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Abstract Very recently, we have shown the suitability to combine the G-particle-
hole Hypervirial (GHV) equation method (Alcoba et al. in Int J Quantum Chem
109:3178, 2009) with the Hermitian Operator (HO) method (Bouten et al. in Nucl
Phys A 202:127, 1973) for computing various energy differences of an electronic
system spectrum (Valdemoro et al. in J Math Chem 50:492, 2012). The purpose of
this paper is to extend our preliminary studies by applying the combined GHV-HO
method to obtain the set of ground and low-lying excited states potential energy curves
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of several selected electronic systems. The calculations confirm the reliability of the
method.

Keywords G-particle-hole matrix · Reduced density matrix · Excited states ·
Electronic correlation effects · Hypervirial of the G-particle-hole matrix ·
Hermitian operator method

1 Introduction

It is well-known that the second-order reduced density matrix (2-RDM) allows to
calculate the energy and other fundamental electronic properties of atomic and mole-
cular systems [1–4]. Direct calculation of the 2-RDM without the wave function has
emerged through the solutions of the contracted Schrödinger (CSE) [5–15] and Liou-
ville (CLE) [9,11] equations. In the last years our interest has been mainly focused in
solving the G-particle-hole hypervirial (GHV) equation [16], which results from the
contraction of a particular case of the Liouville equation [16,17]. Although the GHV
equation depends upon not only on the 2-RDM but also on the 3-RDM, the 3-RDM
can be approximated in terms of the 1- and 2-RDMs [10,12,14,15]. Proceeding in this
way, we have recently solved iteratively the GHV equation [16–21]. The accuracy of
the results obtained with the GHV method when studying the ground state of molecu-
lar systems at equilibrium geometry was excellent when compared with the equivalent
Full Configuration Interaction (FCI) quantities [16–18,20].

Very recently, we have shown the suitability to combine the GHV method with the
Hermitian Operator (HO) method of Bouten et al. [22,23] for computing electronic
excited states of a system [24]. Thus, we reported simple applicative examples of the
combined GHV-HO method. These examples constituted a preliminary test showing
that, provided that a second-order G-particle-hole matrix corresponding to a conve-
niently chosen state is known, this combined method can yield accurate energy values
for either ground or excited electronic states which would be hard to obtain directly
with the GHV. In this paper we extend this preliminary study by applying the com-
bined GHV-HO method to obtain both the ground and the set of low-lying excited
states potential energy curves (PEC) of several molecular systems. To perform this
work our strategy consists in decomposing the study into two main steps: first one
applies the GHV method to study the PEC of a ground state thus generating an ini-
tial set of accurate G-particle-hole matrices. In the second step, we use as data the
G-particle-hole matrices obtained with the GHV method and implement the HO
method to obtain the energy of the excited states in which one is interested and which
could not be directly and accurately obtained with the GHV.

The paper is organized as follows: In the next section the notation, definitions
and general theoretical background of the GHV and HO methodologies are given.
In section three, the results obtained in a set of applications of the combined GHV-
HO method on selected molecular systems having singlet, doublet and triplet ground
states are reported. The results are compared with those obtained with traditional wave
function methods such as single excitation Configuration Interaction (CIS) and FCI.
Finally, a brief description of the conclusions of this work is given in the last section.
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2 Basic theoretical background

2.1 General notation

In what follows we will consider pairwise-interacting systems composed of fixed
number of electrons, N , whose Hamiltonian may be written within second quantization
formalism [25] in the occupation number representation as

Ĥ = 1

2

∑

pq;rs

0Hpq;rs a†
p a†

q as ar (1)

where a†
p and ar are second quantization creation and annihilation operators, the

indices refer to members of a finite basis set of 2K orthonormal spin-orbitals, and the
matrix 0H groups the 1- and 2-electron integrals over the basis set.

