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Abstract The use of multiresolution techniques and wavelets has become increa-
singly popular in the development of numerical schemes for the solution of
differential equations. Wavelet’s properties make them useful for developing hierar-
chical solutions to many engineering problems. They are well localized, oscillatory
functions which provide a basis of the space of functions on the real line. We show
the construction of derivative-orthogonal B-spline wavelets on the interval which
have simple structure and provide sparse and well-conditioned matrices when they
are used for solving differential equations with the wavelet-Galerkin method.

1 Introduction

In recent years, wavelet methods have been developed as a new powerful tool for
the numerical solution of some boundary value problems.

Wavelets and multiresolution analysis (MRA) provide a robust and accurate
alternative to traditional methods for solving differential equations. Their advantage
is appreciated when they are applied to problems having localized singular behavior.
The solution is approximated by an expansion of scaling functions and wavelets,
with the convenience that multiscale and localization properties can be exploited.
The choice of the wavelet basis is governed by several factors including the desired
order of numerical accuracy and computational effort.

In some cases multiscale bases are combined with finite element methods, and
adaptive refinement strategies are designed (Chen et al. [1] and Bindal et al. [2]).
Other authors applied adaptive procedures in wavelet collocation methods, as the
method introduced by Cai and Kumar et al. [3, 4]. Wavelet-Galerkin methods using
variational equations is a good alternative, producing an efficient regularization
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action: in weak formulations for a given equation, the approximating functions can
be relatively less regular and easier to construct [5].

To obtain high precision results, it is important that the associated system matrix,
known as the stiffness matrix, be a sparse matrix with a small condition number. So,
the choice of a wavelet basis satisfying some mathematical requirements is of great
importance for the good performance of the method.

Wavelets on the real line are not suitable in applications which are defined on
bounded domains, as the problem of solving differential equations numerically.
Therefore it is necessary to adapt them. Wavelet bases on a bounded interval
are usually constructed from wavelets on the real line. The main idea is to
retain most of the inner functions, i.e., the scaling functions and wavelets whose
support is contained in the interval, and to construct appropriate boundary scaling
functions and wavelets separately. Properties such as smoothness, local support, and
polynomial exactness of basis functions should be preserved.

Many constructions of cubic spline wavelets or multiwavelet bases on the
interval have been proposed in recent years. Jia et al. [6] designed biorthogonal
multiwavelets adapted to the interval [0, 1] based on Hermite cubic splines. They
developed a pair of spline wavelets to solve the Sturm-Liouville equation with
Dirichlet boundary conditions adapted to the interval [0, 1]. The wavelets at
different levels are orthogonal with respect to the inner product

�
u�, v�� rather

than �u, v�. The stiffness matrix is sparse, and its condition number is uniformly
bounded.

On the other hand, Vampa et al. [7] have applied a spline-cubic-wavelet basis
adapted to the interval with good results. In their work a modified wavelet-Galerkin
method using B-spline scaling functions to solve boundary value problems is
presented. This proposal combines variational equations with a collocation scheme
and gives an approximation at an initial scale. Later, in [8] a refinement process
using wavelets is developed, and the approximation is improved recursively with
minimal computational effort. A disadvantage of this construction is the large
condition number of the stiffness matrices.

Later, Cerna et al. [9] proposed several constructions of cubic spline-wavelet
bases. They presented different constructions of stable cubic spline-wavelet bases
on the interval. Quantitative properties of constructed cubic spline-wavelet and
multiwavelet bases are studied.

Due to their desirable properties, such as sparse stiffness matrices and small
condition numbers, constructions of wavelet bases, whose mth-order derivatives
are orthogonal among different levels, are of particular interest and importance
in computational mathematics. In a general context, a theoretical study over this
construction can be found in [10].

In the present work, we propose the construction of a cubic spline-wavelet
basis with compact support and first derivatives functions orthogonal between the
different scales. This inner product leads to a sparse stiffness matrix with a condition
number uniformly bounded. This is a very important advantage of the proposed
method.
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The structure of the paper is as follows: in Sect. 2 we introduced a brief
description of a wavelet-Galerkin method to solve a second-order linear differential
operator. The review of the concept of wavelet bases, multiresolution analysis
(MRA) structure on the interval, basic properties of B-splines functions and cubic
B-splines subspaces are presented in Sect. 3. Section 4 contains the technical details
of a construction of wavelet B-splines bases. In Sect. 5 they are applied as testing
for efficient solution of a differential equation. Finally, some concluding remarks
are made in Sect. 6.

