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Abstract The shelf life of mushrooms is very limited

since they are susceptible to physical and microbial attack;

therefore they are usually blanched and immediately frozen

for commercial purposes. The aim of this work was to

develop a numerical model using the finite element tech-

nique to predict freezing times of mushrooms considering

the actual shape of the product. The original heat transfer

equation was reformulated using a combined enthalpy-

Kirchhoff formulation, therefore an own computational

program using Matlab 6.5 (MathWorks, Natick, Massa-

chusetts) was developed, considering the difficulties

encountered when simulating this non-linear problem in

commercial softwares. Digital images were used to gen-

erate the irregular contour and the domain discretization.

The numerical predictions agreed with the experimental

time–temperature curves during freezing of mushrooms

(maximum absolute error \3.2�C) obtaining accurate

results and minimum computer processing times. The

codes were then applied to determine required processing

times for different operating conditions (external fluid

temperatures and surface heat transfer coefficients).

Keywords Simulation � Freezing � Heat transfer � Food

processing

List of symbols

CG Global capacitance matrix

Cp Specific heat J (kg �C)-1

Cpap Apparent specific heat J (kg �C)-1

D Button (cap) diameter (m)

e Thickness (m)

E Kirchhoff function (W m-1)

FG Global force vector

h Surface heat transfer coefficient (W (m2 �C)-1)

H Volumetric enthalpy (J m-3)

k Thermal conductivity (W (m �C)-1)

L Length of mushrooms (m)

KG Global conductance matrix

MG Global convective matrix

N Vector containing the shape functions

Nj Shape function j

t Time (s)

T Temperature, vector of nodal temperatures (�C)

Text External fluid temperature (�C)

Tf Initial freezing temperature (�C)

Tref Reference temperature (�C)

x Mass fraction

v Velocity (m s-1)

Greeks letters

Dt Time increment (s)

dX Surface of the domain

e Residual (Wm-3)

q Density (kg m-3)
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X Domain

r Gradient

Subscripts

0 Initial

1, 2 Domain

e Element

e1 Border element

exp Experimental

sim Simulated

w Water

Superscripts

t Transpose

1 Introduction

The shelf life of mushrooms, such as the commercial

button mushroom Agaricus bisporus, is limited to a few

days, mainly because they have no cuticle to protect them

from physical or microbial attack and water loss. In the

same way, they have a large content in nutrients and high

respiration rate; factors that induce deterioration immedi-

ately after harvest [1]. Finally their high tyrosinase and

phenolic content makes them very susceptible to enzymatic

browning [2]. In view of their highly perishable nature,

mushrooms must be processed to extend their commercial

shelf life for off-season use [3]. The conventional conser-

vation process of mushrooms includes washing of the

samples and immediate blanching in order to inactivate

enzymes, induce a volume contraction, and make the

product more pliable to facilitate filling operations [4].

During this step shrinking of the tissue samples reaches up

to 18%, as reported in [5]. Then mushrooms can be sub-

mitted either whole or sliced to several processes in order

to obtain longer durability, for example low (refrigeration

or freezing) or high (sterilization, pasteurization, dehydra-

tion, etc.) temperature thermal processes. The process of

freezing is generally regarded as being superior to canning

or dehydratation when judged on the basis of retention of

sensory attributes and nutritive properties [6], and it com-

bines the favorable effect of low temperatures with the

conversion of water into ice [7]. Food engineers are

interested in predicting cooling and freezing times in order

to estimate the energy requirements for freezing and to

design the necessary equipment for effective and rational

processing. For this purpose, the evolution and distribution

temperatures in the whole dominium of the food during

freezing must be known. To this end, finite element method

(FEM) is an established formulation for numerical pre-

dictions of the transient temperature in heat conduction

problems [8] such as chilling and freezing. It has the great

advantage that it can deal better with problems where the

object has an irregular geometry [9, 10]. On the other hand,

the most important issue regarding freezing tunnels is the

knowledge of the coefficients of heat and mass transfer

between product and air, which are necessary for the design

of industrial equipment and the heat transfer operations

[11].

