Índice General

1	Intr	roducción	1
	1.1	Antecedentes	1
		1.1.1 Electromagnetismo Computacional	1
		1.1.2 Antenas de Microtira	2
	1.2	Objetivos de la Tesis	2
	1.3	Organización de la Tesis	3
2	Ant	enas de Microtira	4
	2.1	Introducción	4
	2.2	Modelo de Cavidad Resonante	5
	2.3	Ecuaciones del Campo	6
	2.4	Solución Analítica	7
	2.5	Campo Radiado	9
	2.6	Impedancia de Entrada y Frecuencia de Resonancia	11
	2.7	Ancho de Banda y Eficiencia	13

ÍNDICE GENERAL iv

	2.8	Anten	as de geometría simple	14
		2.8.1	Parche Rectangular	14
		2.8.2	Parche Circular	15
		2.8.3	Parche Triangular	17
	2.9	Result	ados	18
	2.10	Resum	nen	21
3	Mét	odos I	Numéricos	${f 2}4$
	3.1	Introd	ucción	24
	3.2	Ecuaci	ión Diferencial	24
	3.3	Métod	lo de los Elementos Finitos	25
		3.3.1	Formulación	26
		3.3.2	Discretización	26
		3.3.3	Ensamblado de Matrices	29
	3.4	Métod	lo de los Elementos de Contorno	31
		3.4.1	Identidades de Green	32
		3.4.2	Solución Fundamental	32
		3.4.3	Formulación	33
		3.4.4	Discretización	35
		3.4.5	Ensamblado de matrices	36

ÍNDICE GENERAL V

	3.5	Método de Reciprocidad Dual
		3.5.1 Formulación
		3.5.2 Discretización
		3.5.3 Ensamblado de matrices
	3.6	Resultados numéricos
	3.7	Resumen
4	Ant	ena Cuadrada con Ranura Excéntrica 50
	4.1	Introducción
	4.2	Antenas No Convencionales
	4.3	Geometría de la Antena Propuesta
	4.4	Analisis y Simulación
		4.4.1 Fórmula para el Campo de Borde
		4.4.2 Frecuencia de Resonancia
		4.4.3 Impedancia de Entrada
		4.4.4 Patrón de Radiación
		4.4.5 Ancho de Banda, Directividad y Eficiencia 5
	4.5	Resultados experimentales
	4.6	Resumen

63

5 Conclusiones

ÍNDICE GENERAL vi

	5.1	Resumen	63
	5.2	Conclusiones	64
	5.3	Trabajo Futuro	65
\mathbf{A}	Alg	unos Principios del Electromagnetismo	66
	A.1	Principio de Equivalencia (o de Huygens)	66
	A.2	Campo Electromagético en la Zona Lejana	67
	A.3	Dualidad	68
В	Teo	ría de Difracción	69
	B.1	Introducción	69
	B.2	Teoría Geométrica de Difracción	69
	В.3	Teoría Uniforme de Difracción	70
	B.4	Corriente Equivalente	72
	B.5	Antena de Microtira	73
\mathbf{C}	Cód	ligo Fuente	77
	C.1	Introducción	77
	C.2	Rutinas de FEM	77
	C.3	Rutinas de BEM	80
	C.4	Rutinas de DRM	85
	C.5	Rutinas Varias	89

ÍNDICE GENERAL	vii
D Símbolos	99

Índice de Figuras

2.1	Geometría de una antena de microtira de forma arbitraria	5
2.2	Principio de Equivalencia aplicado a una antena de microtira	9
2.3	Geometría de una antena de microtira de forma rectangular	15
2.4	Geometría de una antena de microtira de forma circular	16
2.5	Geometría de una antena de microtira de forma triangular	18
2.6	Impedancia de entrada a la frecuencia de resonancia en función de la posición del punto de alimentación: a) parche rectangular $(x_0 = a/2)$; b) circular $(x_0 = 0)$; c) triangular $(x_0 = 0)$	19
2.7	Impedancia de entrada en función de la frecuencia: a) parche rectangular $(x_0 = a/2, y_0 = 0.3b)$; b) circular $(x_0 = 0, y_0 = -0.26a)$; c) triangular $(x_0 = 0, y_0 = -0.11a)$	20
2.8	Patrón de radiación a la frecuencia de resonancia: a) parche rectangular; b) circular; c) triangular	22
3.1	Geometría del problema	25
3.2	Método de los elementos finitos: a) subdivisión del dominio Ω en elementos triangulares; b) elemento triangular	27
3.3	Método de los elementos finitos: a) notación local de los vértices de ; b) vértices con notación global	29

3.4	Ampliación de la frontera con un semicirculo centrado en \mathbf{r}_i y de radio ϵ	33
3.5	Método de los elementos de contorno: a) subdivisión de la frontera Γ en elementos; b) definición de un elemento	35
3.6	Problema con tres elementos: a) nodos numerados localmente; b) nodos numerados globalmente	36
3.7	Elemento Γ_j : a) en un sistema de coordenadas global; b) en uno local	38
3.8	Método de Reciprocidad Dual: nodos internos y sobre la frontera.	41
3.9	Número de onda en el dieléctrico correspondiente al menor modo de resonancia: a) parche rectangular; b) circular; c) triangular	45
3.10	Frecuencia de resonancia correspondiente al menor modo de resonancia: a) parche rectangular; b) circular; c) triangular	47
3.11	Impedancia de entrada a la frecuencia de resonancia: a) parche rectangular; b) circular; c) triangular	48
4.1	Geometría de la antena propuesta.	51
4.2	Pérdida de retorno ² de una antena diseñada con distintas fórmulas para las dimensiones efectivas: a) fórmulas de parches rectangulares; b) fórmulas de un anillo circular	53
4.3	Frecuencia de resonancia de la antena propuesta para ranuras de distintos tamaños y posiciones	55
4.4	Distribución del campo eléctrico bajo el parche en el modo $(0,1)$, a lo largo del eje y $(x=0)$	56
4.5	Impedancia de entrada a la frecuencia de resonancia en función de la posición del punto de alimentación a lo largo del eje y $(x_0 = 0)$	57

4.6	Planos E y H del patrón de radiación: a) modelo de cavidad resonante, b) modelo de cavidad resonante + GTD	58
4.7	Diagrama de Smith de las distintas antenas: a) antena de referencia; b) antena A; c) antena B; d) antena C	60
4.8	Patrón de radiación de las distintas antenas: a) antena de referencia; b) antena A; c) antena B; d) antena C	61
B.1	Geometría del problema de difracción: a) vista lateral; b) superior.	71
B.2	Campo generado por: a) líneas de corriente; b) difracción	72
B.3	Plano E del patrón de radiación de las distintas antenas: a) antena de referencia; b) antena A; c) antena B; d) antena C	75
B.4	Plano H del patrón de radiación de las distintas antenas: a) antena de referencia; b) antena A; c) antena B; d) antena C	76

Índice de Tablas

2.1	Propiedades de las distintas antenas simuladas	21
3.1	Parámetro α de la función $K/Nodos^{\alpha}$ que se ajusta a las curvas de error de los distintos tipos de antenas, para: a) número de onda; b) frecuencia de resonancia	46
4.1	Dimensiones de las antenas construidas $(a, x_0 y y_0 en mm, b, c y \Delta son proporcionales a a)$	52
4.2	Características de las antenas (halladas numéricamente)	58
4.3	Características de las antenas (halladas experimentalmente)	59
A.1	Cantidades Duales	68
A 2	Ecuaciones Duales	68