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Abstract We describe Pliodasypus vergelianus gen. et sp.
nov., a Dasypodini armadillo from the middle Pliocene of
Venezuela (Vergel Member, San Gregorio Formation).
Although scarce, the remains are remarkable because of their
geochronologic proximity to the main phase of Great
American Biotic Interchange (GABI). The cladistic analysis
conducted reveals that Pliodasypus groups with Dasypus and
both are sister taxa of Propraopus, whereas Anadasypus is at a
basal position. With respect to the records of tribe Dasypodini,
after its oldest representative (Anadasypus, middle and late
Miocene), the chronologically subsequent form is Pl.
vergelianus (middle Pliocene), followed by Dasypus bellus
in higher northern latitudes (late Pliocene), and then by

widespread occurrences in the Pleistocene of North America
(D. bellus) and South America (Propraopus, Dasypus
punctatus, and Dasypus novemcinctus). Thus, we infer that
Dasypus differentiated in the late Pliocene at low latitudes in
the northern South America. It leads to two alternative hy-
potheses of dispersal: (a) some early Dasypus remained cryp-
tically in South America until the Pleistocene, whereas others
dispersed to North America between 2.2 and 2.7 Ma, or (b)
they dispersed to North America subsequently to the emersion
of the Panamanian isthmus and D. bellus differentiated there;
later, during the Pleistocene, D. bellus entered South America
and experienced speciation. The same process of re-ingression
has been proposed to other xenarthrans, breaking with the
traditional assumption that the GABI was unidirectional.
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Abbreviations
AMU-CURS Colección de Paleontología de Vertebrados

de la Alcaldía de Urumaco, Estado Falcón,
Venezuela

GABI Great American Biotic Interchange
NALMA North American Land Mammal Age
SALMA South American Land Mammal Age

Introduction

The evolutionary history of dasypodid armadillos (Xenarthra,
Cingulata) took place in America during most of the
Cenozoic, with first records in the early Paleogene of
Argentina (Ameghino 1902; Simpson 1948; Tejedor et al.
2009; Carlini et al. 2010) and Brazil (Scillato-Yané 1976;
Oliveira and Bergqvist 1998; Bergqvist et al. 2004). The
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Dasypodinae, well represented in warmer and more humid
environments, comprise Astegotheriini (Itaboraian–Laventan
South American Land Mammal Ages (SALMAs)),
Stegotheriini (Casamayoran–Friasian SALMAs), and
Dasypodini (Laventan SALMA–recent) and are one of themost
basal lineages (Gaudin andWible 2006; Delsuc et al. 2012). The
synapomorphies of Dasypodini are the morphology of the pe-
ripheral figures of movable osteoderms (which suggests the
presence of triangular epidermal scales with a posteriorly direct-
ed apex partially covering two adjacent osteoderms) and double
line of osteoderms composing each ring of the caudal sheath
(Vizcaíno 1990; Carlini et al. 1997). The group includes
Anadasypus (Anadasypus hondanus Carlini et al., 1997 from
the middle Miocene of Colombia and Anadasypus
aequatorianus Carlini et al., 2013 from late Miocene of
Ecuador), Propraopus Ameghino, 1881 (?Pliocene–early
Holocene of South America), and the long-nosed armadillo
Dasypus Linnaeus, 1758 (?late Miocene–recent).

Besides being the most diverse (Wilson and Reeder 2005)
and widespread extant xenarthran, Dasypus is the only arma-
dillo genus that occupied North America. The nine-banded
armadillo Dasypus novemcinctus has its first records in recent
times, reaching 40° N (Wetzel 1985; Aguiar and da Fonseca
2008) and rapidly spreading northward in USA (Taulman and
Robbins 1996 and references therein). The current distribution
of D. novemcinctus is mostly coincident with that of Dasypus
bellus, which is recorded in the late Pliocene–late Pleistocene
(Blancan–Rancholabrean North American Land Mammal
Ages (NALMAs)) of the southeastern and mid-USA, up to
42° N (Klippel and Parmalee 1984; Voorhies 1987), and in the
late Pleistocene of Mexico (Carbot-Chanona 2010). Although
the external morphology of its osteoderms remained the same,
this taxon experienced an increase in size through time, and a
relatively complete specimen from the late Pleistocene sug-
gests a total length of 1.2 m (Auffenberg 1957; Downing and
White 1995; McDonald 2005; Morgan 2005).