2 Wavelet-Galerkin Method

We consider the following one-dimensional linear boundary value problem on the
interval I = [0, 1]:

Lu(x) = − d

dx

�
p(x)

du

dx

�
+ q(x)u(x) = f (x) (1)

u(0) = u(1) = 0,

where p(x), q(x), and f (x) are continuous functions on I and u is a function in
certain Hilbert space V . If Eq. (1) cannot be solved exactly, one has to rely on
approximation methods. We seek an approximation ũ of u which lies in a certain
finite-dimensional subspace Ṽ ⊂ V .

Let �·, ·� be the inner product of the space V . Note that a(u, v) = �Lu, v� defines
a bilinear form on V ×V , so that the variational or weak formulation corresponding
to the problem Eq. (1) is to seek u ∈ V , such that

a(u, v) = �f, v� ∀v ∈ V. (2)

The analogous finite-dimensional problem is to find ũ ∈ Ṽ such that

a(ũ, ṽ) = �f, ṽ� ∀ṽ ∈ Ṽ . (3)

It is well known that if a(·, ·) is continuous, V -elliptic and �f, v� is a continuous
linear form in V , both problems Eqs. (2) and (3) have a unique solution (Lax-
Milgram theorem [11]). From Céa’s lemma [11] the following error bounds are
valid:

�u − ũ�2
V ≤ C

γ
inf

v∈Ṽ
�u − v�2

V , (4)
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where C and γ are constants corresponding to continuity and coercivity of the
bilinear form a(., .), and if h is a measure of the partition of I considered, then

�u − ũ�2
V ≤ Chr |u|2

Hr+1 , (5)

where r depends on the regularity of the solution.
Going back to Eq. (1), integrating by parts �Lu, v�, the associated bilinear form

is

a(u, v) =
� 1

0
(p(x)u�(x)v�(x) + q(x)u(x)v(x)) dx, (6)

for u and v ∈ V 0 ⊂ L2(I ), the subspace of functions with homogeneous boundary
conditions. Let {�1,�2, . . . , �N } a basis of Ṽ and the approximate solution of the
given equation be ũ = �N

k=1 αk�k . Replacing in Eq. (3) we have to determine αk

in a way that ũ behaves as if it is a true solution in Ṽ , i.e.,

N�

k=1

αk a(�k,�n) = �f,�n� , n = 1, 2, . . . , N. (7)

We then arrive at the problem of solving a matrix equation

Aα = b, (8)

where A(n, k) = a(�k,�n) , bn = �f,�n�, and α = (αk).

Condition Number of a Matrix
It is known that a linear system AX = Y has a unique solution X for every Y if the
square matrix A is invertible. It is often observed that for two close values of Y and
Y �, X and X� are far apart. Such a linear system is called badly conditioned. Thus
data Y is expected to be fairly accurate. Condition number of A is given by

cond(A) =� A �� A−1 �, cond(A) ≥ 1, (9)

(� . � is a matrix norm) and when A is symmetric, in norm 2 is

cond(A) = maxi | λi(A) |
mini | λi(A) | , (10)

where λi(A) are matrix A eigenvalues. cond(A) is a measure of the stability of the
linear system under perturbation of the data Y .

For computational aspects, it is convenient to have a sparse matrix A, i.e., with
a high proportion of entries 0, with a low condition number, and basis functions
with a small support, regularity, and orthogonality. It is also desirable that the basis
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functions should be simple to evaluate, differentiate, and integrate. Finally, one
wants the scheme to be refinable to allow that the approximation ũ can be improved,
modifying recursively the subspace Ṽ . If the basis functions �k are generated from
dilations and translations of a mother generating function, calculations become
simpler. This suggests considering a MRA structure. Furthermore, if self-similarity
given by scale relations is satisfied, a hierarchical approximation to the exact
solution is obtained, and it is possible to refine and improve the accuracy of the
approximate solution.

