENCES

1. Superdense QCD Matter and Compact Stars, Ed. by
D. Blaschke and D. Sedrakian, NATO Science Series
II/197 (Springer, Dordrecht, 2006).

2. T. Schäfer and E. V. Shuryak, Rev. Mod. Phys. 70, 323
(1998).

3. C. D. Roberts and A. G. Williams, Prog. Part. Nucl.
Phys. 33, 477 (1994); C. D. Roberts and S. M. Schmidt,
Prog. Part. Nucl. Phys. 45, S1 (2000).

4. D. Gómez Dumm, D. B. Blaschke, A. G. Grunfeld, and
N. N. Scoccola, Phys. Rev. D: Part. Fields 73, 114019
(2006).

5. D. Gómez Dumm, A. G. Grunfeld, and N. N. Scoccola,
Phys. Rev. D: Part. Fields 74, 054026 (2006).

6. M. Buballa, Phys. Rep. 407, 205 (2005).
7. D. N. Aguilera, D. Blaschke, and H. Grigorian, Nucl.

Phys. A 757, 527 (2005).
8. E. N. E. van Dalen, C. Fuchs, and A. Faessler, Nucl.

Phys. A 744, 227 (2004).
9. T. Klähn et al., Phys. Rev. C 74, 035802 (2006).

10. T. Klähn, D. Blaschke, F. Sandin, et al., Phys. Lett. B
654, 170 (2007).

11. H. Grigorian, D. Blaschke, and T. Klähn, arXiv:astro-
ph/0612783.