During the freezing process, which involves the phase

change of water into ice in the food product, the thermo-

physical properties such as specific heat, thermal conduc-

tivity and density undergo abrupt changes due to the latent

heat release. The system is then established as a highly

non-linear mathematical problem.

Several techniques were applied to deal with the large

latent heat release when using the FEM. One of the tradi-

tional methods is the use of the apparent specific heat,

where the sensible heat is merged with the latent heat to

produce a specific heat curve with a large peak around the

freezing point, that can be considered a quasi delta-Dirac

function with temperature (depending on the amount of

water in the food product). The abrupt change in the

apparent specific heat curve requires several iterations for

each time step and usually destabilizes the numerical

solution. In some commercial simulation softwares that

implement the FEM, such as COMSOL Multiphysics, the

use of the apparent specific heat is the only method

available [10]. Many authors have done approximations by

‘‘softening’’ the peak curve in order to obtain some con-

vergence of the method, modifying the shape of the

apparent specific heat curve while maintaining the total

latent heat constant. However, this softening method is not

recommended, because the actual temperature range

around the freezing zone, is altered becoming wider than

the actual temperature freezing range.

Sheen and Hayakawa [12] have simulated freezing of

whole mushroom shapes using Tylose gel material with

77% water content. Numerical problems were also reported

in this work when applying the finite difference numerical

technique caused by an unrealistic heat balance around

each surface node on the curvilinear boundary.

Sliced mushrooms which have an irregular 3D geometry

are also submitted to freezing, however this type of shape

were not considered in previous works.

The implementation of the enthalpy method, which can

be obtained through the integration of the specific heat with

temperature [10, 13, 14] and the Kirchhoff function, which

is the integral of the thermal conductivity, allows the

reformulation of the heat transfer differential equation into

a transformed partial differential system with two mutually

related dependent variables H (enthalpy) and E (Kirchhoff

function) [15–18]. Even though it generates great advan-

tages to the resolution of the phase change problem, there

are few works in literature which apply this method to

simulate either freezing or thawing of other foodstuffs.
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Combining both transformations helps to avoid inaccura-

cies and/or divergence of the numerical method, caused by

the latent heat peak release and the jump of the thermal

conductivity at the phase transition, with the great

numerical advantage of minimizing the execution speed of

the program, since the resulting finite element matrices are

constant.

The goals of this work are:

1. To develop a finite element code that simulates: the

freezing process of an irregular shaped food using a

combined enthalpy and Kirchhoff transformation

method.

2. To apply the numerical model during freezing of

whole and sliced mushrooms considering a two-

dimensional axial symmetric domain and a 3D geom-

etry, respectively.

3. To validate the numerical solutions comparing the

temperature predictions with experimental data during

the freezing process of whole and sliced mushrooms in

a tunnel.

4. To predict processing times for different operating

industrial conditions; different external fluid tempera-

ture and surface heat transfer coefficients considering

both shapes.

2 Materials and methods

2.1 Finite element simulation during the freezing

process of a 3D geometry (mushroom slice)

During the phase change transition in the freezing process

the thermo-physical properties are strongly dependent on

temperature. This constitutes a highly non-linear mathe-

matical problem. A mushroom slice represents an irregular

three dimensional geometry, therefore the heat conduction

equation in Cartesian coordinates with phase change tran-

sition can be written as follows:

qðTÞCpðTÞ oT

ot
¼ r � kðTÞrTð Þ t� 0 in X ð1Þ

Equation 1 is valid in the domain X, where T is the

temperature, k is the thermal conductivity, Cp the apparent

specific heat, and q the density [19]. The initial (Eq. 2) and

boundary conditions (Eq. 3) are:

T ¼ T0 t ¼ 0 in X ð2Þ

�k
oT

ox
� nx þ

oT

oy
� ny þ

oT

oz
� nz

� �
¼ hðT � TextÞ

t� 0 in dX
ð3Þ

where dX is the domain of the convective interface which

corresponds to external surface in contact with the cooling

air, nx, ny, and nz are the normal outward vector compo-

nents, Text is the external air temperature, T0 is the initial

food temperature and h is the surface heat transfer

coefficient.

