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Abstract
Zinc (Zn) is required for normal reproductive performance in cattle. The aim of this study was to evaluate the effect of subcutaneous
injection of 400mg Zn at the beginning of fixed-time artificial insemination (FTAI) on preovulatory follicle and corpus luteum (CL)
size, plasma estradiol (E2) and progesterone (P4) concentrations, and pregnancy rates in beef cows. Copper (Cu) concentration and
alkaline phosphatase (ALP) activity in plasmawere also evaluated. Zinc supplementation at the beginning of the FTAI protocol (day
0) increased the area of preovulatory follicle (APF, day 9; P = 0.042) and plasma P4 concentration (day 16; P = 0.01), whereas
plasma E2 concentration (day 9) and area of CL (ACL; day 16) were not modified by Zn supplementation in cows with adequate
plasma Zn concentration. Zinc supplementation in Zn-deficient cows increased ACLwith respect to controls (P = 0.048) but did not
modify plasma E2 concentration. Pregnancy rate on day 41 after FTAI was higher in cows supplemented with Zn compared with
controls (80.95% and 51.61%, respectively; P = 0.042). Plasma Zn and Cu concentrations on days 7, 9, and 16 were not affected by
Zn supplementation. In conclusion, the results obtained in the present study determined that parenteral Zn supplementation at the
beginning of the FTAI protocol increased preovulatory follicle size, plasma P4 concentration, and pregnancy rates in beef cows.
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Introduction

Zinc (Zn) is involved in a wide range of biological processes,
including cell proliferation, immune function, and defense
against free radicals [1–4]. Also, a possible role of Zn in re-
production has been proposed [5–7] given that mild to severe
Zn deficiencies produce atypical ovarian development, dis-
ruption of estrous cycle, delay in follicular growth, and ab-
sence of preovulatory Graafian follicles in mice, women, and
monkeys [5, 6]. In fact, Zn deficiency has been suggested to

be a causal factor for pregnancy loss in women, nonhuman
primates, rodents, and sheep [8]. In humans and animals, sev-
eral studies have investigated the relationship between mater-
nal Zn status and pregnancy outcome with conflicting results
[6, 9–18]. Therefore, the role of Zn in the reproductive func-
tion in cows remains to be elucidated.

Zinc homeostasis is complex and partially known so far.
Although there are no reliable indicators of Zn status in bo-
vines, plasma/serum Zn concentrations are the most frequent-
ly used [19]. However, plasma/serum Zn concentrations are
variable indicators and must be considered carefully because
many factors can modify them [20].

The aim of this study was to evaluate the effect of paren-
teral Zn supplementation at the beginning of the FTAI proto-
col on preovulatory follicle and CL size, plasma E2 and P4
concentrations, and pregnancy rates in beef cows. Copper
concentration and ALP activity in plasmawere also evaluated.

Materials and Methods

The Committee for Care and Use of Laboratory Animals
(CICUAL, for its Spanish acronym), School of Veterinary
Sciences, National University of La Plata, Argentina
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(Protocol No. 78-2-18P), approved all procedures followed in
this trial.

Location and Experimental Animals

The trial was performed with animals from two commercial
cowherds located in Buenos Aires province, Argentina (farm
1: 35° 21′ 48″ S, 57° 13′ 37″W; farm 2: 34° 56′ 29″ S, 59° 08′
23″ W) in late spring 2017 (October–November).

A total of 62 Aberdeen Angus cows were used. Farm 1
provided 27 mature cows (4.74 ± 0.14 years old; range, 4–6)
weighing 456.1 ± 4.7 kg, with a body condition score (BCS)
of 3.32 ± 0.02 (range, 2.5–4) on 1–5 scale [21] and more than
62 days post-partum at the start of the experiment. Farm 2
provided 35 mature cows (4.85 ± 0.11 years old; range, 4–6)
weighing 476.1 ± 6.2 kg, with 3.57 ± 0.03 BCS (range 2.5–4)
and more than 65 days post-partum at the start of the experi-
ment. Cows from both farms were managed under an exten-
sive grazing system based on natural pastures.