The xenarthrans were probably the most successful South
American mammals participating in the Great American Biotic
Interchange (GABI), given that both Pilosa and Cingulata
reached and even differentiated in North America (McDonald
2005; Carlini et al. 2008b). Previous to the formation of a stable
Panamanian isthmus (estimated between 2.5 and 3.1Ma; Coates
and Obando 1996; but see Montes et al. 2012 and Bacon et al.
2013), chains of emerged lands linked both Americas. Although
this condition certainly regulated the type and intensity of biotic
migrations, several records indicate a diffuse vertebrate inter-
change beginning in the late Miocene, by at least 9 Ma (Webb
2006; Campbell et al. 2010; Head et al. 2012). Based on records
of South American taxa at 4.7 to 3.6 Ma in Mexico, Carranza-
Castañeda and Miller (2004) and Flynn et al. (2005) proposed
that this land bridge originated earlier, but not necessarily was
continuous in time. The major influx North American mammals
to South America was recorded in sediments of the late

Chapadmalalan and the Uquian/Marplatan SALMAs (approxi-
mately between 3.4 and 2.5 Ma), slightly before or contempo-
raneous to the cohesive dispersal of SouthAmerican immigrants
to North America during the late Blancan NALMA (ca. 2.7Ma)
(Cione and Tonni 2001; Flynn et al. 2005; Woodburne 2010).
Thus, we consider that the main phase (in terms of diversity and
frequency of findings) of GABI began at 2.7Ma, as it represents
the oldest records of continuous bidirectional flux of land mam-
mals without discretional selectivity. D. bellus is one of the
xenarthrans assumed to be involved in this phase of the GABI
(Morgan 2005; Woodburne 2010), rapidly dispersing in USA
during the late Blancan. Despite advances on glyptodonts and,
in less extent, on pampatheres (Scillato-Yané et al. 2005; Carlini
et al. 2008a, b; Carlini and Zurita 2010; Zurita et al. 2011), the
role of dasypodids in the GABI is still poorly known.

Carlini and Zurita (2010, p. 240) reported remains of
Dasypodinae in the San Gregorio Formation, Pliocene of
Venezuela, provisionally related to Propraopus. The present
contribution aims to describe these osteoderms and to com-
pare them to related taxa. Their unique morphology serves to
diagnose a new Dasypodini (Pliodasypus vergelianus).

Material and methods

The three specimens were collected in the Urumaco area,
Estado Falcón, Venezuela (11°17′ N, 70°13′ W; Fig. 1), in
sediments of the Vergel Member, the 350-m-thick lower
member of the San Gregorio Formation, below the Cucuiza
Member and above the Algodones Member of the Codore
Formation (Stainforth 1962; Scheyer et al. 2013). Rey (1990)
established that the delimitation of its three members is only
possible between the Urumaco or Codore rivers on the west
and the Quebrada El Paují on the east. The depositional
environment is interpreted as an alluvial plain, with braided
rivers, under subhumid conditions (Rey 1990). The strati-
graphic position, the absence of Holarctic taxa, and the
fauna present in the unit indicate a middle Pliocene age,
about 3.5 Ma, chronologically earlier than the main
phase of the GABI (González de Juana et al. 1980; Rey 1997;
Zurita et al. 2011).

The comparisons with related taxa were based on direct
observation of specimens housed in several institutions
(Figs. 2 and 3 and Appendix 1). The terminology adopted
for the osteoderms corresponds to that of most recent publi-
cations on dasypodids (Hill 2006; Krmpotic et al. 2009;
Ciancio et al. 2012; Castro et al. 2013a). In the case of
D. bellus, as it shows an increment on size along its chrono-
logic distribution (Blancan–Rancholabrean NALMAs;
McDonald 2005), we focused our analysis on the older re-
mains (Blancan). We assume that Propraopus has a single
species, Propraopus sulcatus, which is synonymous to
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Propraopus grandis; Propraopus magnus is still to be ad-
dressed (see Castro et al. 2013b).

