
Agile and software engineering, an invisible bond

Alvaro Ruiz de Mendarozqueta1, Fabio O. Bustos2 and Pedro E. Colla3

1 aruizdemendarozqueta@gmail.com,

2fabio.oscar.bustos@gmail.com,
3colla.pedro@uader.edu.ar

Universidad Tecnológica Nacional Regional Córdoba1
Córdoba Córdoba - Argentina

Abstract. The bond between agile practices and Software Engineering practices
is clear and apparent for seasoned practitioners with experience in the operation
of high maturity development environments, yet it is often ignored on the domain
bibliography where mostly hybrid approaches are adopted. This article reviews a
sensible sample of the bibliography to confirm that trend and develop a map be-
tween long-established Software Engineering practices on the one hand, and con-
cepts stated as agile foundation principles on the other. Previous research efforts
are integrated into reinforcing those aspects of an agile-based project which need
to be addressed with priority in order to protect the additional value yield by the
usage of these methodologies.

Keywords: Agile, System Modelling, Software Engineering, Real Option
Value

Abstract. La relación entre metodologías ágiles y las mejores practices recomen-
dadas por la Ingeniería de Software es clara y evidente para los profesionales
experimentados en la operación de ambientes para desarrollo de alta madurez. Es
sin embargo a menudo ignorada en la bibliografía del dominio donde se tartan
como si fueran enfoques separados. Este artículo revisa una muestra significativa
de la bibliografía y confirma esta tendencia desarrollando un mapa de cuales son
las practicas establecidas de Ingeniería de Software y los conceptos subyacentes
que operan en las metodologías ágiles. Se integran esfuerzos previos de investi-
gación para reforzar que aspectos de la gestión de proyectos basados en metodo-
logías ágiles necesitan ser abordados con prioridad de manera que el valor adi-
cional que las mismas generan resulte protegido.

Keywords: Metodologías ágiles, modelado de sistemas, Ingeniería de Software,
valuación por opciones reales.

1 Work partially funded by grant PID SIUTNCO0004902

Ruiz de Mendarozqueta et al, Agile and software engineering, an invisible bond, EJS 20 (1) 2021 2-26 2

Received December 2020; Accepted March 2021; Published June 2021

1 Background

In order to achieve their business goals, the organizations need to implement tech-
nologically advanced software-based platforms; often needing to, partially or totally,
develop them to ensure they meet the business requirements as set by the competitive
landscape.

Software development is, to some extent, a low maturity engineering practice; at
least compared with other branches of the engineering domain. Metrics shown by the
industry, in terms of schedule compliance, cost containment, and ability to meet re-
quirements are in general terms far from what is considered acceptable in other indus-
tries (Jorgensen K. M., 2003).

Over time, good practices emerged, aiming to improve different aspects of the soft-
ware development cycle, which eventually evolved as a cohesive body of knowledge
known today as Software Engineering (Fairley & Bourque, 2014).

In order to
with recommended practices, (Team,
2010), COBIT (ISACA, 2018) or even tailored versions of more generic quality frame-
works such as ISO-9000 (ISO, 2020) evolved. Such reference models and standards
were eventually used to objectively compare an organization s capabilities, and to mit-
igate the software development risks through the deployment and systematic usage of
process practices and goals. The strategy to implement Software Engineering disci-
plines using convergence to reference models were embraced by large industry players,
eager to show up their capabilities to mitigate risks, as a competitive edge compared
with other vendors unable to show the same strength.

A rigorous deployment and institutionalization of a formal process reference model,
and the discipline and costs associated with maintaining it over time, were adopted by
a relatively small number of players willing to do the long-term commitments and in-
vestments required (M. Staples, 2007).

Other organizations, either because of lack of scale, or because software develop-
ment was not within their main domain of competences, found it difficult to justify the
investments required to embrace a formal process quality framework as their primary
strategy to achieve their business goals. However, at the same time, these organizations
still need to develop software as a crucial component of their competitiveness, or even
their survival; but they identify the formal and rigorous adoption of Software Engineer-
ing premises as way too costly to afford; at the same time, they might be impacted by
cost, time and quality issues derived from using a less rigorous methodological ap-
proach.

Agile methodologies all of the sudden stormed into the Software Engineering land-
scape as an attractive solution for small and medium businesses, which become able to
achieve reasonable performance into grasping the value out of their software develop-
ment efforts with a relatively small investment and organizational effort to institution-
alize (Cockburn A., 2007). There is no surprise in the huge adoption rate in the industry.

Ruiz de Mendarozqueta et al, Agile and software engineering, an invisible bond, EJS 20 (1) 2021 2-26 3

Under a close study, the value proposition of the agile methodologies shows that
their main advantage is coming from introducing some formal and strict development
framework into the project execution. This factor can be further understood when it is
possible to map that, by using any popular agile methodology, such as SCRUM, most
of the requirements for an organization
3 can be demonstrated (McMahon, 2010). A significant number of organizations can
map the usage of agile methodologies as part of their roadmap to achieve higher levels

(McMahon, 2010) (Maller, C.Ochoa, & Silva, 2004). This
is confirmed by the professional experience of the authors applying agile methodolo-
gies on environments operating at SEI-CMMI Level 5 maturity level, and seeing no
contradiction whatsoever among them.

Besides the benefits from a more rigorous project execution being introduced into
the development process, the flexibility to quickly align and adapt the software devel-
opment activities to the business priorities; that seamless decision capability also yield
value to the project and can be successfully modeled using a financial instrument called

ways to optimize their outcomes. When this evaluation is made, a significant increment
in the project value emerges from this factor ((Beck & Boehm, Agility through Disci-
pline: a debate, 2003)) (Colla P., 2012) (Colla P. , 2016).

The additional value proposition is not coming without some problems on their own,
as a key understanding and strict adoption of the methodologies involved are still re-
quired. Different authors (Ismail, 2016) (Bhasin, 2012) (Miller, 2013) (Caballero,
Calvo-Manzano, & Feliu, 2011) discuss problems faced by agile methodologies in
terms of delays, additional costs, and product quality issues, as well as the existence of
significant product backlogs. These are, basically, the issues Software Engineering has
historically evolved to address.

In the professional experience of the authors, the association between agile method-
ologies and Software Engineering practices is often rejected by agile practitioners as
not compatible, even further, in plain contradiction. Especially when the overall per-
ception leads to the notion that most of the flexibility provided by agile methodologies
can be lost if paired with Software Engineering concepts.

The authors will address in this article the intuition that a strong, albeit sometimes
hidden, bond does exist between Software Engineering practices and agile methodolo-
gies, using SCRUM as the reference methodology for such analysis.

2 Agile and Software Engineering relationship at a
fundamental level

The traditional approach has been that software is a tool for organizations to improve
their internal productivity through automation efforts. The current competitive land-
scape drives the need for a platform to improve or even be part of the value chain to
produce their income, and therefore being subject to continuous competitive pressure

Ruiz de Mendarozqueta et al, Agile and software engineering, an invisible bond, EJS 20 (1) 2021 2-26 4

to innovate in very short times. This is a very volatile context where the development
methodology has to support very fast development cycle times.

Ever since Ken Beck developed the ground rules of the agile methodologies, till their
current massive adoption level, the bibliography proliferated with platforms, usage
guidelines, strategies to implement, and practical examples in different industries (Rico,
2008) (Cohen, et al., 2004) (Pikkarainen & Passoja, 2005)(Pikkarainen & Mantyniemi,
2006) (Rico, s.f.) (Favaro, 2003) (Favaro, 2004).

