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Perturbative description of nuclear double beta decay transitions

D.R Bes1,3, O. Civitarese2 and N.N. Scoccola1
1Departamento de F́ısica, CNEA, Av. Libertador 8250, (1429) Buenos Aires, Argentina.

2Departamento de F́ısica, UNLP, C.C. 67, (1900) La Plata, Argentina.
3Instituto Universitario de C. Biomédicas, FURF, Soĺıs 453, (1078) Buenos Aires, Argentina.

A consistent treatment of intrinsic and collective coordi-
nates is applied to the calculation of matrix elements describ-
ing nuclear double beta decay transitions. The method, which
was developed for the case of nuclear rotations, is adapted to
include isospin and number of particles degrees of freedom.
It is shown that the uncertainties found in most models, in
dealing with these decay modes, are largely due to the mix-
ing of physical and spurious effects in the treatment of isospin
dependent interactions.
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One can hardly overestimate the importance of the
double beta decay as a process explicitly linking the
physics of neutrinos with the nuclear structure [1–3]. Un-
fortunately, the reliability of the theoretical predictions
has been hampered by unstabilities in the many-body
BCS + RPA - type of treatments that have been applied
during the last decade [4–7]. An alternative approach
based on group theoretical methods has confirmed the
existence of a zero-energy state for certain values of the
strength of the proton-neutron, particle-particle, effec-
tive interaction [8,9]. The appearance of such a state has
been interpreted as a signature of a phase transition [10].
Here we take an alternative point of view based on

the fact that the zero-energy state is a consequence of
the breakdown of the isospin symmetry implicit in the
(separate) neutron and proton BCS solutions [11].
As similar to the case of deformed nuclei, the sym-

metry may be restored in the laboratory frame through
the introduction of collective coordinates. However, as
different from previous cases dealing with collective co-
ordinates, we must use here an interaction which does not
conserve isospin, in order to obtain allowed matrix ele-
ments between T → (T − 2) states: a central many-body

problem that must be solved in double beta decay calcu-

lations is to disentangle unphysical isospin violations in-

troduced by the theoretical treatment from physical effects

due to the interaction.
In this letter we present the formalism for the case of

particles moving in a single j-shell and coupled through a
monopole pairing force. The hamiltonian is not necessar-
ily isoscalar. This simple case involves all the complica-
tions associated with the collective treatment. Moreover,
the predictions may be compared with those of exact cal-
culations [9] of nuclear double beta decay transitions of

the Fermi-type.
We define the operators

S+
v =

X

m>0

c+vmc+vm̄ ; S+
⊥ =

X

m>0

(c+pmc+nm̄ + c+nmc+pm̄),

τA =
1

2
(τp + τn) ; τ0 =

1

2
(τp − τn) ; [τ1̄, τ1] = τ0,

TA =
1

2
(Tp + Tn) ; T0 =

1

2
(Tp − Tn) ; [T1̄, T1] = −T0,

eA = ep + en ; e0 = ep − en. (1)

where τv and ev are the number operators and single-
particle energies, respectively, and v = p, n, 1̄ = −1.
The Tv, T±1 are the generators of collective rotations in
gauge-and isospace.
The collective treatment appropriate for an isospin

conserving pairing interaction was introduced in refs.
[12], [13], [14]. The basic set of states associated with
the collective sector may be labeled by the four quantum
numbers |TA;T,m, k >, where TA is the total number of
pairs of particles. We substitute M,T0 (the isospin pro-
jections in the laboratory and intrinsic frames) by the
quantum numbers m ≡ 1

2 (T + M) and k ≡ 1
2 (T + T0),

respectively. We focus on states such that m << T and
k = 0. Hereof we drop the labels TA, k from the collective
states.
The introduction of collective degrees of freedom is

compensated through the appearance of the constraints

τz − Tz = 0 ; (z = n, p,±1), (2)

which express the fact that we can rotate the intrinsic sys-
tem in one direction or the body in the opposite one with-
out altering the physical situation [15]. Physical states
should be annihilated by the four constraints and physi-
cal operators should commute with them.
Unphysical violations of the isospin symmetry take

place in the intrinsic frame, which may be defined, for in-
stance, by the condition S̄⊥ = 0, where the bar denotes
the g.s. expectation value. This condition is precisely
satisfied by performing a separate Bogoliubov transfor-
mation for protons and neutrons.
Physical isotensor operators have to be transformed

from the laboratory frame to the intrinsic frame. In the
case of the single-particle and pairing hamiltonians we
have

H(lab)
sp = eAτA + e0(D

1
00τ0 +D1

01τ1 +D1
01̄τ1̄)

≈ eAτA + e0(τ0 + d+d+
1

T
τ1τ1̄) (3)
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H
(lab)
p,0 = −g0(S

+
p Sp + S+

n Sn +
1

2
S+
⊥S⊥)

≈ −g0(S
+
p Sp + S+

n Sn)

+
g0
T 2

[S̄nS̄p(τ
2
1 + τ21̄ ) + (S̄2

n + S̄2
p)τ1τ1̄] (4)

H
(lab)
p,1 = −g1[D

1
00(S

+
p Sp − S+

n Sn)