Cows at a random stage of the estrous cycle received an
intra-muscular (IM) injection of 2 mg estradiol benzoate
(Syntex, Argentina) and an intra-vaginal P4 device containing
0.5 g P4 (DIB®, Syntex, Argentina) (day 0). Cows were ran-
domly assigned to one of two treatments: (1) control group
(farm 1, n = 16; farm 2, n = 19) received 4 mL of sterile NaCl
solution (9 g/L), and (2) Zn group (farm 1, n = 11; farm 2, n =
16) was supplemented with a subcutaneous injection (4 mL)
of 400 mg Zn sulfate (ZnSO4). On day 7, DIB was removed,
and cows were administered 500 mg cloprostenol (Ciclase
DL, Syntex) and 0.5 mg estradiol cypionate (Cipiosyn,
Syntex) by IM injection. Cows were AI 52–56 h after DIB
removal by the same experienced technician (day 9). Semen
from the same bull and batch was used for all cows.

A solution of 100 mg/mL Zn was prepared by adding
191.19 mL of a commercial aqueous 2 M ZnSO4 solution
(Sigma-Aldrich, Cat. No. 83265) to 58.81 mL of double dis-
tilled and deionized water (Sigma-Aldrich, Cat. No. W4502).
The solution was filtered and stored in a sterile multi-dose
bottle until used.

Blood Samples

Samples of coccygeal blood (10 mL) were collected on days
0, 7, 9, and 16 in tubes containing EDTA, placed on ice im-
mediately after collection, centrifuged at 350g for 10 min, and
then plasma was separated and stored at − 20 °C.

Plasma Zn and Cu Concentrations

Plasma Zn and Cu concentrations were evaluated on days 0, 7,
9, and 16. Plasma samples were proportionally deproteinized
with 10% (v/v) trichloroacetic acid. Zinc and Cu concentra-
tions were measured in supernatants using a double beam

flame atomic absorption spectrophotometer (Perkin Elmer
AAnalyst 200; AAS, International Equipment Trading Ltd.,
Mundelein,USA) with an internal quality control [22]. Zinc
and Cu standard solutions were purchased from Merck
(Tokyo, Japan; Cat. No. 48096-2B and Cat. No. 08046-2B,
respectively).

Hormone Assays

Plasma E2 concentration was determined on day 9 with a
commercial RIA kit (Estradiol Double Antibody, Siemens
Medical Solutions Diagnostics, Los Angeles, CA, USA)
(7.6% intra-assay coefficient of variation; 2.9 pg/tube assay
sensitivity) [23]. Plasma P4 concentration was measured on
day 16 with a commercial RIA kit (Coat A-Count®, Siemens
Medical Solutions Diagnostics) (11.9% intra-assay coefficient
of variation; 0.2 ng/tube assay sensitivity) [23].

Alkaline Phosphatase Activity Assay

Plasma ALP activity of cows from farm 2 was evaluated on
days 0, 7, 9, and 16. The assay was performed in a commercial
laboratory by using routine clinical laboratory tests (Clinical
Chemistry Department, Iglesias-Haramburu Institute, La
Plata, Argentina). The ALP was measured by a colorimetric
method with an internal quality control [24]. This is based on
the transformation of a substrate, p-Nitrophenyl phosphate,
into p-Nitrophenol, a colored product whose absorbance was
measured at 405 nm. Plasma ALP activity was expressed as
units/L.

Ultrasonography

Area of preovulatory follicle (APF) at AI (day 9), area of CL
(ACL, day 16), and pregnancy rate (day 50; 41 days after AI)
were determined by transrectal ultrasonography (Aloka 500 V
equipped with a 7.5-MHz linear-array transducer, Aloka,
Wallingford, CT). Images were taken to measure the maxi-
mum diameter of PF, CL, and CL cavity, if present. The hor-
izontal and vertical diameters were recorded, and the average
was used in the statistical analysis. The location of PF that
corresponded to the largest area was recorded. The ACL was
calculated by subtracting the luteal cavity area from the entire
CL area. Pregnancy diagnoses were performed by measuring
the fetal heartbeat. All measurements were performed by the
same operator.

Statistical Analysis

A completely randomized block design was used. Statistical
models included the random effect of block (farm, n = 2), and
the fixed effect of treatment and their second order interaction.
The effect of Zn supplementation on response variables (Zn,
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Cu, E2, and P4 concentration and, ALP activity, APF, and
ACL) were analyzed with linear regression models by using
the MIXED procedure of SAS (SAS Institute, Cary, NC,
USA). The fixed effect of the age of cows on plasmatic Zn
concentration was also evaluated. In the case of repeated mea-
sures (i.e., Zn and Cu concentration and ALP activity), a re-
peated measure linear model was used to account for autocor-
relation. The APF was used as covariate in the analysis of
ACL. The effect of Zn supplementation on pregnancy rate
(41 days after FTAI) was analyzed by logistic regression anal-
ysis by using the GLIMMIX procedure (SAS Institute) with
binomial distribution and logit link function. Results are
expressed as least squared means ± SEM. Statistical signifi-
cance was set at P < 0.05 and P < 0.10 for tendency and
interactions.