The agile approach, which is contained as part of the Agile Manifesto (Beck, et al.,
2001) (Duncan, 2019) prioritizes individual actions and their interactions over process
and tools, leverage the software as documentation, cooperation, and close teamwork
with the customer (product owner) above negotiation and, perhaps the most significant
component, incorporate change into the methodology rather than opposing it following
a pre-defined plan.

We are uncovering better ways of developing software by doing it and helping oth-
ers do it. Through this work we have come to value:

 Individuals and interactions over processes and tools
 Working software over comprehensive documentation
 Customer collaboration over contract negotiation
 Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left
more. "

Figure 1 Agile conceptual modeling (Morse, 2012)

Given the known problems of traditional software development such as massive de-

lays, products that did not fulfill their purpose adequately after years of development,
and cost overruns, a group of pioneers thought of a radical paradigm shift. The tradi-
tional paradigm tries to establish the requirements comprehensively at the beginning of
the project, whose duration is fixed, and then to estimate, based on the development
plan, the effort, the necessary resources, and the schedule to be fulfilled.

There are multiple examples of failure, delays, and problems in such a paradigm. In
the new paradigm (Cockburn A. , 2007), as shown in Figure 1 Agile conceptual mod-
eling , a fixed time window is established, a small team of developers is organized and
functionality is continuously evaluated, with the permanent help of the "owner" of the
requirements providing the necessary sponsorship.

Ruiz de Mendarozqueta et al, Agile and software engineering, an invisible bond, EJS 20 (1) 2021 2-26 5

 The manifesto is complemented by 12 principles that highlight some fundamental
ground rules such as customer integration in the development process, ownership by
the entire team of everything that is produced, and a sustainable pace of work.

In brief, the dominant principles are:

1. Our highest priority is to satisfy the customer through early and continuous delivery
of valuable software.

2. Welcome changing requirements, even late in development. Agile processes har-
ness change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.
5. Build projects around motivated individuals. Give them the environment and sup-

port they need, and trust them to get the job done.
6. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.
7. Working software is the primary measure of progress.
8. Agile processes promote sustainable development. The sponsors, developers, and

users should be able to maintain a constant pace indefinitely.
9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity --the art of maximizing the amount of work not done-- is essential.
11. The best architectures, requirements, and designs emerge from self-organizing

teams.
12. At regular intervals, the team reflects on how to become more effective, then tunes

and adjusts its behavior accordingly.

Efforts have been made to establish a structured time retrospective on the evolution

of agile disciplines and software engineering practices (Agile Alliance, 2020), but we
have preferred a more holistic approach based on a group of relevant bibliographic ref-
erences in the judgment of the authors.

It comes as not a surprise the manifesto is solidly supported by the practices and
principles of software engineering. Albert Endres and Dieter Rombach (Endres &
Rombach, 2003) Requirement deficiencies are the prime source of project

statement is covering principles 1 and 4.
Gerald Weinberg (Weinberg, 1992), reviewing different definitions of quality con-

clude that
principle 4 because delivering working software soon is the way of adding value to the
customers which, far from being a surprise, is strongly supported by value management
financial principles involving time and risk as to the main contributors or detractors for
it (Brealey & Myers, 2016)

In a classic paper Davis (Davis, Bersoff, & Comer, 1988) remarks
application beyond the trivial, user needs are constantly evolving. Thus, the system

. This statement not only sup-
ports the manifesto values but also addresses principle 2. Another source for supporting

Ruiz de Mendarozqueta et al, Agile and software engineering, an invisible bond, EJS 20 (1) 2021 2-26 6

principle 2 comes from the very CMM foundation as Watts Humphrey (Humphrey,
1989) says

 he remarks as an usual mistake. .
Deliver software to customers as fast as possible is referenced by Alan Davis (Davis

A. , 1994); Mary and Tom Poppendieck (Poppendieck & Poppendieck, 2003) say that

addressing principle 3.
Not fulfilling what is stated in principle 4 is mentioned by Steve McConnell

(McConnell S. , 1996) as one of the project's classic mistakes.
Robert L. Glass (Glass, 2002) collects facts and fallacies of software engineering,

when found during productio
lated to principles, 1, 3 and, 4. This topic is the main theoretical foundation on why the
contention of defects needs to be performed on a given cycle avoiding them to cascade
into the following.

Principle 5 is referred to and addressed by many authors, Boehm (Boehm, Improving
Software Productivity, 1987)
influence by far is that of the selection, motivation, and management of the people in-
volved in the software process . Steve McConnell (McConnell S. , 1996) referred to the

vation. Study after study has shown that motivation ably has a larger effect on produc-
(Boehm, Improving Software

Productivity, 1987). Tom DeMarco and Tim Lister (DeMarco & Lister, 1987) strongly
state the importance of productive teams. Alistair Cockburn and Jim Highsmith (Cock-
burn & Highsmith, 2001) stress individual competence as a critical factor in project
success and identifies the emphasis on people skills as a key factor underlying all Agile
methodologies.

Regarding principle 6, Tom DeMarco and Tim Lister (DeMarco & Lister, 1987)
addressed different problems in order to develop productive teams including commu-
nication. Luke Hohmann devoted a full chapter (Communication) (Hohmann, 1997)
proposing a communication framework to get the best communication possible. Daniel
Coleman (Coleman, 2015) stated that
travel multiple dimensions and optimal performance enabling the connection between
two brains in the field of leadership goes through ways to improve emotional intelli-

unicate as a key issue to improve perfor-
mance.

The meaning of what is a working software is fully covered in the traditional books
of Software and Quality Engineering [(Sommerville, 2015), (Weinberg, 1992), (Fair-
ley & Bourque, 2014), (McConnell S. , 1996), (Martin R. , 2012) among others]. Tom
Gilb, (Gilb, 1988) developed an entire
includes several elements of the Agile Manifesto and the Scrum Framework. Some of

analysis, design, build and test at each

principles 3, 7, 8 and 10.

Ruiz de Mendarozqueta et al, Agile and software engineering, an invisible bond, EJS 20 (1) 2021 2-26 7

In our understanding, the lack of quality and poor design leads to rework and thus a
high Cost of Poor Quality (CoPQ), which disables the possibility to deliver value in a
fast manner and introduces wasted effort, is, therefore, one of the most counterproduc-
tive factors for team motivation (Ruiz de Mendarozqueta, Bustos, & Colla, 2019). Tra-
ditional books of Software and Quality Engineering (Sommerville, 2015), (Weinberg,
1992), (Fairley & Bourque, 2014), (McConnell S. , 1996), (Martin R. , 2012) among
others, covered the topic and it is straightforward to see how the poor quality erodes the
fast delivery of value.

- - , are mentioned by Steve
MacConnell (McConnell S. , 1996) as project classic mistakes; Mary and Tom Pop-
pendieck (Poppendieck & Poppendieck, 2003)
fundamental principles explained as avoiding rework and not developing unnecessary
functionality. All these references pointed out simplicity, the main component of prin-
ciple 10.