3 Wavelet Analysis on the Interval

MRA schemes [12] provide a powerful mathematical tool for function appro-
ximation and multiscale representation of the solution of differential equations
corresponding to the problem in Eq. (1). It is important to point out that, as these
structures are generally defined on the whole real line, they must be adequately
restricted to the interval I where the differential problem is formulated.

Many constructions of wavelet bases on the interval have been proposed. In [13]
a family of orthonormal wavelets on a bounded interval by restricting Daubechies
scaling functions and wavelets to [0, 1] was constructed by Meyer. Later, Chui and
Quak [14] obtained spline-wavelet bases of L2[0, 1].

When a MRA on an interval is proposed, the usual strategy is to start from a
MRA on L2(R) and then use a finite set of suitable translates ϕj,k of the original
scaling function and a finite set of specially constructed boundary scaling functions.

3.1 Multiresolution Analysis

As described by Chui [12], a MRA on L2(R) consists of a sequence of embedded
closed subspaces Vj ⊂ L2(R), j ∈ Z,

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · ·

that satisfies several properties and typically is constructed by first identifying the
subspace V0 and the scaling function φ. Denoting by

φj,k(x) := 2j/2φ(2j x − k) , (11)

for each j ∈ Z, the family {φj,k : k ∈ Z} is a basis of Vj . Associated with the
scaling function φ, there exists a function ψ called the mother wavelet such that the
collection {ψ(x−k), k ∈ Z} is a Riesz basis [12] of W0, the orthogonal complement
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of V0 in V1. If we consider

ψj,k(x) := 2j/2ψ(2j x − k) , (12)

for each j ∈ Z, the family {ψj,k : k ∈ Z} is a basis of Wj , the orthogonal
complement of Vj in Vj+1. It is noteworthy that wavelets allow the refinement of
the representation space taking into account that

Vj+1 = Vj ⊕ Wj . (13)

3.2 MRA on the Interval

As it was mentioned above, multiresolution structures in L2(R) have to be restricted
to L2(I ), to solve boundary value problems on I (see [15] and [16]). If Haar bases
are considered for L2(R), it suffices to take the restrictions of these functions to I .
Things are not so trivial when one starts from smoother wavelets on the line. It is
not clear a priori how to adapt the functions in such a way that an orthogonal basis is
obtained. Several solutions have been proposed for this problem. A first solution is
to extend the functions supported on I to the whole line by making them vanish for
x �∈ I . This approach may introduce a discontinuity at the edges, and consequently,
large wavelet coefficients are obtained near the edges and too many wavelets are
used. Another alternative consists in periodizing, but, unless the function itself is
already periodic, it again introduces a discontinuity.

Consequently, restriction to I entails some changes in the concepts of a MRA.
The aim is to produce Riesz bases for the spaces Vj consisting of a finite family of
translates of the original scaling function φj,k and a finite family of special boundary
scaling functions and to produce the bases of the complementary subspaces Wj

consisting of a finite set of translates of the wavelet function ψj,k and a finite set of
special boundary wavelets.

In this work, a MRA on the interval with B-splines as scaling functions is
described, and it is constructed using orthogonality conditions in a way similar as a
MRA in L2(R).

3.2.1 B-Spline Subspaces

Spline wavelets are extremely regular and usually symmetric or antisymmetric.
They can be designed to have compact support, and they have explicit expressions
which facilitate not only theoretical formulation but also numerical implementations
with a computer, see [15] and [17].

Let us consider B-spline functions of order m + 1, that is, connected piecewise
polynomials of degree m having m − 1 continuous derivatives. The joining points
are called knots, and they are typically equally spaced and positioned at the integers.
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These functions can be defined recursively by convolutions [12]:

ϕ1(x) = χ[0,1](x),

ϕm+1(x) = ϕm ∗ ϕ1(x) (14)

and constitute the scaling functions of the MRA structure.
Among many properties that B-splines have, the most important ones for our

method are the following:

• Two-scale relation

ϕm+1(x) = 2−m
m+1�

k=0

�
m + 1

k

�
ϕm+1(2x − k). (15)

• Differentiation

dk

dxk
ϕm+1(x) = 
kϕm+1−k(x), (16)

where 
k is the k-order difference operator and 1 ≤ k ≤ m−1, i.e., corresponds
to a reduction of the spline degree by k.