−D1
01√
2
(S+

p S⊥ + S+
⊥Sn) +

D1
01̄√
2
(S+

n S⊥ + S+
⊥Sp)]

≈ −g1(S
+
p Sp − S+

n Sn)

+
g1
T
(S̄2

p − S̄2
n)(d

+d+
1

T
τ1τ1̄), (5)

H
(lab)
p,2 = −g2{D2

00(S
+
p Sp + S+

n Sn − S+
⊥S⊥)

−
r

3

2
[D2

01(S
+
⊥Sn − S+

p S⊥) +D2
01̄(S

+
⊥Sp − S+

n S⊥)]

+
√
6(D2

02S
+
p Sn +D2

02̄S
+
n Sp)} (6)

≈−g2[(S
+
p Sp + S+

n Sn) +
3

T
S̄nS̄p(β

−4d2 + β4d+2)

−(S̄2
p + S̄2

n)(
3

T
d+d+

1

T 2
τ1τ1̄)−

1

T 2
S̄nS̄p(τ

2
1 + τ21̄ )],

plus null terms which are proportional to the constraints
(2). We have kept only the lowest order terms in an
expansion in powers of T−1, assuming O(S̄v) = T and
O(gν) = T−1. Use has been made of the relation S+

⊥
≈ −

√
2

T
(S̄nτ1 + S̄pτ1̄). The Dλ

µν have been expressed
by means of Marshalek’s generalization of the Holstein-
Primakoff representation [16], such that the operators
β, d+, d satisfy the relations [d, d+] = 1 and

(β)2t|T,m > = |T + t,m >,

(d+)t|T,m > =

r

(m+ t)!

m!
|T,m+ t > . (7)

It is easy to verify that the four components of the hamil-
tonian (3)-(6) commute with the constraints (2) and are
therefore physical operators.
The contributions in (3)-(6) that are independent

of the operators β, d+, d, τ±1 add together to the two
(proton-proton and neutron-neutron) pairing hamiltoni-
ans in a single j-shell, namely

Hv = evτv − gvS
+
v Sv, (8)

with interaction strengths gp = g0 + g1 + g2 and gn =
g0 − g1 + g2. These hamiltonians are separately treated
within the BCS approximation. Lagrange multiplier
terms −λv(τv − Tv) are added before solving the BCS
equations. This treatment yields the independent quasi-
particle energy terms Evνv = 1

2Ωgvνv, where νv is the
quasi-particle number operator for v-nucleons and Ω is
half the value of the shell degeneracy. Within the RPA
we may write

Epνp + Enνn ≈ −g0 + g2
T 2

[S̄pS̄n(τ
2
1 + τ21̄ )

+(T 2 + S̄2
n + S̄2

p)τ1τ1̄]. (9)

Adding these contributions to the remaining terms
in (3)-(6) (i.e., to the ones depending on the operators
β, d+, d, τ±1 ), one obtains for the proton-neutron sector
of the spectrum (to leading order in T−1)

H
(lab)
(sp+p) = H̄ + ωdd

+d+H2, (10)

H̄ = ev τ̄v − gvS̄
2
v ,

ωd = e0 +
g1
T
(S̄2

p − S̄2
n) +

3g2
T

(S̄2
p + S̄2

n),

< T − 2,m− 2|H2|T,m >= −3g2
T

S̄pS̄n

p

m(m− 1),

plus null terms.
To leading order, the isospin operators in (3) - (6) and

in (9) have a boson structure since [τ1̄, (−τ1)] ≈ T and
τ1̄ annihilates the state with τ̄0 = −T . This is pre-
cisely the phonon that yields a zero frequency root for
isoscalar hamiltonians within a naive RPA [9]. In the
present treatment this phonon has disappeared from the
final physical hamiltonian (10) to become part of the con-
straints (2). Nevertheless this degree of freedom must be
taken into account in higher orders of the expansion in
powers of T−1, for instance through the BRST procedure
[17], as applied to many-body problems in [15], and to
the particular case of high angular momentum in [18].
The spectrum of the system is ordered into collective

bands associated with particular values of the total num-
ber of particles and the isospin (T ≤ TA). The energy of
the band head is given by the BCS expectation value H̄ .
The different members of each band are labeled by the
quantum number m and are separated by the distance
ωd, which includes the difference between the proton and
the neutron single-particle energy e0. There is an inter-
band interaction which mixes different values of T but it
conserves the projection M in the laboratory frame (cf.
eq. (10)).
From the point of view of the expansion in powers of

T−1, the interband interaction is of the same order (O(1))
as the distance between the states that are mixed by
it. Nevertheless, in the following we continue applying
perturbation theory and we also request that |g2| < gv.
In the calculations that we report in this paper we as-

sume gp = gn = g. The excitation energy ωd is displayed
for the cases j = 9

2 , TA = 5, T = 3, e0 = 0.8 MeV, g =
0.4 MeV and j = 19

2 , TA = 10, T = 4, e0 = 0.63 MeV,
g = 0.2 MeV as functions of the ratio g2/g (upper boxes
of fig. 1). We predict the exact results for g2 = 0 and
very satisfactory ones for the other values, in spite of the
fact that for these results we have neglected the interband
interaction.
The strong current that appears in the weak hamilto-

nian is proportional to the isospin operator

β− = −
√
2τ

(lab)
1 = −

√
2(D1

11τ1 +D1
10τ0 +D1

11̄)