Principle 11 is anchored to
cally related, that interact by exchanging information and energy to obtain a result

(Meadows, 2008); it is easy to apply the definition
to the software. Systems theory states that the behavior of the system is determined by
its structure (Meadows, 2008). The structure of the system is determined by the archi-
tecture and design (Sommerville, 2015), (Endres & Rombach, 2003), (Fairley & Bour-
que, 2014), (McConnell S. , Code Complete, 1993). The architecture is assumed to
emerge. as the result of refining an initial proposal, or intentional result, with the feed-
back of the developers in each iteration, verifying the quality of the design and code.

The Scrum embrace, inspect and adapt (Institute) philosophy implements principle
12. This principle addresses the very well-known software engineering principle for
continuous improvement (Humphrey, 1989), (Sommerville, 2015).

3 Relationship between Agility, Scrum and Software
Engineering Practices

In the previous section, we made a strong case that all basic agile premises are well
established Software Engineering practices, which would lead to a reasonable conclu-
sion that agile methodologies are a well-integrated corpus of practices that represents
just another way to address requirements under the umbrella of the Software Engineer-
ing domain.

To further support our views, the authors selected a small sample of bibliography on
agility, without any attempt to avoid any skewness but aiming to have a fair coverage
of the bibliography and by no means exhaustive but often cited on academic efforts and
as part of the daily professional exercise, and reviewing that small corpus sample with
a focus on frameworks such as Scrum and XP. An immediate observation shows there
is a noticeable scarcity of direct references for implementing software engineering prac-
tices. In the Table 1, we summarize a sample of a group of references and their rela-
tionship to software engineering practices and vice-versa.

Ruiz de Mendarozqueta et al, Agile and software engineering, an invisible bond, EJS 20 (1) 2021 2-26 8

Table 1 Software Engineering Bibliographical cross-reference

Software engineering bibliography, on the other hand, often considers agile method-

ologies as part of their body of knowledge. A lack of symmetry is observed as most of
the available bibliography for agile methodologies avoid to reference their recommen-
dation and practices as the actual implementation of different disciplines proposed by
Software Engineering sources.

It is worth mentioning that, at the dawn of the agile methodologies (Cohen, Lindvall,
& Costa, 2004), they emerged to overcome the drawbacks presented by the waterfall
style lifecycle. From that perspective, agile practitioners saw little value in adopting
well-defined processes which they perceived as rigid and value detractors while, at the
same time, high maturity organizations working in compliance with SEI-
based reference models identified that agile methods addressed most of the intermediate
maturity requirements (Paulk, 2002). This trend seems to have been widespread as agile
methodologies became mainstream since their inception.

A systematic bibliography review, presented in Table 2, shows that over a sample
deemed relevant of 20 papers on agile topics; only 6 papers (30%) contain explicit ref-
erences to Software Engineering principles and/or practices, 4 papers (20%) contain
indirect references, and 10 papers (50%) contain no reference at all. This is taken as an

Reference References between agile and software
engineering

(Shore & Warden, S., 2008) Brief reference to software design
(Cohn, Succeding with Agile, 2010) Brief reference to software design and code refactor
(Beck & Boehm, Agility through Discipline: a
debate, 2003)

Referencing size of projects using XP

(Lan & Balasubramaniam, 2007) No references
(SCRUMstudy, 2013) No references
(Deemer, Benefield, Larman, & Vodde, 2012) No references
(Schwaber & Sutherland, The Scrum Guide,
2017)

No references

(Boehm & Turner, Management Challenges to
Implementing Agile Processes in Traditional
Development Organizations, 2005)

Minor references

(Martin R. , 2012) Code design and code quality in detail.
No reference to agile methods nor Scrum.

(Sommerville, 2015) Scrum and XP introduction but there is no relation
with the other topics of software engineering

 No references

Scrum Method of Achieving Software Agility,
2005)

It does not prescribe software engineering practices.
Recommend to keep it simple and to let the team de-
cides

(Duncan, 2019) Minor references to design
(Poppendieck & Poppendieck, 2003) Some general references to design approaches
(Cohn, Essential Scrum, 2012) Minor references
(McConnell S. , More Effective Agile: A
Roadmap for Software Leaders, 2019)

Minor references to code quality

(Martin R. , 2019) A chapter with coding practices
(Stellman, 2014) No references
(Fairley & Bourque, 2014) Reference to Agile as a Method in Software Engi-

neering Models and Methods chapter
(Johnson & Sims, 2012) No references

Ruiz de Mendarozqueta et al, Agile and software engineering, an invisible bond, EJS 20 (1) 2021 2-26 9

indicator that agile sources do a weak bridge between the concepts they describe which
present correspondences with Software Engineering methods and principles.

Table 2: Agile Methodologies Papers Bibliographical cross-reference

The very same factors that erode into the value on typical non-agile software devel-

opment projects are observed on projects using agile methodologies; it is not difficult
to observe that these factors are often not addressed as systemic problems, approach
which hinders the capability to address them. Factors such as defect fallback from one
cycle (sprint) to the next, rework effort, the increased effort devoted to addressing the
technical debt on the product backlog and the need to rigorously validate & verify the
developed components. are observed with enough frequency to be self-evident. In this
sense, statistics from Chaos Standish Group (Liebert, 2019),
success rates are two times higher than success rates of waterfall projects. However, it
also states that over 50% of evaluated projects have failed to meet all requirements of
project constraints mance
record, even for the most successful software development methodology applied in the
industry today.

4 Systemic modeling of the agile methodologies value

In his landmark book (Weinberg, 1992), Gerald Weinberg states that a systemic view
and system modeling for software management and steering patterns is needed for cop-
ing with the traditional software development problems.

A previously developed line of work exploring the value of SCRUM (Colla P. ,
2012) (Colla P. , 2016) followed by the exploration of typical software development
issues and how they are expressed on typical agile projects (Ruiz de Mendarozqueta,

Reference Agile and Software Engineering
(Bustard, Wilikie, & Greer, 2013) (Hoda, Salleh,
& Grundy, 2018) (Cohen, Lindvall, & Costa,
2004) (Kuhrmann, et al., 2019)
(Ebert & Paasivaara, 2017) (Harvie & Agah,
2016)

Papers on Agile methodologies that contain explicit
references to Software Engineering. In general, the ag-
ile process which considers SW Engineering practices
are different SCRUM flavors, particularly when done
at-scale. The emergence of hybrid development flavors
(water-scrum-fall) is also observed.

(Vijayasarathy & Butler, 2016) (Mohan, Ramesh,
& Sugumaran, 2010)
(Falessi, et al., 2010)
 (Karlstrom, 2005)

Papers on Agile methodologies that contain indirect
references to Software Engineering. In general the ref-
erences appear in connection with SW architecture or
overarching product management practices.

(Mantovani Fontana, Reinehr, & Malucelli,
2015)
 (Vallon, Strobl, Bernhart, Prikladnicki, &
Grechenig, 2016) (Dingsøyr, Fægri, Dybå,
Haugset, & Lindsjørn, 2016)
 (Chora, et al., 2020)
 (Bick, Spohrer, Hoda, Scheerer, & Heinzl, 2018)
 (Jorgensen M. , 2019)
 (Kersten, 2018)
 (Cockburn & Highsmith, 2001) (Akbar, 2019)
 (Telemaco, Oliveira, Alencar, & Cowan, 2020)

Papers on Agile methodologies that do not contain ref-
erences to Software Engineering. It is observed that
some of these papers discuss well-known development
issues (e.g. coordination among teams, need of a ma-
turity model for agile, requirements management, need
of metrics to evaluate performance, etc.), without re-
verting to the well-established practice base provided
by the SW Engineering to address them.