In this formalism an element of a p-RDM corresponding to a N -electron state �

describing the system may be defined as

p! pDi1i2..i p; j1 j2... jp = 〈�| a†
i1

a†
i2

. . . a†
i p

a jp . . . a j2 a j1 |�〉
≡ 〈�| p�̂i1i2...i p; j1 j2... jp |�〉 (2)

where p�̂ is a p-electron density operator.
Through the application of the fermion algebra and the resolution of the identity

operator, it is possible to decompose a p-RDM element into a sum of terms involving
lower-order RDM elements and additional terms describing p-body correlation effects
[26–32]. Let us consider the decomposition of the 2-RDM which provides the simplest
example:

2! 2Di j;ml = 1Di;m 1D j;l − 1Di;l δ j,m +
∑

�′ �=�

〈�| 1�̂i;m |�′〉〈�′| 1�̂ j;l |�〉 (3)

The last term of this equation defines the elements of the second-order correlation
matrix (2-CM), or equivalently, of the G-particle-hole matrix, which have the form:

2Ci j;ml = 〈�| 2Ĉi j;ml |�〉 =
∑

�′ �=�

〈�| 1�̂i;m |�′〉〈�′| 1�̂ j;l |�〉

≡ 〈�| 2Ĝim;l j |�〉 = 2Gim;l j (4)

The 2Ĉ and 2Ĝ are 2-electron correlation and G-particle-hole operators respectively,
which are very different from the 2-electron density operator. These operators are at
the center of the GHV and HO methodologies.
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2.2 The GHV method

By applying a matrix-contracting mapping involving the G-particle-hole operator to
the matrix representation of the hypervirial of the N -electron density operator, one
obtains the GHV equation [16], whose compact form is:

〈
�

∣∣∣
[

Ĥ , 2Ĝim;l j

]∣∣∣ �
〉

= 0 ∀ i, j, l, m (5)

When developed, this equation depends not only on first- and second-order matrices—
such as the 2-RDM or the 2-CM—but also on the third-order correlation matrix whose
elements are defined as

(3;2,1)Ci jl;pqr = ∑
� ′ �=� 〈�| 2�̂i j;pq |� ′〉〈� ′| 1�̂l;r |�〉 (6)

The explicit form of the GHV equation in term of these 3-CM elements is [16]

2
∑

p,q,r

0Hir;pq
(3;2,1)Cpq j;mrl + 2

∑

q,r,s

0Hql;rs
(3;2,1)Crsm; jqi

+ 2
∑

p,r,s

0Hrs;pm
(3;2,1)Ci pj;rsl + 2

∑

p,q,r

0Hpq; jr
(3;2,1)Clrm;pqi

+
∑

p,q,r,s

0Hrs;pq
(3;2,1)Cpq j;rsl

1Di;m −
∑

p,q,r,s

0Hpq;rs
(3;2,1)Crsm;pqi

1Dl; j = 0

(7)

In order to iteratively solve the GHV equation a set of initial trial N -representable
[33] 1- and 2-RDM enter as data to construct an approximate initial 3-CM. The approx-
imation algorithm which is now being used is a recently published modification of
Nakatsuji-Yasuda’s one [12,13,20]. The deviation from exact fulfilment of the GHV
equation gives a second-order error matrix. The iterative method minimizes this error
matrix following a modification of Kutzelnigg’s [34–36] and Mazziotti’s [37] tech-
niques. As a result, an approximated G-particle-hole matrix corresponding to the
eigenstate being considered is obtained [16–21].

2.3 The HO method

In the early seventies Bouten, Van Leuven, Mihailovich and Rosina studied the prop-
erties of the particle-hole subspace of a state, and reported the so-called Hermitian
Operator method [22,23,38–41] as a mean of computing the set of low-lying excited
states of an electronic system when one knows the G-particle-hole matrix correspond-
ing to the ground state. In their work [22], Bouten et al. proposed to solve the following
equation

Ĥ R̂ |� 〉 = E� |�〉 (8)
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where � is the (reference) ground state, R̂ is an excitation operator, and � is an
excited eigenstate generated by the excitation operator R̂. To this aim, these authors
considered the equation

〈� | [ R̂, [ Ĥ , R̂′ ]]| � 〉 = ( E� − E� ) 〈� | R̂ R̂′ + R̂′ R̂ | � 〉 (9)

which is formally equivalent to Eq. (8) and valid when both � and � are eigenstates
of Ĥ and the R̂′ operators form a complete set. Then Bouten et al. [22] proposed the
following approximated excitation Hermitian Operator for acting on the ground state
wavefunction �

R̂ =
∑

t,v

{
q(+)

t,v ( a†
t av − 1Dt;v + a†

v at − 1Dv;t )

+ i q(−)
t,v ( a†

t av − 1Dt;v − a†
v at + 1Dv;t )

}
(10)

where the q symbols represent real coefficients and i is the imaginary unit.
By replacing the R̂ one-body excitation operator into the Eq. (9) one obtains the

following system of decoupled equations

H(++) q(+) = 2 ( E� − E� ) G(++) q(+)