By performing the following change of variables:

HðTÞ ¼
ZT

T�

qðTÞ � CpðTÞdT ð4Þ

EðTÞ ¼
ZT

T�

kðTÞdT ð5Þ

where H is defined as the volumetric specific enthalpy [20],

E is the Kirchhoff function that represents the thermal

conductivity integral [15, 20], and T* is a reference

temperature that corresponds to a zero value of H and E.

By combining Eqs. 1, 4 and 5, and the initial and boundary

conditions represented by Eqs. 2 and 3 the following

equations were obtained:

oH

ot
¼ r2E t� 0 in X ð6Þ

� rEð Þ � n ¼ h � ðT � TextÞ t� 0 in X ð7Þ
H ¼ H0 t ¼ 0 ð8Þ

Applying the finite element technique the following

system of ordinary differential equations must be solved:

CG � dH

dt
þ FG � TðHÞ þ KG � EðHÞ ¼ m ð9Þ

where:

CG¼
Xne

e¼1

Z
Xe

ðNTNÞdXeis the global capacitance matrix

KG¼
Xne

e¼1

Z
Xe

ðBT BÞdXeis the global conductance matrix

FG¼
Xns

s¼1

Z
Xs

ðNT hNÞddXsis the global convection matrix

m¼
Xns

s¼1

Z
dXs

ðNT hTextÞddXsis the global thermal load vector

H, E, and T are the nodal values of enthalpy, the

Kirchhoff function, and temperature, respectively. N is the

vector of dimensions [1 9 4] containing the shape

functions (Nj) with j = 1–4 for the reference tetrahedron

element, Nt is the transpose vector (dimension 4 9 1), e is

the total number of elements, e1 is the number of boundary

elements, Xe is the integration domain, dXs is the boundary

integration domain. The matrix B (dimension 3 9 4) is

defined as follows:
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B ¼
N1x N2x N3x N4x

N1y N2y N3y N4y

N1z N2z N3z N4z

2
64

3
75 where Nix ¼

oNi

ox
;

Niy ¼
oNi

oy
and Niz ¼

oNi

oz
for i ¼ 1; 2; 3; and 4

It can be observed that the thermal properties of the

foodstuffs have been incorporated into the new

mathematical formulation (Eqs. 6–8) as dependent

variables; therefore these matrices need to be calculated

only once, which reduces the computer time significantly.

The extraordinary advantage of the Enthalpy method is

that instead of solving the original partial differential

equations using a temperature variable the problem was

reformulated into another partial differential equation

which uses an Enthalpy variable, and when implementing

the variational formulation using the FEM the problem to

be solved can be represented as a System of Ordinary

differential Equations. Therefore the solution given as

enthalpy values over the entire domain is a function

H = H(time, x, y, z) If the surface heat transfer coefficient

is considered constant during the process, FG and m also

remain constant.

Equation 9 is also a system of ordinary differential

equations with three unknown variables, H, E, and T that

are interrelated through non-linear algebraic functions

(H(T), E(T), H(E), T(H), T(E), E(H)). The temperature

dependence of the thermal properties are incorporated into

the enthalpy formulation by using this T(H) and

E(H) functions. First the H(T) and E(H) were constructed

according to Eqs. 4, 5 with the Cp(T) and k(T) integrals.

The estimation of the temperature dependence thermal

properties in mushrooms, Cp(T) and k(T), is explained in

the following Section. The H(T) and E(H) functions are

positive and monotonically increasing for each value of

H there is only one value of T and E, i.e. they are bijective

functions. Next using Matlab 6.5 interpolating functions

the T(H) and E(H) functions were obtained. The functions

were inserted into the ODE through the interp command in

Matlab language.

Incorporating the functions E(H) and T(H) in Eq. 9 the

system can be rewritten as:

dH

dt
¼ f ðHÞ ð10Þ

The system was solved using the standard Matlab 6.5

routines ODE (Ordinary Differential Equations) were the

enthalpy values at each node are calculated for each time

step. The temperature distribution was obtained using

the function T(H), previously determined. As a result the

temperature over the domain can be estimated using the

interpolating function used in the finite element technique;

this constitutes a great advantage over the finite difference

where the temperature is given only at single points in the

domain.