Ruiz de Mendarozqueta et al, Agile and software engineering, an invisible bond, EJS 20 (1) 2021 2-26 10

Bustos, & Colla, 2019) show that without great care to manage the main parameters of
the software development cycle, an agile approach provides some extra protection of
the project ultimate value, but at some point might end up eroding on that value. Soft-
ware processes do not usually introduce restrictions to apply any given methodology of
choice, only to deploy the controls to ensure no inviolate is overridden.

Simulation means seems to be the handiest tool to evaluate the relationship between
depending variables of the system with their independent counterparts, as well as to
explore the potential relationship and the degree of independence among variables. Any
evaluation made based on simulation requires a fair estimation of the values assigned
to different parameters and their assumed distributions; not much more than an advance
to stronger quantitative methods based on field information.

The adoption of mature and well-proven as effective Software Engineering practices
preserves the value of the project, by minimizing deviation from the business scenarios
in terms of cost and calendar. This aims to achieve the overall balance of income and
expenditure as well as optimizing other organizational and intangible factors typically
factored into the opportunity cost used to discount cash flows, in this way the value can
be measured by using the Net Present Value (NPV) of the project flows. The analysis
tries to grasp the value for the organization from an investment standpoint, as it consid-
ers the cash flow and the risk to materialize it from a given a-priori point of view.

Simultaneously, the possibility to prioritize requirements over time, in a way that
enhances almost continuously the value proposition of the organization, configures op-
tions, which can be valued using the Real Option Valuation methods (Brealey & Myers,
2016) (Mun, 2002).

The overall relationship among systemic variables can be expressed as a cause-effect
model (Ruiz de Mendarozqueta, Bustos, & Colla, 2019) where the two main contribu-
tors to the overall value, the Net Present Value (NPV) and the Option Price Value
(OPV) are established as dependent variables of several independent variables defined
by the industry and organizational context as well as the decisions taken and results
obtained during the project execution, being the sum of both values named the extended
net present value of the project (eNPV) The resulting cause-effect model used represent
independent variables defined by the organization outside the scope to manage from
within the project, whilst other organizational factors are represented by some assumed
distribution, and, finally, with intermediate variables with some systemic relation with
the rest to express, understand, simulate, and extract conclusions from the systemic
overall behavior into the dependent variables of interest.

From that approach, the main interest is to evaluate mainly factors that erode the
total value of the project, which, in turn, is represented by the net present value defined
by cash flows involved on it, plus the option values introduced by the agile methodol-
ogy itself. The details of the analysis can be obtained in the referenced bibliography
and will not be reproduced here due to of lack of space. But, as a summary, when pro-
jects with typical organizational values and intermediate variables distributions deemed
as reasonable or supported by the bibliography are evaluated, some conclusions can be
obtained as a further insight on the factors involved in the value erosion.

Ruiz de Mendarozqueta et al, Agile and software engineering, an invisible bond, EJS 20 (1) 2021 2-26 11

Figure 2 Sensitivity of total value with manageable factors and influence of main
contributors ((Ruiz de Mendarozqueta, Bustos, & Colla, 2019)

From the identified contributors to the project extended net present value on agile

projects, the most relevant is the CoPQ followed by some expression of the Phase Con-
tainment of Errors (PCE) which measures how much of the quality issues of one sprint

ing the defects a value waste and the carry-over to be affected by a cost increase factor
(K), as part of the value-added nature of activities on subsequent sprints and thus rep-
resenting to the project net productivity hit if that happens. Agile methodologies do
introduce additional sources of value, which creates buffers to manage deviations prob-
ably better than other methodologies; this can be seen as a qualitative confirmation on
the reason why organizations prefer agile over other methods.

However, at the same time, a conclusion is that if no attention is paid to structural
process variables, such as the ones traditionally watched by Software Engineering dis-
ciplines, eventually, the value is eroded to a point that, even with the added value of
agile methodologies, the results turn against the organization. The conclusions of prior
work suggest that CoPQ can be in the neighbor of 18% as the upper acceptable limit,
and 80% as the lower limit for PCE for this effect to be noticeable. It comes as no
surprise that these values are in the neighbor of those achieved by organizations in their
early effort of applying structured methodologies traditionally recommended by tradi-
tional Software Engineering sources and matched values reported by the bibliography
(Sandu & Salceanu, 2018) as obtained on successful typical agile projects; therefore,
even minimal deviations might push the project beyond profitability, evidencing a link,
somewhat hidden in the bibliography, between agile methodologies and Software En-
gineering practices not referenced in the bibliography. The results of the simulation,
although preliminary, seem to be in line with some of the flow items of software value
streams, namely defects and debt, identified by Kersten (Kersten, 2018).

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Factor within range for dependent variable outcome

eNPV=f(CoPQ,PCE)

Ruiz de Mendarozqueta et al, Agile and software engineering, an invisible bond, EJS 20 (1) 2021 2-26 12

5 Business perception of the agile methodologies value

A research effort has been carried out ((Ruiz de Mendarozqueta, Bustos, & Colla,
Agile in practice, a systemic approach, 2019) aiming to understand how organizations
perceive the relation between agile methodologies and traditional software engineering
practices. As part of it, a field experiment was designed starting with a data-gathering
among software organizations in Argentina. The analysis of the collected data throws
some additional light on the subject. In these software organizations, activities are held
mainly towards the development of standard products and customized implementa-
tions, update and maintenance of existing products, as well as embedded applications
for electronic devices.

Research questions
Our research questions were:

 Data Source
The scope of the collected survey attempts to include a group representing a variety

of software organizations in Argentina. It is composed of few questions related to sev-
eral organizational characteristics, context factors, and the usage of both agile methods
and software engineering practices. A combination of Yes/No, Multichoice, and 5-Lik-
ert categorical values are captured through the questions. The survey went public thru
different social media and professional network channels. Collecting enough answers
to meet the confidence required by the design of the experiment is an ongoing activity.
However, it is possible to preliminary explore, with a reduced number of answers,
some initial results accepting a modest precision of the conclusions. Being a subject
with little or no previous research efforts, some initial results bring some value in the
authors´ perspective, and therefore they are shared in this paper. Further work will
continue to collect enough data points to significantly improve the precision of the con-
clusions.

Analysis Framework
The organization size, measured as the direct software development resources, is

, at the moment to

 ¿Are the adoption of Agile methodologies and the embracement of software
engineering practices perceived as related by the organizations?

 ¿How the adoption of agile methodologies and deployment of software engi-
neering practices are related to the organizational size and age?

 ¿What is the influence on the adoption of agile methodologies and/or software
engineering practices related to the markets the organizations participate in,
the deployment of formal quality models evaluation and the operation under
incentive programs? ¿In particular how both correlate to de Argentina´s soft-
ware promotion law (Ley 25922)?

Ruiz de Mendarozqueta et al, Agile and software engineering, an invisible bond, EJS 20 (1) 2021 2-26 13

decide whether or not to perform investments on improving their performance. The
organization age is used as a direct indicator for the room to collect feedback from
customers, experience, and actual results, into the need to introduce structural compli-
ance with software process methodologies.