Results

Animals

Plasma Zn concentration at the beginning of FTAI (day 0)
was different between farms (farm 1, 91.5 ± 5.3; farm 2,
125.5 ± 4.6 μg/dL Zn; P < 0.0001). In farm 1, 66.6% of
cows (18/27) were Zn-deficient (< 90 μg/dL) on day 0,
whereas in farm 2, no cow was deficient (36/36 had plasma
Zn concentration > 96 μg/dL). There were no significant
differences in the age of cows between both farms (P =
0.78). The age of cows did not have effect on plasma Zn
concentration on day 0 (P = 0.98), day 7 (P = 0.65), day 9
(P = 0.76), or day 16 (P = 0.38).

Effect of Parenteral Zn Supplementation on Plasma
Zn and Cu Concentration

Time (day) had a quadratic effect (P < 0.01) on plasma Zn
concentration (107.21 ± 3.9, 131.71 ± 4.5, 111.52 ± 3.9, and
103.68 ± 4.4 μg/dL Zn for days 0, 7, 9, and 16, respectively;
P < 0.01; Fig. 1a). Zinc supplementation had no effect on
plasma Zn concentration (116.11 ± 2.9 vs. 110.95 ± 3.2 μg/
dL Zn for control vs. Zn, respectively; P = 0.24). The interac-
tion of time by Zn supplementation had no effect on Zn con-
centration (P = 0.55).

Time (day) had a quadratic effect (P < 0.01) on plasma Cu
concentration (51.29 ± 1.1, 51.81 ± 1.3, 42.84 ± 1.8, and
55.07 ± 1.3 μg/dL Cu for days 0, 7, 9, and 16, respectively;
P < 0.01; Fig. 1b). Zn supplementation had no effect on plas-
ma Cu concentration (51.35 ± 1.3 vs. 49.15 ± 1.5 μg/dL Cu
for control vs. Zn, respectively; P = 0.27). The interaction of
time by Zn supplementation had no effect on Cu concentration
(P = 0.96).

Effect of Parenteral Zn Supplementation on ALP
Activity

Time (day) had no effect on ALP activity (P < 0.20).
Parenteral Zn supplementation tended to increase ALP activ-
ity on day 7 (P = 0.09) (days 0, 7, 9, and 16; control, 62.4 ±
14.7; 46.1 ± 5.8; 57.8 ± 2.5; 45.4 ± 2.2 U/L; Zn, 44.3 ± 16;
62.3 ± 7.1; 61.2 ± 2.7; 44.7 ± 2.3 U/L, respectively; Fig. 2).
The interaction of time by Zn supplementation had no effect
on ALP activity (P < 0.19).

Effect of Parenteral Zn Supplementation on APF, ACL,
E2, and P4 Concentrations and Pregnancy Rates

The effect of parenteral Zn supplementation on APF, ACL,
and plasma E2 and P4 concentrations is shown in Table 1. Zn
supplementation increased APF (P = 0.042) and plasma P4
concentration (P = 0.01). Conversely, it had no effect on plas-
ma E2 concentration and ACL. In Zn-deficient cows, Zn sup-
plementation increased ACL (3.40 ± 0.30 vs. 4.40 ± 0.39 cm2

for control vs. Zn, respectively; P = 0.048), tended to increase
APF (0.97 ± 0.12 vs. 1.36 ± 0.15 cm2 for control vs. Zn, re-
spectively; P = 0.09), and increased plasma P4 concentration
only numerically (4.1 ± 0.6 vs. 5.4 ± 0.8 ng/mL for control vs.
Zn, respectively; P = 0.25). Conversely, it had no effect on
plasma E2 concentration (18.1 ± 1.4 vs. 15.7 ± 1.7 pg/mL for
control vs. Zn, respectively; P = 0.31). Finally, Zn supplemen-
tation increased the odds for pregnancy (OR = 3.98; 95%CI =
1.06–15.05; P = 0.042) given that the percentage of pregnant
cows was 80.95% (17/21) for Zn-supplemented cows vs.
51.61% (16/31) for control cows (Table 2). The interaction
of farm by Zn supplementation had no effect on any of the
variables assessed (P > 0.30).

Discussion

We found that Zn supplementation, at the beginning of the
FTAI protocol, increased plasma P4 concentration and preg-
nancy rate, regardless of the Zn status of beef cows.