H(−−) q(−) = 2 ( E� − E� ) G(−−) q(−) (11)

where G(++) and G(−−) are linear combinations of the G-particle-hole matrix elements
corresponding to the reference eigenstate �

G(±±)
i j;pq = 2Gi j;pq ± 2Gi j;qp ± 2G j i;pq + 2G j i;qp (12)

and the matrices H(++) and H(−−) have the following form:

H(±±)
i j;pq = 4

∑

r,s

{
H̃ jr;ps

2Dir;qs ± H̃ir;ps
2D jr;qs ± H̃ jr;qs

2Dir;ps + H̃ir;qs
2D jr;ps

}

− 2
∑

r

{
δq,i (H̃ 2D)pr; jr ± δq, j (H̃ 2D)pr;ir ± δp,i (H̃ 2D)qr; jr + δp, j (H̃ 2D)qr;ir

}

+ 2
{

(H̃ 2D)pi; jq ± (H̃ 2D)pj;iq ± (H̃ 2D)qi; j p + (H̃ 2D)q j;i p

}
(13)

where

H̃ir;ps = 0Hir;ps − 0Hri;ps ≡ 0Hir;ps − 0Hir;sp (14)

As can be appreciated, the system of equations, Eq. (11), depend only on the 2-RDM, or
equivalently on the G-particle-hole matrix, which happens to be the output of solving
the GHV equation. That is why, very recently, we proposed a combination of both
methods [24]. In the following section we apply this combined method to obtain the
set of ground and low-lying excited states potential energy curves of a series of selected
electronic systems.
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Table 1 Energy values (in Hartree) of the low-lying excited states obtained with the CIS, GHV-HO and
FCI methods for HF molecule at equilibrium experimental geometry

State S CIS GHV-HO FCI
SHO AHO

g 0 −98.570758 [−98.596614] [−98.596614] −98.596587

1 1 −98.130519 −98.161927 −98.161927 −98.162158

2 1 −98.130519 −98.161927 −98.161927 −98.162158

3 0 −98.066954 −98.117448 −98.117815 −98.117677

4 0 −98.066954 −98.117448 −98.117815 −98.117677

5 1 −98.031928 −98.034245 −98.034245 −98.034014

6 0 −97.686359 −97.729422 −97.698874 −97.729670

7 1 −97.150264 −97.392791 −97.392791 −97.381060

The GHV energy of the ground state is shown in brackets

Table 2 Energy value (in Hartree) of the low-lying excited states obtained with CIS, GHV-HO and FCI
methods for NH2 molecule at equilibrium experimental geometry

State S CIS GHV-HO FCI
SHO AHO

g 0.5 −54.8344998 [−54.8826217] [−54.8826217] −54.8825989

−54.8826059 −54.8826059 −54.8825989

1 0.5 −54.7386862 −54.7723650 −54.7735464 −54.7804624

2 0.5 −54.4869474 −54.5241723 −54.5241723 −54.5437026

3 1.5 – −54.3910079 −54.3910079 −54.4019683

4 1.5 – −54.3742563 −54.3742563 −54.3785791

The GHV energy of the ground state is shown in brackets

Table 3 Energy value (in Hartree) of the low-lying excited states obtained with CIS, GHV-HO and FCI
methods for CH2 molecule at equilibrium experimental geometry

State S CIS GHV-HO FCI
SHO AHO

g 1 −38.4284080 [−38.4722779] [−38.4722779] −38.4723058

−38.4722412 −38.4722412 −38.4723058

1 0 – −38.3845545 −38.3845545 −38.3947222

2 0 – −38.3600523 −38.3600523 −38.3691504

3 0 – −38.2557676 −38.2557676 −38.2845735

4 1 −38.0319635 −38.0621497 – −38.0792791

5 1 −38.0135089 – −38.0558821 −38.0549147

6 0 – −38.0586867 −38.0586867 −38.0565582

7 1 −37.9637381 – −38.0199493 −38.0238722

The GHV energy of the ground state is shown in brackets
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Fig. 1 Energy values (in Hartree) for a the ground state and first nine singlet excited states and b the first
seven triplet excited states of HF as functions of the F-H bond length, respectively. Three of the singlet
excited states and two of the triplet excited states are degenerate. The solid and dashed curves denote the
FCI and CIS energy curves respectively, while triangles, squares and circles denote energies computed by
means of the GHV-HO method