Light needs to be thrown over some factors which subject to decisions being made
by the management, whose relationship to the agile and/or software engineering prac-
tices would benefit from being evaluated. Among these factors, the actual core business
and the nature of the markets served might define the need for the organization to raise
the level of software development performance. Other parameters are the management
decision to embrace formal quality-related evaluations and the affiliation to external
programs that might be related to the fulfillment or adoption of industry frameworks.
Pedro Colla (Colla & Montagna, 2008) referred a research made that predicts a signif-
icant relationship between the organization size (N) and the likelihood of embracing
formal quality models. Intuitive as it might seem, this notion had received little atten-
tion in published papers in terms of validation.

Finally, the analysis includes as a factor assumed to operate as facilitator of the for-
mal adoption of quality systems,
(agencia.mincyt.) (Ley 25922) which is incorporated also as a parameter whose rela-
tionship needs to be explored.

Design of experiment

Although a full census would be desirable to understand the full research scope, this

is deemed impractical as a source of information about the factors addressed by this
paper. Many organizations would refuse to go public with their internal data in fear of
exposing competitive information of internal nature. Because of that, a sample survey
has been attempted with a pre-defined level of representation of the target organizations
which derives on a measurable confidence interval on the results. The sample could be
considered, in broad terms and not completely void of skew factors, a random one as
the call for answers was made public and no individual answers were solicited. After
saying that, the affiliation and personal network of the authors play a role that might
skew to some extent the results. However, the resulting dataset collected is deemed
acceptable as it reaches the sampling error as preliminary acceptable at this stage of the
experiment.

For the analysis's sake, generalizations would be made with the collected infor-
mation assuming a random sample data has been collected and understanding the threat
to validity this factor might introduce.

According to the data made available by CESSI (OPSSI, 2016) close to 650 organi-
zations are involved in the software development business in Argentina, delivering to
different segments and capabilities. This probably would be a very conservative num-
ber as many organizations might not be truly devoted to software development but other
activities of the value chain of the software industry, however, assuming a larger-than-
needed number, would make the results stronger in terms of the confidence level.

Ruiz de Mendarozqueta et al, Agile and software engineering, an invisible bond, EJS 20 (1) 2021 2-26 14

In order to identify what would be the minimum sample size to achieve a given sig-
nificance of the results is needed, this factor defines both the precision and the confi-
dence interval of the results. It is a judgment call of the authors to balance the precision
achieved with the realistic resources available to perform the data collection.

Cochran (Cochran, 1977) recommends a sample size (n0) for a very large popula-
tion:

2

2

0 e
qpZn

Ecuación 1

Where the normalized random variable (Z) represents the value at the confidence
level assuming a normal distribution, using a value of 1.96 to achieve 95% confidence
level. The assumed proportion of the population with a given attribute (p) and the lack
of it (q) is assumed in the worst case by assigning the same value to both (0.5). At this
point with over 30 valid and unique responses available the analysis is carried out with
an accepted error level of 20%.

Yamane (Yamane, 1967) provides a criterion to define the sample size for small
populations, when the sample size might be comparable to the total population or in
any case, it cannot be considered as much larger, the result of the analysis yield similar
conclusions in terms of the precision obtained with the available data points.

 The overall assumed accepted error level might look a little high, but consideration
needs to be given to the fact this research is aimed to obtain preliminary insights on a
previously unexplored subject, and the authors consider this sort of precision a reason-
able balance between the available resources and the robustness of the conclusions
made possible.

Survey design

Two factors represent the dependent variables under study, the degree of agile de-
ployment (AGILE, Y1) and the degree of software engineering practices deployment
(SWE,Y2). Both are captured as categorical variables represented using a 5-Likert scale
where the minimum level is little or no implementation and the maximum full adoption
whereas the mid-scale represents the awareness and some fair level of usage. Both
scales are designed to represent a similar depth of adoption per level.

Organizational characteristics are assigned as independent variables. Organizational
size (X1), Organizational age (X2) are both assigned with 5-Likert categorical values.
For the size, the CESSI (OPSSI, 2016) usual categorical scale is used, while for the
organizational age an experimental sequence is adopted.

The main goal of the organization is based on development type performed, markets
served, quality accreditations achieved and technology focus are also captured with
multi-choice options that can be manipulated as different kinds of discrete answers with
convenient grouping.

Ruiz de Mendarozqueta et al, Agile and software engineering, an invisible bond, EJS 20 (1) 2021 2-26 15

Survey Design and distribution

As design criteria, the total survey was one-pager
the likelihood of being answered (Mardsen & Wright, 2010). A small operating defini-
tion is attached to each question and general instructions for fulfilling and returning are
provided as well. A confidential statement ensures the participant that no individual
answer will be used or published, and all the results would be statistical aggregates
characterizing the sample in order to understand the whole population. Fulfillment
helps are provided in terms of drop lists and checkboxes to uniform the answers pro-
vided within the defined categories. Google Forms (Ruiz de Mendarozqueta, Goggle
Forms) has been used to implement the survey form and several validation and verifi-
cation tests were performed by the authors to ensure the functionality of different op-
tions.

The survey was published on the LinkedIn account (Ruiz de Mendarozqueta,
Linkedin) and other social media platforms for all the authors. A fair amount of bounc-
ing from direct network professionals was observed allowing the survey to reach a
larger audience resulting in the request to reach several hundred individual practitioners
at the end of the diffusion process.

Survey ANALYSIS

A total of 30 valid and unique responses were provided as collected by the Google
Forms tool. The distribution of organizational size and age is given by Figure 3.

Figure 3 Organization size and age

The technology area where the organizations perform and the markets they serve is
represented by Figure 4.

Ruiz de Mendarozqueta et al, Agile and software engineering, an invisible bond, EJS 20 (1) 2021 2-26 16

Figure 4 Organization technology area and markets served

The organization type and the formal quality system under which the organizations
were evaluated are described by Figure 5.

Figure 5 Organization type and formal quality system

As per the subject of interest for the survey, the agile adoption and the deployment
of software engineering practices were found to be distributed as shown by Figure 6.

Figure 6 Organization adoption of agile methodologies and deployment of software engineering
practices

Evaluation of dependent variables

The main tools for statistically analyzing a dataset differ depending on whether the
distribution of the data follows a normal distribution or not. For non-normal distribu-

Ruiz de Mendarozqueta et al, Agile and software engineering, an invisible bond, EJS 20 (1) 2021 2-26 17

tions, "non-parametric" tools are used, which, in general, are less powerful and versa-
tile. It is therefore an accepted practice, to use tools aimed at normal distributions even
in cases where the distribution differs from it to a lesser extent.

The organization size is found not to follow a normal distribution since the Ander-
son-Darling normality test has a p-value=0.005. The organization age (AGE) normality
test has also a p-value=0.005 and does not follow a normal distribution either.

Assumed both dependent variables represent equivalent levels of implementation for
both agile practices and software engineering practices, the Mann-Whitney test com-
pares the sample medians to be equal vs. not equal, resulting in a p=0,7958 therefore
the null hypothesis cannot be rejected and both populations can be considered as having
the same median value. The paired t-test needs to be used with caution because of the
lack of normal distribution on both variables but it yields a T-Test of mean difference

-Value = 0,889 therefore the null hypothesis of no mean difference cannot
be rejected.

Using Ordinal Logistic Regression (Kruskal, 1954), an evaluation on the relation
between the dependent variables with both organizational size (N) and organizational
age (AGE) is made, a result of p>0.05 means there is insufficient evidence to claim the
model does not fit the data adequately, and therefore the variables are related as seen in
Table 3.