2.2 Finite element simulation during the freezing

process of a 2D axial symmetric geometry (whole

mushroom)

A whole mushroom can be approximated as a solid of

revolution having a symmetry plane at r = 0. Therefore

using cylindrical coordinates the equation that constitutes

the heat transfer with phase change transition is:

qðTÞCpðTÞ oT

ot
r ¼ o

or
kðTÞ r

oT

or

� �
þ o

oz
kðTÞ r

oT

oz

� �

¼ r � kðTÞ rrTð Þ in X

ð11Þ

The boundary and initial conditions are:

oT

oz
� nzþ oT

or
� nr

� �
k ¼ hðText � TÞ t� 0 in oX1 ð12Þ

oT

oz
� nzþ oT

or
� nr

� �
k ¼ 0 t� 0 in oX2 ð13Þ

T ¼ T0 t ¼ 0 in X ð14Þ

Using the Enthalpy and Kirchhoff transformation and

afterwards the finite element variational formulation the

same semi-discrete system as Eq. 9 is obtained:

where :

CG ¼
Xne

e¼1

Z
Xe

ðNT r NÞdXe is the global capacitance matrix

KG ¼
Xne

e¼1

Z
Xe

ðBTr BÞdXe is the global conductance matrix

FG ¼
Xns

s¼1

Z
Xs

ðNT h r NÞddXs is the global convection matrix

m ¼
Xns

s¼1

Z
dXs

ðNTh r TextÞddXs is the global thermal load vector

H, E, and T are the nodal values of enthalpy, the

Kirchhoff function, and temperature, respectively. The

matrix B (dimension 2 9 3) is defined as follows:

B ¼ N1r N2r N3r

N1s N2s N3s

� �

where Nir ¼
oNi

or
; Niz ¼

oNi

oz
for i ¼ 1� 3

This system was solved using the standard Matlab 6.5

routines ODE (Ordinary Differential Equations) which

minimizes the computational efforts of the numerical

algorithm.
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2.3 Reconstruction of mushroom shape and mesh

generation

Two-dimensional axial symmetric domain (whole mush-

rooms) and a 3D geometry (mushroom slices) were built

from images of samples (Figs. 1a and 2a). These images

were digitally processed to obtain a binary image. In this

regard, Image Processing Toolbox, MATLAB 6.5 (Math-

Works, Natick, Massachusetts), was used according with

the following steps [21]:

– Conversion of original RGB images to grey-scale

format,

– Noise reduction through a 3 9 3 median filter to

enhance image quality,

– Segmentation through a threshold value which was

obtained by analyzing the grey-scale image histogram.

A binary image was obtained where black colour (pixel

value equal to 0) represented the background and white

colour the sample (pixel value equal to 1).

The contour of the binary image was approximated with

a B–Spline curve, which was used as a base for the con-

struction of the simulation domain. To construct the axial-

symmetric two-dimensional domain, the B–Spline curve

was transformed into a solid object. The three-dimensional

domain was obtained by extrusion of the two-dimensional

irregular image.

Mesh details

To run the finite element model the two-dimensional

axial-symmetric domain and the three-dimensional domain

were imported into a mesh generator and discretized using

triangles and tetrahedrons, respectively (Figs. 1b and 2b).

As shown in these figures a non-uniform grid system

was used in the simulations. An unstructured mesh with

501 nodes and 908 triangular elements was developed for

2D model, while for the 3D model a mesh with 1,882 nodes

and 7,693 tetrahedral elements was used. To achieve this

meshing, a maximum element size of 1 mm and an element

growth rate of 1.5 were specified for both cases. This will

give the adequate number of elements. The use of finer

mesh showed no significant effect on the accuracy of the

solution.

The mesh information was preprocessed and used as

input into the main finite element code.