In the present study, Zn supplementation not only increased
ACL in Zn-deficient cows but also increased plasma P4 con-
centration in Bnormal^ cows. Plasma P4 concentration in de-
ficient cows was increased only numerically with Zn treat-
ment, probably due to the scarce number of animals with this
condition. It has been shown that Zn inhibits apoptosis in
luteal cells of rats [7] and dietary Zn deficiency causes a
shrunken CL in mature female mice [5]. Moreover, different
studies support the key role of Cu/Zn superoxide dismutase
(Cu/Zn-SOD) to maintain CL size and P4 production [25–28].
The enzyme Cu/Zn-SOD is one of the main mechanisms for
cellular defense from reactive oxygen species [29]. It scav-
enges the harmful superoxide radicals and protects cells from
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the related damaging effects. Thus, binding of Zn to SOD is
essential for its adequate biological function [30, 31]. In Zn-
deficient animals, decreased Cu/Zn-SOD activity may dam-
age luteal cells, diminish CL size, and reduce P4 production.

Progesterone is essential for the establishment and mainte-
nance of pregnancy. Decreased plasma P4 concentrations dur-
ing early embryo development reduce embryo interferon-tau
(IFN-t) secretion and alter the expression of genes associated
with specific transporters, cell proliferation/migration, and re-
modeling proteins, and of genes contributing to embryo elon-
gation [32, 33]. Different studies have reported a positive as-
sociation between P4 concentration during early pregnancy
and bovine conceptus growth [34, 35]. Furthermore, P4 sup-
plementation during the early stages of pregnancy has been
shown to favor embryo development and uterine secretion
[36, 37]. In dairy cattle, P4 concentration was associated with

embryo survival [38, 39]. Additionally, plasma P4 concentra-
tions below 2.8 ng/mL resulted in up to 50% losses in preg-
nancy rates in these cows [40]. In Holstein cattle, P4 concen-
tration of recipient cows during early pregnancy (days 0 to 7)
was associated with pregnancy rates (days 28, 42, and 63)
obtained by embryo transfer [41]. In suckled beef cows, re-
duction of serum P4 increased late embryonic/early fetal loss
[40]. These results confirm that plasma P4 concentration is an
important embryo/fetal survival indicator during early preg-
nancy. In our study, the increase in P4 concentration elicited
by Zn supplementation was accompanied by an increase in
pregnancy rate.

Although the literature about the effect of Zn supplementa-
tion on pregnancy rates in cows is scarce, several studies have
evaluated trace mineral mixtures containing Zn [42–47]. Ahola
and colleagues [43] observed an increase in pregnancy rate
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post-AI in cows supplemented orally with Zn, Cu, and manga-
nese (Mn) for 2 years. Moreover, in a meta-analysis of 20
research papers and reports, Rabiee and colleagues [48] found
that supplementation with oral organic Zn, Cu, Mn, and cobalt
mixture reduced the number of services per conception and
increased the risk of pregnancy in lactating dairy cows.

In our study, the injection of Zn at the beginning of the
FTAI protocol increased APF. On the other hand, subcutane-
ous injection of a trace mineral complex containing Cu, Mn,
selenium, and Zn to over-conditioned cows 14 days before
follicular wave synchronization failed to find an association
between mineral supplementation and diameter of the preovu-
latory follicle [47]. Numerous studies have demonstrated nu-
tritional effects on follicular development. Retardation of
ovarian follicular growth and lack of preovulatory Graafian
follicles have been observed in Zn-deficient monkeys and
mice [5, 49]. Using X-ray fluorescence, Ceko and colleagues
[50] described Zn distribution in bovine ovaries and found
higher Zn concentration in healthy than in regressed follicles
(the healthy cohort showed three times more Zn than
regressed ones).

Even though a direct effect of Zn on follicles and CL
would be possible [7, 50], another probable cause for in-
creased APF, increased CL size (only in Zn-deficient
cows), and elevated P4 concentration in Zn-supplemented
cows might be that Zn participates in follicle-stimulating
hormone (FSH) and luteinizing hormone (LH) synthesis
and/or secretion in females [6]. While FSH is the principal
regulator of follicular growth, LH stimulates both large
follicles and CL growth and increases progesterone secre-
tion by CL in cattle [51–54]. Although we did not examine
plasma FSH and LH concentrations in this study, they
could have been increased by Zn supplementation.