3 Results

To assess the performance of the combined GHV-HO methodology, we have carried
out a number of calculations on a set of selected molecular systems including
HF, H2O, NH3, NH2 and CH2, at both experimental equilibrium [42] and non-
equilibrium geometries. This set has been chosen so as to deal with molecular systems
having different bonding patterns and spin-symmetry properties in their ground state.
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Fig. 2 Energy values (in Hartree) for a the ground state and first two singlet excited states and b the first
four triplet excited states of the totally-symmetric bond stretching mode of H2O as functions of the O-H
bond length, respectively. The solid and dashed curves denote the FCI and CIS energy curves respectively,
while triangles, squares and circles denote energies computed by means of the GHV-HO method

As mentioned above, to perform the calculations our strategy consists in decomposing
the study into two main steps. In the first step, one applies the GHV method to study
the ground state thus generating an initial accurate G-particle-hole matrix. In all cases,
the studied state is the leading member of the multiplet, Ms = S, which generally has
the weakest multiconfigurational character. In that way, the state is well approximated
by a single Slater determinant and the algorithms for the construction of higher-order
matrices perform well. In the second step, we use as data the G-particle-hole matrix
obtained with the GHV method and implement the HO method to obtain the energy
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Fig. 3 Energy values (in Hartree) for a the ground state and first three singlet excited states and b the first
four triplet excited states of the totally-symmetric bond stretching mode of NH3 as functions of the N-H
bond length, respectively. The solid and dashed curves denote the FCI and CIS energy curves respectively,
while triangles, squares and circles denote energies computed by means of the GHV-HO method

of the excited states in which one is interested and which could not be directly and
accurately obtained with the GHV. All calculations have been performed using mini-
mal (STO-3G) basis sets. For the sake of comparison other usual ab initio calculations
have been done for the states considered. In addition to the GHV-HO results, the
reported figures include single-reference CIS model results, and FCI ones, which is
why a minimal basis set has been employed. The PSI3 quantum chemistry package
[43] has been used to calculate the integrals matrix 0H, and the initial values of all the
matrices required.
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Fig. 4 Energy values (in Hartree) for a the ground state and first two doublet excited states and b the first
two quartet excited states of the totally-symmetric bond stretching mode of NH2 as functions of the N-H
bond length, respectively. The solid and dashed curves denote the FCI and CIS energy curves respectively,
while triangles, squares and circles denote energies computed by means of the GHV-HO method

In Tables 1, 2 and 3 we report the energy values of the calculations carried out
at equilibrium geometry with the CIS, the GHV-HO, and the FCI methods for sev-
eral low-lying excited states of HF, NH2 and CH2 having singlet, doublet and triplet
ground states respectively. In these tables we report both the energy eigenvalues of the
HO equation corresponding to H(++), i.e. to the symmetric particle-hole subspace,
which are denoted by the symbol SHO, and those obtained within the anti-symmetric
subspace, which are denoted by the symbol AHO. The calculations show that in gen-
eral these two sets of eigenvalues are close to each other. However, it is interesting to
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Fig. 5 Energy values (in Hartree) for a the ground state and first three triplet excited states and b the first
four singlet excited states of the totally-symmetric bond stretching mode of CH2 as functions of the C-H
bond length, respectively. The solid and dashed curves denote the FCI and CIS energy curves respectively,
while triangles, squares and circles denote energies computed by means of the GHV-HO method

note that in some cases only one of these eigenvalues is available. This is probably due
to the fact that the use of a mono-excitation operator, Eq. (10) may not be sufficient
for some states [24]. Also, due to similar reasons, slightly different energy values have
been obtained for different members of some non-singlet excited states. Hence, we
only report the values of the leading members of these states. The calculations show
that the accuracy of the results obtained with the GHV-HO for these systems is far
better than that of the CIS calculations. Thus, for the HF molecule, the CIS energy
error relative to FCI lies within 2.09 10−3 and 2.31 10−1 Hartree, while for the GHV-
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HO method the error lies between 1.38 10−4 and 3.08 10−2 Hartree. Although the
GHV-HO energy errors for the NH2 and CH2 molecules are larger than those for the
HF one, they are clearly still smaller than those resulting from CIS calculations. This
CI method takes explicitly into account the same excitations than the HO method and
therefore, its inferior performance must be due to the fact that the HO method profits
of the knowledge of correlated ground state G-particle-hole matrix.