• Inner products

�

R

ϕm+1(x − k) ϕn+1(x − l) dx = ϕm+n+2(n + 1 + l − k), (17)

i.e., simple evaluations of higher-order splines at integer points.
This property is obtained from the convolution product and is useful in weak

formulations of differential problems.

In the B-spline MRA, V0 is the subspace generated by the translates of the scaling
function ϕm+1 and for each j ∈ Z, the family {ϕm+1,j,k : k ∈ Z} where

ϕm+1,j,k(x) := 2j/2ϕm+1(2
j x − k) , (18)

is a basis of Vj [15, 16]. These subspaces Vj constitute a MRA on L2(R).

3.2.2 Scaling Cubic B-Spline Subspaces

In this section, we introduce a cubic B-spline basis on the interval satisfying
Dirichlet boundary conditions. This construction is based on the spline-wavelet
bases defined by Chui and Quak in [14]. The adaptation of these bases to boundary
conditions can be found in [19].
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Fig. 1 Scaling function ϕ4

In this work, we use B-splines of order m = 3. As they are C2 functions, a
hierarchical approximation of the solution for the second-order problem Eq. (1) can
be obtained, and accurate results can most likely be expected [18].

In the cubic B-spline MRA framework, the scaling function ϕ4 has support on
[0, 4] (Fig. 1), and {ϕ4,j,k(x) := 2j/2ϕ4(2j x − k) : k ∈ Z} is a basis of Vj .

It can be written explicitly as

ϕ3+1(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x3

6
, x ∈ [0, 1]

−x3

2
+ 2x2 − 2x + 2

3
, x ∈ [1, 2]

x3

2
− 4x2 − 10x − 22

3
, x ∈ [2, 3]

(4 − x)3

6
, x ∈ [3, 4]

. (19)

To simplify the notation we call ϕ(x) = ϕ4(x).
Consider two boundary functions presented by Cěrná et al. in the article [9]: ϕb1

y ϕb2 . They are piecewise cubic polynomials:

ϕb1(x) =

⎧
⎪⎨

⎪⎩

7x3

4
− 9x2

2
+ 3x, x ∈ [0, 1]

(2 − x)3

4
, x ∈ [1, 2]

(20)
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Fig. 2 Basis Functions of Vj , j = 3

and

ϕb2(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−11x3

12
+ 3x2

2
, x ∈ [0, 1]

7x3

12
− 3x2 + 9x

2
− 3

2
, x ∈ [1, 2]

(3 − x)3

4
, x ∈ [2, 3]

. (21)

If ϕj,k(x) := 2j/2ϕ(2j x − k), for j ∈ Z, the families

�inn
j =



ϕj,k(x) : k = 0, 1, . . . , 2j − 4

�
, (22)

correspond to inner scaling functions and

�bound
j =



ϕb1(2

j x), ϕb2(2
j x), ϕb2(2

j (1 − x)), ϕb1(2
j (1 − x))

�
, (23)

are boundary scaling functions.
In Fig. 2 you can see inner and boundary scaling functions.
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Now, considering the families Eqs. (22) and (23), the scaling space Vj is

Vj = span �j, where �j = �inn
j ∪ �bound

j . (24)

(ϕj,k are normalized so that � ϕ�
j,k �L2[0,1]= 1).

The dimension of the spaces Vj is 2j +1, and they constitute a MRA on L2[0, 1]
[19].

In the next section, the construction of Wavelet spaces Wj taking into account
the decomposition Eq. (13) will be described.

4 Wavelet B-Splines: Orthogonal Basis

In the following, we build a basis for the wavelet spaces Wj with an orthogonality
requirement, proposing a mother wavelet ψ ∈ W0.