 Y (AGILE) Y(SWE)
N 0.435 0.183
AGE 0.12 0.948
GLOBAL 0.062 0.244
SPI 0.604 0.007
EXT 0.104 0.322

Table 3 Ordinal Logistic Regression analysis (Goodman-Kruskal)

The impact of parameters such as the market being served (GLOBAL), the adoption
of quality systems certification/assessments (SPI), and the operation under external pro-
gram (EXT) is evaluated in terms of the dependency of the agile or software engineer-
ing practices adoption with them using a Chi-Square method (Table 4).

Source p-value
N 0.667
AGE 0.032
GLOBAL 0.473
SPI 0.199
EXT 0.270

Source p-value
N 0.060
AGE 0.487
GLOBAL 0.877
SPI 0.079
EXT 0.474

Table 4 Relation between parameters and dependent variables using the Chi-Square method

Using a Generalized Linear Model regression between the independent variables and
parameters and the adoption of agile methodologies can be also seen in Table 4, where
a p-value of less than 0.1 means a dependency was found, whilst a larger p-value indi-
cates the independence (null hypothesis) cannot be rejected.

Repeating the analysis, but now with the implementation of software engineering
practices, can be seen at Table 4 as well.

Ruiz de Mendarozqueta et al, Agile and software engineering, an invisible bond, EJS 20 (1) 2021 2-26 18

Finally, the discretized responses representing agile methodologies and software en-
gineering practices adoptions are related to the adoption of Argentina´s software pro-
motion law as a discrete (binary) variable. The Chi-Square analysis between SWE and
LEY yield p=0.033 so a dependency has been found while the relation between AGILE
and LEY yield p=0.783 and a dependency has not been found.

Discussion

The adoption of agile and software engineering methodologies are similar in organ-
izations, the higher the one, the other correlates as higher too. This is a hint that organ-
izations apply stricter agile methods as they are aware of the need to deploy software
engineering practices as well. Organization size dominates the adoption of agile meth-
odologies in a stronger way than the adoption of software engineering practices, whilst
the opposite is suggested for software engineering practices.

The operation servicing global markets is related to the adoption of agile methodol-
ogies whilst the adoption of strict, committed or certified, quality frameworks is related
to the adoption of software engineering practices, surprisingly the usage of external
incentive programs seems to relate stronger with agile than the adoption of software

drives the adoption of software engineering practices but it is not related to the usage
of agile methodologies within the statistical margin assumed.

6 Best practices and lessons learned

The results shown by the previous analysis at the conceptual, bibliographic and sys-
temic dimensions, although preliminary, seem to be pretty consistent with the practical
experience of the authors in real-world projects of different sizes and complexities
where, more often than not, the projects where old fashioned, Software Engineering
fundamentals are not enforced, the technical debt increases with the successive sprints
eroding customer trust in the new features incrementally delivered, generating schedule
overruns at a product level, and forcing to add extra effort, and hence cost, in the form
of additional sprints whose backlog is mainly composed of defect-correction stories.
Very little is included in the agile methodologies corpus reinforcing the need to take
special care of these technical aspects. This kind of situation is against some of the
Agile principles, first and

. The
value of the software is put then in question and could be destroyed if the project devi-
ates from its goals beyond acceptable thresholds. More often than not, the actual in-
vestment the software project enables is highly leveraged with a much bigger invest-
ment return, and therefore, the entire investment is jeopardized. In addition to that, the
effort consumed by sprints devoted to defect correction stories is essentially waste, con-
tradicting, therefore, the A the art of maxim-
izing the amount of work not done, The author´s experience shows that in

Ruiz de Mendarozqueta et al, Agile and software engineering, an invisible bond, EJS 20 (1) 2021 2-26 19

order to fulfill at product level
-driven soft-

ware engineering processes, may be relevant to be exercised.
In terms of instruments, ways, and means to protect value, what the experience

shows and the results of the simulation preliminary confirm is that, by large, the Cost
of Poor Quality is the main driver in terms of value erosion all along the development
cycle of actual software products, especially considering that a typical development
cycle normally takes a significant number of sprints. This result is aligned with the
classical principle that states that the cost of fixing a bug increases exponentially
through the development process (Boehm & Basili, Software Defect Reduction Top 10
List, 2001). Attention needs to be paid to the importance of the capability to detect and
correct errors in the sprint where they were introduced, which is measured by the PCE
metric, as defects escaped from one sprint to the following ones, erode value with
greater speed because of the value-added nature of the activities of subsequent sprints.

An immediate conclusion is the need to create a stronger awareness about the foun-
dation nature of the Software Engineering practices, and the need to blend them in the
day-to-day agile activities. Map how the different major goals correlate to agile activi-
ties needs to be done and understood by the team, metrics collection on subjects other
than velocity and crump down related evolutions needs to be introduced as well. The
authors believe that the definition of practices and collection of these metrics shall be
as agile as the rest of the process, for example identifying the stories where defects from
previous sprints need to be corrected and deriving PCE from them, and considering the
story points of the backlog devoted to defect correction stories as a measure of CoPQ.
In the same manner, as a burndown chart is kept and used as a measure of progress,
curves of planned vs actuals of PCE and CoPQ could be kept and used as key elements
for product release decisions and for appropriate planning of successive sprints.

7 Future work

Further work is needed to develop ideas toward a framework following the line of
work of the I+D effort this paper is part of, including the identification of prototype
projects where factual data can be extracted for further validation of the premises, as
well as to collect metrics enabling the comparison of defect and phase containment
behavior consistent with the ones captured from the bibliography. The results, in terms
of product defects and development costs, could then be compared with those of similar
projects that have not introduced these practices. Also, a further characterization of the
emergent trend to apply hybrid approaches to software development in terms of mix-
tures between agile and Software Engineering process models is needed. Particularly
for projects at some larger scale, where the importance of uncovering, understand and
effectively applying the links between these two approaches will be increasingly im-
portant for practical purposes and, as such, a topic for further relevant research work.
A great deal of confidence is placed on the completion of the research effort whose
preliminary results are shared in this paper in order to obtain further degrees of confi-
dence in the conclusions.

Ruiz de Mendarozqueta et al, Agile and software engineering, an invisible bond, EJS 20 (1) 2021 2-26 20

8 Bibliography

Agile Alliance. (2020, 08 12). Agile Practices Timeline. Retrieved from Agile

Practices: https://www.agilealliance.org/agile101/practices-timeline/
Akbar, R. (2019). Tailoring Agile-Based Software Development Processes. IEEE

Access, 2019.
Alegrìa, J. H., & Bastarrica, M. (2007). Implementing CMMI using combination of

Agile methods. V9(N1).
Appleton, B., Berczuk, S., & Cowham, R. (2005). The Agile Difference for SCM.

Retrieved from CrsossRoads: https://www.cmcrossroads.com/article/agile-
difference-scm

Banerjee, A., Narasimhan, B., & Kanakalata, C. (2011). Experience of Executing Fixed
Price Off-shored Agile Projects. Proceedings of the 4th India Software
Engineering Conference. ACM.

Beck, K., & Boehm, B. (2003). Agility through Discipline: a debate. June 2003.
Beck, K., Beedle, M., Bennekum, A. v., Cockburn, A., Cunningham, W., Fowler, M., .

. . Thomas, D. (2001). Principles behind the Agile Manifesto. Retrieved from
http://agilemanifesto.org/principles.html

Bhasin, S. (2012). Quality Assurance in Agile A study towards achieving excellence.
pp. pp 64-67.