2.4 Thermo-physical properties of the product

The numerical modelling of the freezing process was

applied to previously blanched mushrooms. Mushrooms

suffer a volume change during blanching due to the release

of occluded air in the vegetable tissue. McArdle and Cur-

wen [22] have shown that the shrinkage reaches up to 25%,

resulting in a more compact matrix. As a consequence the

thermal properties during the freezing process of previ-

ously blanched mushrooms will not take into account the

air as a component of the blanched mushrooms. The spe-

cific heat, thermal conductivity and density of the mush-

room (between -40 and 20�C) was considered dependent

with temperature. The typical composition of the Agaricus

bisporus mushrooms considered to estimate the thermal

Fig. 1 a Digital photograph

and characteristic dimensions of

the whole mushroom and b 2D

axial symmetric domain

discretized into triangular
elements

Heat Mass Transfer (2011) 47:1671–1683 1675

123



properties were: 90.5% moisture content, 4.9% carbohy-

drates, 0.3% fat, 3.5% protein, and 0.8% ash, as given by

Bernás et al. [23]. The moisture contents (%) of the

Agaricus bisporus mushrooms used in the present work

were verified experimentally by drying triplicate samples

in an oven at 80�C until reaching constant weight. The

models proposed by Choi and Okos [24] were implemented

to estimate the thermal properties as a function of tem-

perature and composition of the foodstuff. The thermal

conductivity was:

kðTÞ ¼
X

xv
i � kiðTÞ ð15Þ

where k is the global conductivity, ki is the thermal con-

ductivity of the component i (where i corresponds to the

different components: water, ice if the temperature is lower

than the initial freezing temperature Tf, carbohydrate, fat,

etc.), xi
v corresponds to the volumetric fraction of each

component.

The density of the product was calculated using:

qðTÞ ¼ 1P xi

qi

ð16Þ

where q(T) is the global density and qi is the density of the

component i (water, carbohydrates, ice, ash, etc.). The

fractions ‘‘xi’’ corresponds to the mass fraction of each

component.

The specific heat of the mushroom was estimated using

the following Eq. 17 according to the published work by

[25]:

CpðTÞ ¼
X

xiCpi � Lxw
Tf

T2
ð17Þ

The ice content as a function temperature (at T \ Tf)

was estimated using the equation proposed by Miles et al.

[26]:

xice ¼ xw � 1� Tf

T

� �
ð18Þ

where xice is the mass fraction of ice, xw is the mass fraction

of water in the foodstuff, and Tf is the initial melting point

of the product. The initial freezing point of the mushroom

obtained from the freezing curves using the tangent method

was -1.2�C [27]; this value was in agreement with initial

freezing temperatures for mushrooms values reported in

[28]; Tf = -1.8 ± 0.8. Figure 3a, b and c show the func-

tional relationships of the thermo-physical properties with

temperature. The volumetric specific heat in Eq. 17 was

obtained by multiplying the q(T) by the Cp(T), and then

numerically integrated using Eq. 4 to obtain the enthalpy

function (Fig. 4a). The same procedure was carried out

with the k(T) in order to obtain the Kirchhoff function

(E(T)) according to Eq. 5 (Fig. 4b). Figure 4c shows the

function E(H). This information was used as input in the

numerical code in order to simulate the freezing process.

One assumption of the model used to calculate the thermal

properties was to consider blanched mushrooms as an

homogeneous material, without air present in the foodstuff.

During the blanching process a contraction takes place due

to removed air which was occluded in the fresh mushroom

structure.

2.5 Experimental procedure

The freezing experiments were applied to previously

blanched whole Mushrooms, which were afterwards placed

over a metal mesh in a tunnel freezer at -15�C. The

average dimensions of the sliced and whole processed

mushrooms were 0.0075 ± 0.005, 0.033 ± 0.004 and 0.026

± 0.003 m in thickness (e) (sliced mushrooms), button

(cap) diameter (D) and total length (L), respectively. The

blanching procedure was carried out, according to Lespi-

nard et al. [5], during 7 min at 90�C in a water bath. One

group of the blanched whole samples were sliced and

introduced in a tunnel (FRIOTECNOLOGÍA, Argentina)

placed over a metal mesh in order to be frozen individually

at an external air temperature of -15�C.