Systematic paleontology

Xenarthra Cope, 1889
Cingulata Illiger, 1811
Dasypodidae Gray, 1821
Dasypodinae Gray, 1821
Dasypodini Gray, 1821

Pl. vergelianus gen. et sp. nov.
Etymology: “Plio,” from the Pliocene; “[D]asypus,” type

genus of the family; “vergelianus,” from the Vergel Member,
San Gregorio Formation, Venezuela

Holotype: Colección de Paleontología de Vertebrados de la
Alcaldía de Urumaco, Estado Falcón, Venezuela (AMU-
CURS) 192A, a complete buckler osteoderm

Paratypes: AMU-CURS 192B and C, a buckler and a
partial movable osteoderms, respectively. Type series not
associated

Type locality: Vergel Member, San Gregorio Formation,
Estado Falcón, Venezuela (11°17′ N, 70°13′ W; Fig. 1)

Differential diagnosis: The osteoderms of Pl. vergelianus
have the following unique combination of characters: in the
buckler (i.e., immovable) osteoderm, the flatter and smoother
surface of the main figure, the shallower and more external
principal sulcus, the smaller foramina, and the absence of the
radial sulci (Fig. 2).

Comparative description

The complete buckler osteoderm is roughly pentagonal on
internal view, whereas externally, it is rounded on the posterior
border and on the left side of anterior border, where the
preceding osteoderm articulated (Fig. 2a). The main figure is
smooth and flat; it bears small circularly disposed
neurovascular foramina, some of which are sided by fine
wrinkles. The principal sulcus is shallow, displaced posterior-
ly almost until the margin, and it is more external than in other
Dasypodini. Radial sulci are absent. The peripheral region is
slightly elevated in the anterior and in the left side. There are
three foramina in the anterior half of the principal sulcus, and a
single one is the posterior half, besides several smaller ones all
over the sulcus (Fig. 2a). The maximum measurements

Fig. 1 Map showing the locality and stratigraphic log (modified from Scheyer et al. 2013) where the specimens of Pliodasypus vergelianus gen. et sp.
nov. were recovered
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(millimeters) are 12.4 long, 12.2 wide, and 4.2 thick. It means
that the size is in the range of Pr. sulcatus and D. bellus. The
remarkable differences of Pl. vergelianus are the flatter and
smoother surface of the main figure, the shallower and more
external principal sulcus, the smaller foramina, and the ab-
sence of the radial sulci (Fig. 3).

The other buckler osteoderm (Fig. 2b) has a wedge-shaped
posterior end and an articulation on the internal surface. This
morphology is compatible with the elements of the posterior
border of the pelvic buckler, which contact the caudal sheath,
as can be observed in extant Dasypus. The principal sulcus is
restricted to the lateral and anterior borders, running very close

to the formers; there is a single foramen anteriorly. The main
figure has several small neurovascular foramina which are
randomly distributed (Fig. 2b).

The movable osteoderm (Fig. 2c) lacks the entire non-
ornamented portion and part of the ornamented portion. The
posterior end is 12.7-mm wide. As in Dasypus and
Propraopus (but not in Anadasypus; Fig. 3), the main figure
is completely flat and bears two divergent sulci that end in the
posterior corners; the difference of Pl. vergelianus is that the
sulci are shallower (Fig. 3). It preserves three and four foram-
ina on the left and right sulci, respectively. The presence of
small neurovascular foramina in the main figure is also

Fig. 2 Pliodasypus vergelianus
gen. et sp. nov.: a buckler
osteoderm, holotype; b posterior
pelvic buckler osteoderm; c
partial movable osteoderm

Fig. 3 Drawings of buckler and movable osteoderms of the main taxa
considered in the comparisons (not to scale): a Pliodasypus vergelianus
gen. et sp. nov., holotype inside the square; b Anadasypus hondanus; c

Anadasypus aequatorianus; d Dasypus bellus; e Propraopus sulcatus; f
Dasypus novemcinctus
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conspicuous in the Dasypodini, and in Pl. vergelianus, these
are surrounded by fine radial wrinkles. The three piliferous
foramina in the posterior border are concentrated in the central
part (Fig. 2c). There is no foramen at or close to the posterior
corners, whereas D. bellus and Pr. sulcatus usually have a
foramen by the posterior end of at least one sulcus. The texture
of the peripheral figure is completely smooth in Pl.
vergelianus, but this feature is quite variable, as can be
depicted from the osteoderms of Pr. sulcatus from the late
Pleistocene of Venezuela (very wrinkled; Rincón et al. 2008)
and of Brazil (smoother; Winge 1915, pl. V). The size is
equivalent to that of Pr. sulcatus (see Castro et al. 2013b)
and to the larger range of D. bellus. Table 1 compares Pl.
vergelianuswith the above-mentioned taxa.