Bick, S., Spohrer, K., Hoda, R., Scheerer, A., & Heinzl, A. (2018). Coordination
Challenges in Large-Scale Software Development: A Case Study of Planning
Misalignment in Hybrid Settings. IEEE Transactions on Software
Engineering, Year: 2018, Volume: 44, Issue: 10.

Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. The
Journal of Political Economy, V81(N3), pp. pp 637-654.

Boehm, B. (1987). Improving Software Productivity. IEEE Software.
Boehm, B., & Basili, V. R. (2001). Software Defect Reduction Top 10 List. IEEE

Computer, January 2001.
Boehm, B., & Turner, R. (2005). Management Challenges to Implementing Agile

Processes in Traditional Development Organizations.
Brealey, R., & Myers, S. (2016). Principles of Corporate Finance 12th Edition.

McGraw-Hill, 6th Edition.
Bustard, D., Wilikie, G., & Greer, D. (2013). The Maturation of Agile Software

Development Principles and Practice: Observations on Successive Industrial
Studies in 2010 and 2012. 20th Annual IEEE International Conference and
Workshops on the Engineering of Computer Based Systems (ECBS).

Caballero, E., Calvo-Manzano, J., & Feliu, T. S. (2011). Introducing Scrum in a Very
Small Enterprise: A Productivity and Quality Analysis. pp. pp. 215-224.

Chora, M., Springer, T., Kozik, R., López, L., Martínez-Fernandez, S., Ram, P., . . .
Franch, X. (2020). Measuring and Improving Agile Processes in a Small-size
SoftwareDevelopment Company. IEEE Access (Volume: 8), 2020.

Clark, B. (2000). Quantifying the effects of Process Improvement on Effort. IEEE
Software. Nov 2000.

Ruiz de Mendarozqueta et al, Agile and software engineering, an invisible bond, EJS 20 (1) 2021 2-26 21

Cockburn, A. (2007). Agile Software Development. , Addison-Wesley.
Cockburn, A., & Highsmith, J. (2001). Agile Software Development: The People

Factor. IEEE Computer Year: 2001, Volume: 34.
Cohen, D., Lindvall, M., & Costa, P. (2004). An Introduction to Agile Methods.

ADVANCES IN COMPUTERS, VOL. 62.
Cohn, M. (2010). Succeding with Agile. Addison Wesley.
Cohn, M. (2012). Essential Scrum. Adisson Wesley.
Coleman, D. (2015). El cerebro y la inteligencia emocional: Nuevos descubrimientos.

Penguin Random House Grupo Editorial España.
Colla, P. (2012). Marco para evaluar el valor en metodología SCRUM. La Plata-

Argentina.: 13th Argentine Symposium on Software Engineering.
Colla, P. (2016). Uso de opciones reales para evaluar la contribución de metodologías

KANBAN en desarrollo de software. Tres de febrero: SADIO ISSN: 2451-
7593.

Davis, A. (1994). FIFTEEN PRINCIPLES OF SOFTWARE ENGINEERING. IEEE.
Davis, A., Bersoff, E., & Comer, E. (1988). A Strategy for Comparing Alternative

Software Development Life Cycle Models. IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, VOL. 14, NO. IO,.

Deemer, P., Benefield, G., Larman, C., & Vodde, B. (2012). Scrum Primer. Retrieved
05 31, 2020, from https://scrumprimer.org/

DeMarco, T., & Lister, T. (1987). Peopleware. Dorset House.
Dingsøyr, T., Fægri, T. E., Dybå, T., Haugset, B., & Lindsjørn, Y. (2016). Team

Performance in Software Development Research Results versus Agile
Principles. IEEE Software (Volume: 33 , Issue: 4 , July-Aug. 2016).

Duncan, S. (2019). Understanding Agile Values & Principles. C4Media, InfoQ.com.
Ebert, C., & Paasivaara, M. (2017). Scaling Agile. IEEE Software (Volume: 34 , Issue:

6 , November/December 2017).
Endres, A., & Rombach, D. (2003). A Handbook of Software and Systems Engineering.

Pearson Addison Wesley.
Fairley, R., & Bourque, P. (2014). SWEBOK v 3.0 Guide to the Software Engineering

Body of Knowledge. IEEE Computer Society.

(2010). Peaceful Coexistence: Agile Developer Perspectives on Soft-ware
Architecture. IEEE Software Year: 2010, Volume: 27, Issue: 2.

Fritzche, M., & P.Keil. (2007). Agile Methods and CMMI: Compatibility or Conflict ?
Gilb, T. (1988). Principles of Software Engineering Management. Addison-Wesley.
Glass, R. (2002). Facts and Fallacies of Software Engineering. Addison Wesley.
Glazer, H., Dalton, J., Anderson, D., Konrad, M., & Shrum, S. (2008). CMMI or agile:

why not embrace both! SEI TECHNICAL NOTE.
Goldenson, D., A.Liu, & Jianping, Q. (2006). CMMI-Based Process Improvement:

How and When Does Success Happen? CMMI Technology Conference:
Software Engineering Institute.

Good, J. M. (2003). A Pragmatic Approach to the Implementation of Agile Software
Development Methodologies in Plan-Driven Organisations (MSc Thesis).
Lincoln University.

Ruiz de Mendarozqueta et al, Agile and software engineering, an invisible bond, EJS 20 (1) 2021 2-26 22

Hallowell, D.L. (2003). Six Sigma Software Metrics Maturity. Retrieved 2019, from
iSixSigma: https://www.isixsigma.com/industries/software-it/exploring-
defect-containment-metrics-agile/

Harvie, D., & Agah, A. (2016). Targeted Scrum: Applying Mission Command to Agile
Software Development. IEEE Transactions on Software Engineering (
Volume: 42 , Issue: 5 , May 1 2016).

Hoda, R., Salleh, N., & Grundy, J. (2018). THE RISE AND EVOLUTION OF AGILE
SOFTWARE DEVELOPMENT. IEEE Software (Volume: 35 , Issue: 5 ,
September/October 2018).

Hohmann, L. (1997). Journey of the Software Professional . Prentice Hall.
Hummel, O., & Burger, S. (2013). A pragmatic means of measuring the complexity of

source code ensembles.
Humphrey, W. S. (1989). Managing the Software Process. Addison-Wesley.
Hung, M., & So, L. (2010). The Role of Uncertainty in Real Option Analysis.
Institute, S. (n.d.). Scrum Institute. Retrieved 06 08, 2020, from https://www.scrum-

institute.org/inspect-and-adapt-scrum-framework.php
ISACA. (2018). COBIT 5 Framework. In ISACA.
Ismail, N. (2016). UK wasting 37 billion a year on failed agile IT projects. Retrieved

from https://www.information-age.com/uk-wasting-37-billion-year-failed-
agile-it-projects-123466089/

ISO. (2020, 06 08). ISO 9000:2015. Retrieved from
https://www.iso.org/obp/ui/es/#iso:std:iso:9000:ed-4:v1:es

Johnson, H., & Sims, C. (2012). Scrum: a Breathtakingly Brief and Agile Introduction.
Dymaxicon.

Jorgensen, K. M. (2003). A review of software surveys on software effort estimation.
Proceedings ISESE 2003. , (pp. pp-223-230). Rome, Italy.