Fig. 2 a Digital photograph

and characteristic dimensions of

the mushroom slice and b 3D

mesh using tetrahedral
elements
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Thermocouples type T (copper-constantan (Cu-CuNi)),

inserted in the mushrooms, were connected to an acquisi-

tion system (Testo 175, Testo AG, Germany) in order to

record the time–temperature evolution in the product

and cooling medium every 10 s for several samples at each

run.

The cooling air velocity in the tunnel freezer was

measured using a hot wire anemometer (TSI model 1650);

the value obtained was v = 2.5 m s-1.

Freezing of whole and sliced mushrooms were carried

out in triplicate with the same operating conditions and

similar mushroom sizes.

Fig. 3 Thermo physical properties of the mushrooms used for the

freezing process as a function of temperature a thermal conductivity

b density and c specific heat
Fig. 4 Functional relationships used in the combined formulation of

the freezing process a Enthalpy versus temperature b Kirchhoff

function versus temperature c Kirchhoff function versus enthalpy
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2.6 Determination of the surface heat transfer

coefficient (h)

In order to estimate the surface heat transfer coefficient the

transient method was used; the numerical solution of heat

conduction equation is the most appropriate method when

dealing with heterogeneous foodstuffs, complex 3D

geometries or variable boundary conditions [9, 29]. To

estimate the heat transfer coefficient, a bronze mushroom

shaped object was manufactured. Bronze was chosen as a

test material due to its high thermal diffusivity, which

assures an almost instantaneous uniform temperature pro-

file. A thermocouple was inserted at the centre of object to

sense the time–temperature history during cooling in the

tunnel freezer, which operated under the same conditions

as the mushrooms freezing experiments (previously

described). The following thermo-physical properties for

bronze were used: q = 8,470 kg m-3, Cp = 376.81 J kg-1

K-1, k = 122.87 W m-1 K-1. Different heat transfer

coefficients were used to simulate temperature profiles;

experimental and predicted temperatures for each proposed

h coefficient were compared. The heat transfer coefficient

that minimized the residual sum of squares (RSS) given by

Eq. 19 was selected.

RSS ¼
X

Texp � Tsim

� �2 ð19Þ

The heat transfer coefficient (h) obtained by Eq. 19 was

17 W(m2 �C)-1.

The h value obtained was in agreement with h values

calculated with the equation proposed by Earle [30], that

considers air velocities v\5 m/s. The h value was similar

(h = 15.5 W/m2 �C) to the value calculated in this work.

During the freezing process the rate of heat transfer from

the food to the external medium depends on several factors

such as the velocity of the nearby fluid, the surface

roughness, the geometry of the food, etc. However these

factors are very difficult to be accounted for in the math-

ematical formulation of the problem. In order to overcome

this limitation the multiple effects are considered and

quantified by the surface heat transfer coefficient (h) [31].

The experiments to determine the surface heat transfer

coefficient assumed an effective h value, therefore the

boundary condition was considered with the same h for the

entire surface exposed to the external medium; this repre-

sents a limitation to the present finite element code. A great

number of publications apply an overall surface heat

transfer coefficient for freezing simulations [32–40], how-

ever a more rigorous procedure would be to calculate the

surface heat transfer coefficient by solving the Navier–

Stokes equation locally. This approach has been done by

Trujillo [41], Trujillo and Pham [42, 43], which have used

the CFD method and the FLUENT software to predict

airflow and temperature fields around a beef side and

therefore the heat transfer coefficient in several places

throughout the carcass surface, also Harris et al. [44]

measured values of h at different positions in a lamb car-

cass. We understand the value and importance of these

measured h values implemented specially in products with

much larger dimensions and more complex shapes where

there is also the possibility of water evaporation from the

product. A future implementation of a variable h value

throughout the surface of the foodstuff coupled with the

main freezing numerical model using the Enthalpy and

Kirchhoff transformation is a work yet to be developed by

the authors.