Affinities of Pl. vergelianus

In order to test the affinities of Pl. vergelianus within
Dasypodini, we conducted a cladistic analysis, based on a
previous data set (Castro et al. 2013a). In relation to that
matrix, one character was excluded (#16 therein) and eight
new characters (#18 to 25) and three new taxa were added, as
well as information on the skull of A. hondanus. Fernicola and
Porpino (2012) evaluated the use of exoskeletal characters
(i.e., related to carapace and osteoderms) in cladistic studies
of glyptodonts and concluded that they “bear levels of homo-
plasy similar to those of the endoskeleton and there is no
reason to exclude them from the process of phylogenetic
inference or to consider them as the sole source of reliable
phylogenetic signal.” Thus, as most morphological phyloge-
nies of Cingulata, our study adopts characters related to both
endoskeleton and exoskeleton. Twenty-five characters, 10
related to the cranial anatomy and 15 to the osteoderms, were
scored based on direct observation of specimens (Appendix 1)
for 10 ingroup taxa. These are the extinct Pl. vergelianus,
A. hondanus, A. aequatorianus, Pr. sulcatus, Dasypus
punctatus, D. bellus, and the extant Dasypus hybridus,

Dasypus kappleri, D. novemcinctus, and Dasypus
septemcinctus (Appendixes 2 and 3). The outgroup is repre-
sented by Nanoastegotherium prostatum, from the middle
Miocene of La Venta, Colombia; it was selected because it
represents the last known record of Astegotheriini and shows
similarities with the oldest Dasypodini (A. hondanus), which
was also recorded from La Venta (Carlini et al. 1997).
Although previous phylogenetic studies that do not include
astegotherines found Stegotherium and Dasypus to be sister
taxa (Engelmann 1985; Abrantes and Bergqvist 2006; Gaudin
and Wible 2006), Stegotherium has an extremely derived
carapace, precluding adequate comparisons with the ingroup
(see Castro et al. 2013a).

Under a maximum parsimony criterion, an exact analysis
was conducted with TNT 1.1 (Goloboff et al. 2008). Treating
multistate characters as nonadditive, six most parsimonious
trees (MPTs) were found (score 37); these differ on the rela-
tionships among the species of Dasypus. The strict consensus
is given in Fig. 4, which also shows the estimated chronolog-
ical distribution of taxa (black rectangles), the apomorphic
characters (numbers assigned in Appendix 2), and the differ-
ence in frequency bootstrap values (GC, 1,000 replicates
under implicit enumeration search); the GC (for “group
present/contradicted”) measures the support as the difference
in frequency between the group and its most frequent contra-
dictory group in order to avoid problems in interpreting abso-
lute group frequencies as a measure of support (see Goloboff
et al. 2003).

The strict consensus tree reveals thatPl. vergelianusgroups
with Dasypus (supported by character 11[1]; GC 45); both
genera are sister taxa of Propraopus (supported by characters
19[1], 20[1], 22[1]; GC 67), and Anadasypus is at a basal
position in the tree (supported by character 21[1]; GC 67).
Characters 24 [1] and 25[1] represent the autapomorphies of
Pl. vergelianus. The relatively low bootstrap values (between
45 and 67) might be related to the great amount of missing
entries in our analysis, a common problem of phylogenetic
studies with incomplete taxa (Kearney and Clark 2003). With

Table 1 Comparison of osteoderms of Pliodasypus vergelianuswith other fossil Dasypodini

Age Foramina Max. width

B M (ps; pb) B M

Pl. vergelianus Mid-Pliocene (∼3.5–3.0 Ma) 4, all over 7a; 3 12.2 12.7

D. bellus Late Pliocene–late Pleistocene (2.4 Ma–11 ka); Blanc–Ranch 3–6 (4), all over 5–18 (10); 1–4 (2) 11.1 10.1

Pr. sulcatus Pleistocene–early Holecene; Ens–Luj 1–5 (3), anterior half 2–8 (4); 1–3 (2) 13.5 13.7

A. hondanus Mid–late Miocene; Lav 2–5 (3), anterior half 5–7 (6); 0–2 (1) 6.5 7.0

Maximum width in millimeters

Bbuckler osteoderm, BlancBlancan, EnsEnsenadan, LavLaventan, LujLujanian,Mmovable osteoderm, pbposterior border, psprincipal sulcus, Ranch
Rancholabrean
a Estimated
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multistate characters treated as additive, eight MPTs were
found (score 39); the topology of their strict consensus tree
differs from that presented on Fig. 4 by grouping
D. septemcinctus and D. hybridus.