In Figs. 1, 2, 3, 4 and 5, we report calculations for the simultaneous bond-breaking
potential energy curves of HF, H2O, NH3, NH2 and CH2 molecules, where multicon-
figurational wavefunction effects are important. Figures 1, 2 and 3 show a comparison
of the ground and low-lying singlet and triplet excited states PECs for HF and the
totally-symmetric bond stretching mode of H2O and NH3 molecules, calculated by
the GHV-HO, CIS and FCI methods. As can be appreciated, the GHV-HO method

Table 4 Maximum absolute (MAE) and nonparallelity (NPE) errors (in Hartree) for the GHV-HO potential
energy curves of HF, H2O, NH3, NH2 and CH2 molecules

System MAE NPE
Ground Excited states Ground Excited states

Min Max Min Max

HF 5.21 ×10−4 5.00 ×10−4 3.16 ×10−2 5.19 ×10−4 5.00 ×10−4 1.83 ×10−2

(1st triplet) (3rd singlet) (1st triplet) (4th Triplet)

[7.59 ×10−2] [2.40 ×10−3] [4.01 ×10−1] [5.72 ×10−2] [1.27 ×10−3] [3.93 ×10−1]

(3rd triplet) (9th singlet) (3rd triplet) (9th singlet)

H2O 4.45 ×10−3 2.10 ×10−3 1.84 ×10−2 4.41 ×10−3 8.00 ×10−4 1.47 ×10−2

(1st singlet) (4th triplet) (2nd singlet) (4th triplet)

[1.65 ×10−1] [8.49 ×10−2] [2.07 ×10−1] [1.28 ×10−1] [5.23 ×10−2] [1.56 ×10−1]

(4th triplet) (1st singlet) (2nd triplet) (2nd singlet)

NH3 8.26 ×10−4 1.33 ×10−2 5.99 ×10−2 8.21 ×10−4 2.00 ×10−3 2.80 ×10−2

(3rd triplet) (1st singlet) (2nd triplet) (1st singlet)

[1.17 ×10−1] [8.48 ×10−2] [1.45 ×10−1] [7.15 ×10−2] [5.02 ×10−2] [6.79 ×10−2]

(4th triplet) (1st singlet) (4th triplet) (1st singlet)

NH2 1.25 ×10−2 8.70 ×10−3 2.49 ×10−2 1.25 ×10−2 4.10 ×10−3 2.33 ×10−2

(1st doublet) (2nd doublet) (1st doublet) (2nd doublet)

[2.38 ×10−1] [2.21 ×10−1] [2.61 ×10−1] [2.06 ×10−1] [1.93 ×10−1] [2.28 ×10−1]

(1st doublet) (2nd doublet) (1st doublet) (2nd doublet)

CH2 8.35 ×10−3 1.44 ×10−2 3.16 ×10−2 8.34 ×10−3 1.25 ×10−2 3.14 ×10−2

(4th singlet) (3rd singlet) (2nd singlet) (3rd singlet)

[1.56 ×10−1] [1.55 ×10−1] [2.02 ×10−1] [1.33 ×10−1] [1.29 ×10−1] [1.78 ×10−1]

(3rd triplet) (1st triplet) (3rd triplet) (1st triplet)

Errors for the CIS potential energy curves (in brackets) are shown for comparison
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reproduces well the FCI curves, showing that the accuracy of the GHV-HO energies
obtained at the equilibrium geometry is retained along the PECs. On the contrary, the
deviation of the CIS curves from the FCI ones are large even at intermediate internu-
clear distances. The accuracy of these methods may be examined more quantitatively
in Table 4, which presents the nonparallelity errors (NPE), computed as the difference
between the maximum and minimum errors found over the curves, along with the
maximum absolute errors (MAE). Comparisons of the potential energy curves for the
totally-symmetric bond stretching mode of NH2 and CH2 are shown in Figs. 4 and 5,
and errors are given in Table 4. Again, the GHV-HO method simulates well the FCI
curves. However, the errors are relatively larger than those of the former molecules.
In spite of this, GHV-HO still represents a definite quantitative advantage over CIS
results.

4 Conclusions

The GHV-HO method has been applied successfully, for the first time, to the calculation
of both the ground and the low-lying excited states potential energy curves of molecular
systems having singlet and non-singlet ground states. The results, which are clearly
more accurate than those of the CIS method and reproduce well the FCI results,
underline the importance of developing this combined technique in the study of excited
states. The method may be extended in order to improve the accuracy of the results
when the states are dominated by two or more particle excitations, as well as in order
to treat ionization and electron attachment. These tasks are currently being carried out
in our laboratories [44].
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