3 Results and discussion

The numerical model which consisted in a pre-processing,

main, and post-processing routines, were all coded in

Matlab language. The codes implemented in 2D and 3D

geometries were validated using the analytical solutions of

the heat conduction equation with convective boundary

conditions [19, 45]. The accuracy and convergence of the

numerical predictions were corroborated, calculating the

difference between numerical and analytical solutions [46,

47]. The numerical results were in agreement with the

analytical solutions for all systems studied (sphere and

cylinder), therefore the numerical code was considered

theoretically validated.

The numerical code implementing the Enthalpy and

Kirchhoff transformations was compared with experimen-

tal freezing curves found in literature for irregular minced

meat objects containing 75% water [33, 34, 36] since there

is no analytical solution to the heat transfer equation when

the thermal properties are temperature dependent. The

numerical predictions resulted in agreement with the

experimental data, even though the material exhibited a

sharp phase change. Furthermore the code was compared to

time–temperature predictions during the freezing process

in mushrooms under industrial operating conditions.

3.1 Comparison of the numerical model

with experimental results for the freezing process

The numerical simulations obtained with the code, were

contrasted with experimental time–temperature freezing

curves of mushrooms. Freezing experiments were under-

taken in order to verify the accuracy of the solutions

obtained by the finite element formulation. It can be seen

from the results that a good agreement was obtained

between the experimental measurements and the numerical

predictions. The absolute maximum difference (infinite
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norm of the error = kTexp-Tsimka) for all experiments

considering all runs was less than 3.10�C.

As an example Fig. 5a and b show the predicted and

experimental temperatures for the whole and sliced

mushroom shape (2D axial symmetric domain).

Additionally the sliced mushroom which corresponds to

a 3D geometry was analyzed considering a one-directional

heat transfer flow, i.e. the heat flow (q = rT�n) perpen-

dicular to the z axis was considered not significant. In order

to compare both results a one-dimensional phase change

problem taken into account the thickness of the mushroom

(e = 0.0072 m) was coded using Matlab 6.5, neglecting

the x and y heat transfer contribution (see Fig. 6). The time

temperature evolution was compared in z = e/2 = 0.0036

for the one-dimensional problem and for the 3D problem

the internal point ((x, y, z) = (-0.001,0.0245,0.0036) in

meters), which have the same z coordinate. Figure 5b

shows the experimental measurements and the predicted

temperature for the 1D and 3D models. As can be seen the

experimental freezing curve satisfactorily agrees with the

three dimensional model proposed, therefore it can be

concluded that the freezing of sliced mushrooms cannot be

approximated as a one-dimensional problem. The object of

using a 1D approach is to demonstrate that there is a heat

transfer contribution in all directions (x, y, z) and that sliced

mushrooms cannot be approximated as a one dimensional

object where only the thickness of the product is consid-

ered (see Fig. 6). Freezing simulations are complex prob-

lems to be solved mathematically, especially 3D problems,

there is however a number of foods that can be approxi-

mated as an infinite slab that have been simulated in the

past, such as hamburgers, another can be pastry discs

dough, but this is not the case for mushrooms due to its

average dimensions and shape. If a sliced mushroom shape

is considered a one-dimensional heat flow problem, the

calculated freezing times would be overestimated with

respect to the actual 3D model, resulting in a much higher

energy demand and quality loss.

Figure 7a shows the temperature distribution after 972 s

inside the tunnel freezer and Fig. 7b the temperature dis-

tribution at the symmetry plane of the irregular shape body.

It can be observed that the corners of the mushrooms

reached lower temperatures much faster than the thicker

central zone. This observation although trivial shows that

the numerical predictions over the entire domain did not

oscillate or reach unrealistic temperature values, especially

at the narrower corners of the foodstuff, which usually

destabilizes the numerical solution. Previous works that

simulated freezing of mushrooms [12] reported unrealistic

results of temperature at the boundary nodes when using

the finite difference method. For example the boundary

temperatures were lower than the external medium tem-

perature; another problem was the temperature oscillation

at the surface of the foodstuff. This could be attributed to

the approximation method and rectangular mesh imple-

mented in finite difference; the rectangular elements are not

a sufficiently good approximation when working with

curvilinear and irregular boundaries. This works showed

the excellent results obtained with the finite element

technique which uses triangular and tetrahedron elements

that have the advantage of adjusting to any irregular shaped

food. Therefore the algorithm can be considered robust and

convergent, independent of the functionality of the thermal

properties with temperature and the irregular domain.