4.1 Construction of a Mother Wavelet

As W0 ⊂ V1, there exists a
�
dk

�
sequence such that

ψ(x) =
�

k∈Z
dk ϕ(2x − k), x ∈ R. (25)

The coefficients
�
d(k)

�
must be found such that the orthogonality requirement

�
ψ �(x), ϕ�(x − l)

� = 0 ∀l ∈ Z, (26)

is satisfied.
Fixed l ∈ Z, this means

�
ψ �(x), ϕ�(x − l)

� = 2

�
�

k∈Z

�
dkϕ

�(2x − k)
�
, ϕ�(x − l)

�

= 2
�

k∈Z
dk

�
ϕ�(2x − k), ϕ�(x − l)

�
. (27)

Considering the intersection of the supports of scaling functions, index k takes
only values 2l − 4 < k < 2l + 8.
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So we obtain

�
ψ �(x), ϕ�(x − l)

� = 2
2l+7�

k=2l−3

dk

�
ϕ�(2x − k), ϕ�(x − l)

�
. (28)

Rewriting the two-scale relation Eq. (15) as ϕ(x) =
4�

n=0
hn ϕ(2x − n) and

using properties of B-splines, the terms in the sum of Eq. (28) have the following
expression:

�
ϕ�(2x − k), ϕ�(x − l)

� = −2
4�

n=0

hn ϕ��
8 (4 + 2l + n − k). (29)

Hence,

�
ψ �(x), ϕ�(x − l)

� = −4
2l+7�

k=2l−3

dk

4�

n=0

hn ϕ��
8 (4 + 2l + n − k). (30)

It remains to find dk values. If we call

q1(z) :=
�

l∈Z
d2l+1 z2l+1, q2(z) :=

�

l∈Z
d2l z

2l ,

the orthogonality condition Eq. (26) is

B(z) (q1(z) q2(z))
T = 0.

where

(B(z))T =

⎡

⎢⎢⎢
⎣

− 1

240
z7 − 39

80
z5 + 59

120
z3 + 59

120
z − 39

80
z−1 − 1

240
z−3

− 7

60
z6 − 8

15
z4 + 13

10
z2 − 8

15
− 7

60
z−2

⎤

⎥⎥⎥
⎦

.

One solution is:

�
q1(z)

q2(z)

�
=
� −28 z5 − 184 z3 − 28 z1

z6 + 119 z4 + 119 z2 + 1

�
,

and therefore, the wavelet ψ is given by

ψ(x) =
6�

k=0

dkϕ(2x − k), x ∈ R, (31)

with [d0, d1, . . . , d6] = [1,−28, 119,−184, 119,−28, 1].
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Fig. 3 Wavelet

ψ(x) is supported on [0, 5], it satisfies the orthogonality above conditions.
Moreover ψ(x) is symmetric (Fig. 3).

4.2 Wavelet Basis

We propose a suitable basis for the Wj spaces, considering two boundary wavelets
ψb1 , ψb2 ∈ W0 that are defined by Cěrná et al. [9]:

ψb1(x) = c
b1
0 ϕb1(2 x) + c

b1
1 ϕb2(2 x) +

4�

k=2

c
b1
k ϕ(2 x − k + 2), (32)

ψb2(x) = cb2
0 ϕb1(2 x) + c

b2
1 ϕb2(2 x) +

6�

k=2

c
b2
k ϕ(2 x − k + 2), (33)

where

�
c
b1
0 , c

b1
1 , . . . , c

b1
4

�
=
�

939

70
,
−393

20
,

6233

560
,−4, 1

�
,

�
c
b2
0 , c

b2
1 , . . . , c

b2
6

�
=
�

1444

953
,

1048

1871
,
−1340

209
,

545

48
,
−6839

655
, 7,−3

�
.

Boundary wavelets ψb1 , ψb2 have supports on [0, 3] and [0, 4], respectively.
They have two vanishing moments and satisfy the orthogonality condition Eq. (26)
(Fig. 4).
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Using those functions, the set of boundary wavelets (Fig. 4) is defined:

�bound
j =



ψb1(2

j x), ψb2(2
j x), ψb2(2

j (1 − x)), ψb1(2
j (1 − x))

�
. (34)

Note that as Vj+1 = Vj ⊕ Wj , the dimension of Wj is 2j . Thus, a basis for these
spaces is

�j = �inn
j ∪ �bound

j , (35)

where �inn
j is the set of inner wavelets (Fig. 5),

�inn
j =



ψj,k : k = 0, 1, . . . , 2j − 5

�
, (36)

and ψj,k(x) := 2j/2ψ(2j x − k), for each j ∈ Z.
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The functions in �j are normalized so that � ψ �
j,k �L2(0,1)= 1.