≈
√
2T d+ + null operator. (11)
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The matrix element of double beta decay transitions,
which for the present case correspond to pure Fermi tran-
sitions (cf. [9]), is proportional to the product of the two
matrix elements

M1 = < T, 1|β−|T, 0 >≈
√
2T

M2 = < (T − 2), 0|β−|T, 1 >

≈ −2
√
T < (T − 2), 0|H2|T, 2 >

H̄(T, 2)− H̄((T − 2), 0)
, (12)

These matrix elements are displayed in the lower boxes of
fig. 1 for the same parameters as in the upper boxes. The
expression for the interband matrix element in (10) does
not distinguish whether the r.h.s. should be calculated
for the initial or the final value of T , since it is valid
for T >> 1. Therefore, the effective interband matrix
element has been chosen as the geometric average of the
values obtained for each of the two connected bands.
Fig. 2 displays Fermi double beta decay matrix ele-

ments, corresponding to transitions from the initial to
the final ground states. It has been calculated using the
expression

M2v =
M1M2

ωd +∆
(13)

where the energy released ∆ has been taken to be 0.5
MeV, as in [9]. In addition to the exact and perturbative
values of these matrix elements, we have included in this
figure the results obtained by using some other approxi-
mations. The exact result shows the suppression of the
matrix element around the point where the strength of
the proton-neutron symmetry breaking interaction ap-
proaches the value of the fully symmetric interaction.
This result is reproduced both in the naive QRPA and
in the perturbative approach. The other approximation
badly misses this cancellation. A detailed comparison
between the results of exact, naive QRPA and renormal-
ized QRPA (RQRPA) calculations can be found in [9].
It is worth to note that in the perturbative approach the
corresponding sum rule (Ikeda’s sum rule) is exactly ob-
served. This is not the case of other approaches, like
in the case of the RQRPA of [19], where the sum rule
is violated. One can easily understand this failure of
the RQRPA approach, since it badly mixes-up terms in
defining the components of the equation of motion. Simi-
lar conclusions about the validity of the RQRPA method
are reported in [8]. The perturbative approach, as seen in
figs. 1 and 2, not only reproduces exact results very sat-
isfactorily but it also gives some insight about the mech-
anism responsible for the suppression of the matrix el-
ements. As found in the calculations, the value of the
matrix element M2 depends critically on the strength of
symmetry breaking terms of the interaction between pro-
tons and neutrons. The terms are proportional to g2, as
shown before. On the other hand, the values of M1 are

not very much dependent on this interaction. Finally,
it should be observed that the point where the excita-
tion energy vanishes and the point where the symmetry
is completely restored are different (cf. fig. 1). This
result, also obtained in the exact diagonalization of the
full hamiltonian, cannot be reproduced by other means
as shown in [9]. Further details will be presented in a
longer publication, in which the extension of the formal-
ism to include any number of non-degenerate j-shells has
been performed and an isotensor isospin interaction has
been included [20].
In conclusion, it is found that a correct treatment of

collective effects induced by isospin dependent residual
interactions in a superfluid system is feasible: physical
effects due to the isospin symmetry-breaking terms in
the hamiltonian are obtained even in the presence of the
BCS mean field built upon separate proton and neutron
pairing interactions. The definition of intrinsic and col-
lective coordinates and their separation guarantees that
the isospin symmetry is restored and that spurious con-
tributions to the wave functions are decoupled from phys-
ical ones. Particularly, the problem of the unstabilities
found in the standard proton-neutron QRPA are avoided
by the explicit elimination of the zero frequency mode
from the physical spectrum but keeping it in the pertur-
bative expansion. The appearance of this mode cannot
be avoided by the inclusion of higher order terms in the
QRPA expansion or by any other ad-hoc renormalization
procedure, like the renormalized QRPA of [19], once the
BCS procedure is adopted for the separate treatment of
proton and neutron pairing correlations.
The results shown in this letter are very encouraging,

in spite of the fact that we have not used very large values
of T . We shall discuss the extension of the formalism
to cases such that T << O(S̄v) and its application to
Gamow-Teller transitions in a forthcoming publication.
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FIG. 1. Excitation Energy and Transition Matrix Ele-
ments. Exact (solid lines) and Perturbative (dotted lines) re-
sults for the excitation energy (upper boxes) and transition
matrix elements M1 and M2 (lower boxes) corresponding to
the two different sets of parameters (j = 9/2 and j = 19/2)
discussed in the text.
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FIG. 2. Matrix elements for Fermi double beta decay tran-
sitions calculated in several different approximations. The
meaning of approximations denoted as Quasiparticle Random
Phase Approximation (QRPA) and Renormalized Quasipar-
ticle Random Phase Approximation is explained in the text.
Exact and Perturbative results for the two sets of parameters
utilized in the calculations are indicated by solid and dotted
lines, respectively.
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