Despite the scarce remains, Pl. vergelianus shows a com-
bination of characteristics not found in other Dasypodini that
indicate it represents a new genus. This is corroborated by the
phylogenetic analysis, as Pl. vergelianus is clustered within
neither Dasypus nor Anadasypus, nor does it have a sister-
taxon relationship with the monotypic Pr. sulcatus. Pl.
vergelianus shares more similarities with Dasypus and
Propraopus than with the basal Anadasypus and was grouped
with the former in the cladistic analysis. With the Dasypus
clade, Pl. vergelianus shares the presence of the foramina all
over the principal sulcus of buckler osteoderms.

Discussion

Although not numerous, the remains presented herein are
especially relevant because of their geochronologic context
(Fig. 5). The remarkably poor knowledge of Pliocene faunas
of northern South America is due, in part, to the lack of fossils
chronologically close to the first continuous connection be-
tween South and North America (Vucetich et al. 2010; Zurita
et al. 2011).

Living dasypodids show greater diversity in intertropical
forests and savannas (Wetzel 1985). Also, extant Dasypus has
a temperature-limited distribution (McNab 1980). It led to the
hypothesis that their major cladistic events, including the
origin and diversification of Dasypodini, took place within
tropical environments of South America (Scillato-Yané 1986;
Vizcaíno 1990; Carlini et al. 2010; Ciancio et al. 2012). The
location of the oldest members of the tribe (A. hondanus and

A. aequatorianus) and the discovery of Pl. vergelianus at low
latitudes corroborate this hypothesis.

In relation to the species of Dasypus, Pl. vergelianus has
more similarities with D. bellus (size, number of foramina in
the osteoderms; Fig. 3 and Table 1), agreeingwith their greater
geographic and temporal proximity. It suggests that the line-
age of Dasypodini that participated in the GABI was closely
linked with the taxon described herein. The same relationship
between the Pliocene taxon from northern South America
(Venezuela) and the lineage that dispersed and diversified in
North America was proposed for the Glyptodontinae (Zurita
et al. 2011). Additionally, a rapid entrance and dispersion is
assumed to this group, which reached as far north as 37°
during the Blancan (ca. 2.6 Ma; Carlini et al. 2008a); it was
probably also the case ofDasypus, based on the oldest records
of D. bellus.

The oldest well-dated sites containing D. bellus are 2.2–
2.6 Ma (late Blancan), in Florida and Nebraska, whereas the
youngest records are about 8 ka (Robertson 1976; Voorhies
1987; Morgan 2005; Webb 2006). In South America, genus
Dasypus has a record in the late Miocene of Argentina
(Dasypus neogaeus, “Mesopotamian,” Huayqueriense
SALMA; Scillato-Yané 1980; Scillato-Yané et al. 2013), but
this is based on a single movable osteoderm (MACN A 8882)
that may have come from upper (Pleistocene) deposits of the
profile. Besides this dubious occurrence, the oldest records of
the genus are D. punctatus, in the late Pleistocene of southeast-
ern Brazil (Castro et al. 2013a), and D. novemcinctus, from the
Pleistocene of Argentina and Bolivia, in “undetermined
Pleistocene units” (Scillato-Yané 1980), probably Lujanian. In
North America, the oldest record of D. novemcinctus is about
3 ka ago in the USA (Robertson 1976). With respect to genus
Propraopus, its oldest certain record is in the middle
Pleistocene of Argentina (Ensenadan SALMA), but it might
occur in the Pliocene (Chapadmalalan; Scillato-Yané 1980).

Fig. 4 Strict consensus tree
resulting from the cladistic
analysis of Dasypodini: estimated
chronological distribution of taxa
represented by black rectangles;
apomorphic characters (boldface,
above the branches) are
represented by the numbers
assigned in Appendix 2;
difference in frequencies
bootstrap values (GC for group
present/contradicted, below the
branches; Goloboff et al. 2003)
calculated with 1,000 replicates
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Therefore, after the oldest records of Dasypodini
(A. hondanus, middle Miocene of Colombia, ca. 13 Ma;

A. aequatorianus, late Miocene of Ecuador, ca. 11 Ma;
Fig. 5a), there is a time lapse of about 7 Ma without any

Fig. 5 Geochronological distribution of Dasypodini: aMiocene; b Plio-
cene; c Pleistocene; d alternative hypotheses of dispersal. Each genus is
represented by a symbol and has the distribution contoured (discontinu-
ous forDasypus in the Pleistocene because of the wide geographic gap).●
for Anadasypus hondanus, ○ for Anadasypus aequatorianus; ★ for