Remark 1 Due to Vj ∩ Wj = {0} and Eq. (13),

dim(Vj + Wj) = dim Vj + dim Wj = 2j+1 + 1 = dim(Vj+1). (37)

Thus,

Vj+1 = Vj0 ⊕ Wj0 ⊕ Wj0+1 . . . ⊕ Wj, for j0 ≥ 3.

For J > j0, a wavelet basis for VJ+1 is,

GJ = �j0 ∪
J�

j=j0

�j = �
g1, g2, . . . , g2J+1+1

�
, (38)

where gi ∈ �j0 for i = 1, 2, . . . , 2j0 +1 and gi ∈ �j for i = 2j0 +2, . . . , 2J+1 +1
and j = j0 . . . , J .

Remark 2 If v ∈ Vj0 , wj ∈ Wj , from the orthogonality condition Eq. (26) it is true
that

�v�, w�
j1

� = 0,

(39)

�w�
j1

, w�
j2

� = 0 for j1 �= j2.

5 Numerical Example

Consider the following problem:

 −u�� = f on (0, 1)

u(0) = u(1) = 0
, (40)

with f (x) = (70 π)2 sin(70 π x) − π2 cos
!
π x + π

2

"
.

Substitution of the approximation,

uJ+1 =
2J+1+1�

i=1

αi gi,
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Fig. 6 Structure of matrices KJ , J = 4, 5

using the basis Eq. (38) into the weak formulation, Eq. (3) results in

2J+1+1�

i=1

αi

�� 1

0
g�

i (x)g�
l (x) dx

�
=
� 1

0
f (x)gl(x) dx ∀l ∈ {1, 2, . . . , 2J+1 + 1}.

or, in matrix form

KJ α = R, (41)

where KJ is the stiffness matrix,

KJ :=
#
g�

i , g
�
j

$

1≤l,i≤2J+1+1
. (42)

This system of linear algebraic equations is solved for α, the vector of 2J+1 + 1 × 1
parameters.

As a consequence of the orthogonality requirement, the matrix KJ is sparse and

each block is diagonal (Fig. 6). The condition number cond(KJ ) = λmax

λmin

with

respect to 2-norm is uniformly bounded. This assertion is confirmed by numerical
computation of the condition number of the matrix KJ for J = 3, . . . , 9 (see
Table 1).

The exact solution of the problem is

u(x) = sin(70 π x) − cos
!
π x + π

2

"
. (43)

For J = 1, 2, . . . , let eJ := �uJ+1 − u�
�u� the approximation relative errors.

Although the exact solution is very oscillatory, good convergence results were
obtained, which are shown in Table 2 and Fig. 7.
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Table 1 Condition number of KJ

J 3 4 5 6 7 8 9

λmax 1.6844 1.6505 1.6505 1.6505 1.6505 1.6505 1.6505

λmin 0.2837 0.3162 0.3181 0.3181 0.3181 0.3181 0.3181

cond(KJ ) 5.9363 5.2190 5.1886 5.1885 5.1885 5.1885 5.1885

Table 2 Error eJ J eJ

5 5.534 ×10−1

6 1.322 ×10−2

8 2.853 ×10−3

9 5.347 ×10−4

Fig. 7 Exact and approximate solutions uJ , J = 3, 4, 5, 8. (a) Exact solution. (b) Approximate
solution for J = 3. (c) Approximate solution for J = 4. (d) Approximate solution for J = 5. (e)
Approximate solution for J = 8
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6 Conclusions

Due to the good properties of the proposed wavelet cubic B-splines basis, such as
multiresolution analysis and the orthogonal characteristic according to inner product�
u�, v��, the numerical resolution of boundary value problems is easy and efficient.

The matrix KJ involved in the linear system is block diagonal (each block is a
banded matrix), and its condition number is bounded independently of the scale.

The work presented can be extended in several ways. The implemented technique
using wavelet cubic B-splines bases could be well suited for solving nonlinear
and higher-dimensional differential equations. We hope to address some of these
problems in a future paper.
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