3.2 Application of the numerical model to predict

freezing times

Since the temperature distribution within a product varies

considerably during freezing process, freezing times must

Fig. 5 a Experimental (opened circle) and predicted (dash line)

temperatures during the freezing process for whole mushrooms (2D

axial symmetric model) at an internal point of the product (point (r,

z) = (0, 0.019) in meters) Ti = 22.9�C and b experimental and

predicted temperature values using a 1D (at x = 0.0036 m) and 3D

model at an internal point ((x, y, z) = (-0.001,0.0245,0.0036) in

meters), T0 = 6.9�C. For all experiments Text = -15�C, h = 17 W

(m2 �C)-1
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Fig. 6 Domain of the actual

(3D) and simplified model (1D)

used to compare the temperature

histories of sliced mushrooms

Fig. 7 Temperature

distribution of the mushroom

after 972 s inside the tunnel

freezer (h = 17 W (m2 �C)-1,

T0 = 10�C) a at the surface b at

a symmetry plane (x = 0)
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be defined with respect to a position. The thermal centre is

generally taken as reference, which is the location where

the temperature changes most slowly. The freezing time is

usually definite as the time to reach a particular tempera-

ture at the warmest point (the thermal centre) [48]. For

freezing, a number of final centre temperatures have been

used: -5, -10 and -18�C [7].

It is known that the h value depends on several factors

such as the external medium, shape and surface roughness

of the foods. Typical values of h were measured

and reported for various methods by several authors and

were summarized in [31]: for natural air (h = 6–20 W

(m2 K)-1), forced convection air (h = 20–90 W

(m2 K)-1), air impingement (h = 80–160 W (m2 K)-1),

immersion in liquid nitrogen (170–425) and immersion in

agitated fluid (160–1,500). In this way, simulations were

carried out in order to obtain the freezing times for dif-

ferent external fluid temperatures and surface heat transfer

coefficients values, considering an initial temperature of

10�C and two typical external fluid temperatures (-15,

-20 and -30�C). The time needed to reach a value of

-10�C in the warmest point (coordinates: 2D r = 0,

z = 0.0139 and 3D x = 0.0023, y = 0.0254, z = 0.0036)

was calculated for whole and sliced mushrooms (Table 1)

considering different h values (5–1,000 W (m2 K)-1)

according to the before mentioned operating freezing

methods.

All the numerical runs were tested for their computa-

tional speed, the maximum CPU time were less than 9 min

for 3D runs and 3 min for 2D axial-symmetric model using

a PC Intel(R) Core(TM) 2 6300 with a processor speed of

1.86 GHz and a RAM of 2 GB.

It is noteworthy that the computational speed of the

numerical simulations of the freezing process is low, due to

the simultaneous Kirchhoff and enthalpy transformation.

Using this combined transformation the conductance,

capacitance, and convective matrices as well as the thermal

load vector in the finite element formulation remained

independent of the time variable.

4 Conclusions

Finite element codes were developed to simulate the phase

change transition during freezing of an irregular foodstuff.

A combined Kirchhoff and Enthalpy formulation of the

heat transfer equation was applied to deal with the highly

non-linear mathematical problem and to enhance the

computational speed of the numerical runs, resulting in a

minimum CPU. The finite element code was found to be

convergent, no oscillations of the temperature predictions

were encountered in the solutions.

The numerical model was compared with experimental

freezing curves of whole and sliced mushrooms, applying a

two-dimensional axial-symmetric domain and 3D geome-

try, respectively. For both food shapes the numerical runs

agreed well with experimental time–temperature curves.

The freezing of sliced mushroom was also compared with a

one-dimensional heat flow model, in order to verify that the

mushroom slice object must be approximated as a 3D heat

transfer problem.

The code was applied to obtain freezing times of

mushrooms considering different operating conditions.

This information can be of use for food processors to

obtain valuable information to design freezing equipment

and optimize processes.
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