Pliodasypus vergelianus; ▲ for Propraopus sulcatus, △ for P. magnus;
for Blancan Dasypus bellus, for Irvingtonian D. bellus, ◨ for

Rancholabrean D. bellus, for Pleistocene D. bellus, □ for D. punctatus,
and for D. novemcintus
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occurrence of the tribe, until the record of the taxon described
herein (Pl. vergelianus, middle Pliocene, ca. 3.5 Ma). The
subsequent record is D. bellus in higher northern latitudes
(USA, late Pliocene, Blancan NALMA, ca. 2.4 Ma; Fig. 5b).
The following records are widespread in the Pleistocene:
Propraopus (Ensenadan to Lujanian SALMAs, ca. 1 Ma–
8 ka), D. punctatus and D. novemcinctus (Lujanian SALMA;
Ensenadan records are uncertain) in South America, and
D. bellus in USA (Irvingtonian to Rancholabrean NALMA)
and Mexico (Rancholabrean NALMA) (Fig. 5c).

Based on these records and on the cladogram presented on
Fig. 4, we can infer that Dasypus differentiated in the late
Pliocene, ca. 3.5 Ma ago (the minimal age of the node
encompassing Dasypus and Pliodasypus), at low latitudes in
northern South America. Based on a 11±2-Ma estimated
divergence date between D. novemcinctus and D. kappleri,
Delsuc et al. (2012) proposed that the origin of Dasypusmust
have occurred in the late Miocene, soon after the appearance
of Anadasypus (A. hondanus), contrasting with the fossil
evidence available. As Dasypus is the only living representa-
tive of its tribe, and therefore the only Dasypodini sampled by
Delsuc et al. (2012) in their molecular timetree, we can inter-
pret that in fact the divergence date presented by those authors
represents the emergence of tribe Dasypodini (and this ade-
quately fits the known fossil record).

We offer two alternative hypotheses on how Dasypus dis-
persed after its emergence in northern South America. In the
first one, some early Dasypus remained in South America,
leaving no fossils until the Pleistocene, whereas others dis-
persed to North America between 2.7 Ma (which represents
the beginning of the main phase of GABI) and 2.2 Ma (youn-
ger limit of the estimated age of the oldest records ofD. bellus)
(Fig. 5d, white arrows). In the other hypothesis of dispersal, it
entered North America subsequently to the emersion of the
Panama isthmus and D. bellus differentiated there; later, dur-
ing the Pleistocene, D. bellus entered South America and
experienced speciation then (Fig. 5d, black arrows). The same
process of emigration from South America during the mid/late
Pliocene, diversification in North America, and re-ingression
into South America during the Pleistocene was proposed for
pampatheres (Scillato-Yané et al. 2005), glyptodonts (Carlini
et al. 2008a; Carlini and Zurita 2010; Zurita et al. 2011), and
some pilosans (Carlini et al. 2006; Carlini et al. 2008c),
breaking with the traditional assumption that the GABI for
the xenarthrans was a unidirectional process in which they
simply dispersed from South to North America. Without
further fossil evidence and/or more resolution on the internal
relationships of Dasypus, a better evaluation of both hypoth-
eses of dispersal is unfeasible, as they are equally
parsimonious.

The ingression of the immigrant taxa in South America was
a gradual process: their relative abundance and diversity is
low in the 3.9–1.8-Ma interval (Chapadmalalan and Uquian/

Marplatan SALMAs) and increases in the earliest Pleistocene,
about 1.7 Ma (Tonni et al. 1992; Cione and Tonni 2001). If
Dasypus entered South America in the early Pleistocene, the
gap until its oldest records (late Pleistocene) is smaller.
Additionally, the widespread distribution of Dasypus and
Propraopus in the South American Pleistocene must have
been facilitated by the great latitudinal expansion of grass-
lands during glacial periods, probably forming a biogeograph-
ic corridor that ranged from northern South America to the
current Argentinean Pampean region (Cione et al. 2003;
Rabassa et al. 2005; Ortiz-Jaureguizar and Cladera 2006;
Carlini and Zurita 2010). Certainly, future findings in
Pliocene sediments of northern South America and Central
America will greatly clarify the evolutionary history of
Dasypodini.
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