Our results show that Zn supplementation did not induce an
increase in plasma Zn concentrations, even in Zn-deficient
animals. The same was described by González-Maldonado
and colleagues [47] in over-conditioned cows supplemented
with a trace mineral mix including Zn. These authors specu-
lated that these minerals could be absorbed and stored rapidly
in selected tissues such as muscle, fat tissue, and the small
intestine, in the case of Zn [47]. Interestingly in our study,
plasma Zn concentration increased on day 7 not only in the
Zn group but also in the control group. The increase observed
in the untreated group (control) confirms the variability in
plasma Zn concentration values. This could be due to the
FTAI treatment, where several hormones are administered. It
has been shown that steroid hormones in many forms such as
adrenal corticosteroids and gonadal steroids modify circulat-
ing Zn concentrations [20]. In addition, Deuster and col-
leagues [55] demonstrated that plasma Zn concentration is
high during the follicular phase, and then declines during the
ovulation and luteal phases in women.

While Zn and Cu are known to have a strong mutual
antagonism, we found no effect of Zn supplementation on
plasma Cu concentrations. Zinc is capable of competing for
Cu binding site because of their similar chemistry organi-
zation [2]. High concentrations of dietary Zn reduced Cu
body stores and protected against Cu toxicity in sheep [56].
Moreover, maternal high-Zn diet induced Cu deficiency in
neonatal pigs [57].

Table 1 Effect of parenteral Zn
supplementation at the beginning
of fixed-time artificial insemina-
tion protocol on area of preovu-
latory follicle, area of corpus
luteum and plasma estradiol, and
progesterone concentration

Treatment APF (cm2) E2 (pg/mL) ACL (cm2) P4 (ng/mL)

Control 0.88 ± 0.05a 15.5 ± 0.7 3.35 ± 0.19 3.7 ± 0.3a

Zinc 1.09 ± 0.08b 15.8 ± 0.8 3.64 ± 0.22 5.0 ± 0.3b

Cowswere subcutaneously injected whit 400 mg zinc sulfate at the beginning of fixed-time artificial insemination
protocol (day 0 of the trial) or acted as negative controls

APF area of preovulatory follicle at the time of insemination (day 9), E2 plasma estradiol concentration at the time
of insemination (day 9), ACL area of corpus luteum on day 16, P4 plasma progesterone concentration on day 16.
Results are expressed as means ± SEM

Different superscripts within each column had P < 0.05

Table 2 Effect of parenteral Zn supplementation at the beginning of
fixed-time artificial insemination protocol on pregnancy rate in grazing
Aberdeen Angus cows

Odds ratio of pregnancy

% OR 95% CI P

Farm 1 55.56 1 0.39

2 67.65 1.67 0.50–5.58

Zn No 51.61 1 0.04

Yes 80.95 3.98 1.05–15.05

OR odds ratio, CI confidence interval. The trial was performed with
animals from two commercial farms. Cows from zinc-supplemented
group were subcutaneously injected with 400 mg zinc sulfate at the be-
ginning of FTAI protocol. Pregnancy rate was determined by transrectal
ultrasonography 41 days after artificial insemination. The interaction of
farm by Zn supplementation had no effect on pregnancy rate (P = 0.45)
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In bovines, plasma or serum Zn concentrations are
widely used indicators to establish Zn status [19], probably
because of its relatively easy accessibility with respect to
other tissue samples [20, 58]. It has been agreed that plas-
ma Zn concentrations above 90 μg/dL should be consid-
ered normal, between 80 and 90 μg/dL as marginal, and
below 80 μg/dL as indicative of Zn deficiency [59].
However, considering that plasma Zn concentration is a
variable indicator [20, 60, 61], some authors proposed oth-
er indices in addition to plasma Zn concentration to esti-
mate Zn status, including the determination of Zn-
dependent enzyme activities such as ALP [6]. Alkaline
phosphatase is an enzyme which has Zn as an important
co-factor. Changes in Zn status may reflect in changes in
ALP activity [62–65]. To investigate if Zn supplementation
improved Zn-dependent metabolism, we evaluated the ef-
fect of Zn injection on plasma ALP activity. The present
results show that while plasma Zn concentration was not
modified by Zn supplementation, ALP activity tended to
be increased (P = 0.09) in Zn-supplemented cows (only on
day 7 of FTAI). These results suggest that plasma ALP
activity is a more sensitive indicator of Zn supplementation
than plasma Zn concentration itself.

Conclusions

The results of the present study provide evidence that paren-
teral Zn supplementation, at the beginning of the FTAI proto-
col, increased preovulatory follicle size, plasma P4 concentra-
tion, and pregnancy rates in beef cows without modifying
plasma Zn levels.
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