Jorgensen, M. (2019). Relationships Between Project Size, Agile Practices, and
Successful Software Development Results and Analysis. IEEE Software Year:
2019 Volume: 36, Issue: 2.

Karlstrom, R. (2005). Combining agile methods with stage-gate project management.
IEEE Software, Year: 2005, Volume: 22, Issue: 3.

Kersten, M. (2018). What Flows through a Software Value Stream? IEEE Software
Year: 2018, Volume: 35, Issue: 4.

Knox, S. (1993). Modeling the Cost of Software Quality. pp. pp 9-16.
Kuhrmann, M., Diebold, P., Münch, J., Tell, P., Trektere, K., McCaffery, F., . . . Prause,

C. R. (2019). Hybrid Software Development Approaches in Practice: A
European Perspective. IEEE Software (Volume: 36 , Issue: 4 , July-Aug.
2019).

Kunz, M., Dumke, R. R., & Zenker, N. (2008). Software Metrics for Agile Software
Development. pp. pp. 673-678 .

Lan, C., & Balasubramaniam, R. (2007). Agile Software Development: Ad Hoc
Practices or Sound Principles. April 2007.

Lawlis, P. K., M., F. R., & B., T. J. (1995). A Correlational Study of the CMM and
Software Development Performance. pp. pp. 21-25.

Ruiz de Mendarozqueta et al, Agile and software engineering, an invisible bond, EJS 20 (1) 2021 2-26 23

Lee, G., & Xia, W. (2010). TOWARD AGILE: AN INTEGRATED ANALYSIS OF
QUANTITATIVE AND QUALITATIVE FIELD DATA ON SOFTWARE
DEVELOPMENT AGILITY. pp. pp 87-114.

Liebert, F. (2019). BARRIERS TO SUCCESSFUL REALIZATION OF NEW
PRODUCT DEVELOPMENT PROJECTS IN THE IT INDUSTRY. Silesian
University of Technology, Faculty of Organization and Management.

M. Staples, M. R. (2007). An exploratory study of why organizations do not adopt
CMMI. The Journal of Systems and Software 80 , p.p. 883 895.

Mahnic, V. (2012). A Capstone Course on Agile Software Development using
SCRUM. IEEE TRANSACTIONS ON EDUCATION, VOL. 55, NO. 1,
FEBRUARY 2012.

Maller, P., C.Ochoa, & Silva, J. (2004). Lightening the software production process in
a CMM level 5 framework. IEEE Latin American Transactions, V3(N1)(pp
15-22).

Mantovani Fontana, R., Reinehr, S., & Malucelli, A. (2015). Agile Compass: A Tool
for Identifying Maturity in Agile Software Development Teams. IEEE
Software (Volume: 32 , Issue: 6 , Nov.-Dec. 2015).

Marcal, A., DeFreitas, B., Furtado, F., & Belchior, A. (2008). Blending SCRUM
practices and CMMI Project Management Process Areas. Innovation System
Software(pp 18-29).

Martin, R. (2012). Código limpio: Manual de estilo para desarrollo ágil de software.
Anaya.

Martin, R. (2019). Clean Agile: Back to Basics. Prentice Hall.
Matson, J., Barrett, B., & Mellichamp, J. (1994). Software development cost estimation

using function points. 20.4, pp. 275-287.
McConnell, S. (1993). Code Complete. Microsoft Press.
McConnell, S. (1996). Rapid Development. Microsoft Press.
McConnell, S. (2019). More Effective Agile: A Roadmap for Software Leaders.

Construx Press.
McMahon, P. (2010). Integrating CMMI and Agile Development. Addison-Wesley

Professional;.
Meadows, D. (2008). Thining in Systems: a primer. Chelsea Green.
Mendarozqueta, A. R., & Andriano, N. (2014). Un enfoque para la mejora continua

basado en los principios ágiles.
Miller, G. (2013). Agile problems, challenges, & failures. PMI® Global Congress

2013, pp. pp.1-8.
Mohan, K., Ramesh, B., & Sugumaran, V. (2010). Integrating Software Product Line

Engineering and Agile Development. IEEE Software (Volume: 27 , Issue: 3 ,
May-June 2010).

Morse, L. (2012). 3 Paradigm Shifts of Agile. Retrieved 05 04, 2019, from Solutions
IQ: https://www.solutionsiq.com/resource/blog-post/3-paradigm-shifts-of-
agile/

Mukker, A., Mishra, A. K., & Singh, L. (2014). Enhancing Quality in Scrum Software
Projects. pp. pp 682-688.

Ruiz de Mendarozqueta et al, Agile and software engineering, an invisible bond, EJS 20 (1) 2021 2-26 24

Mun, J. (2002). Real Options Analysis, Tools and Techniques for Valuing Strategic
Investment and Decisions. Hoboken, New Jersey: John Wiley & Sons.

Concise Guide to Software Engineering. Springer.
Paulk, M. C. (2002). Agile Methodologies and Process Discipline. Institute for

Software Research. Paper 3.
Poppendieck, M., & Poppendieck, T. (2003). Lean Software Development: An Agile

Toolkit. Addison Wesley.
Rafaela Mantovani Fontana, S. R. (n.d.).
Rico, D. F. (2008). What is the ROI of Agile vs. Traditional Methods? pp. pp. 9 18.
Ruiz de Mendarozqueta, A., Bustos, F., & Colla, P. (2019). Agile in practice, a systemic

approach. Paper accepted for 48 JAIIO-ASSE 2019, to be published in 49
JAIIO-ASSE 2020.

SAFe. (n.d.). Retrieved 06 08, 2020, from
https://www.scaledagileframework.com/agile-architecture/

Sandu, I., & Salceanu, A. (2018). New approach to agile cycles containment
effectiveness metrics in automotive software development. pp. pp. 3-8.

Sargent, R. (2009). Verification and validation of simulation models. Proceedings of
the 2009 Winter Simulation Conference, ed. M. D. Rossetti, R. R. Hill, B.
Johansson, A. Dunkin, and R. G. Ingalls,.

Sauer, J. (2005). Agile Practices in Offshore outsourcing- An analysis of published
experiences. ECSCW 2005.

Schwaber , K., & Sutherland, J. (2017). Scrum.org. Retrieved 06 31, 2020, from The
home of Scrum: https://www.scrum.org/resources/scrum-guide

Schwaber, K. (2005).
Software Agility. Srum Alliance.

Schwaber, K., & Sutherland, J. (2017). The Scrum Guide. Retrieved from Scrum.org
SCRUMstudy. (2013). A Guide to the SCRUM BODY OF KNOWLEDGE. Retrieved

05 31, 2020, from https://www.scrumstudy.com/:
https://www.scrumstudy.com/

Shore, J., & Warden, S. (2008). The Art of Agile Development.
Shuterland, J., Jakobsen, C., & K.Johnson. (2008). Scrum and CMMI L5 The magic

potion for the code warriors. V(N).
Sommerville, I. (2015). SOFTWARE ENGINEERING 10th Edition. Pearson.
Stellman, A. (2014). Learning Agile: Understanding Scrum, XP, Lean, and Kanban.

Team, C. P. (2010). CMMI for Development, version 1.3. Pittsburgh, Pennsylvania,

USA: Software Engineering Institute (SEI), November 2010.CMU/SEI-2010-
TR-033.

Telemaco, U., Oliveira, T., Alencar, P., & Cowan, D. (2020). A Catalogue of Agile
Smells for Agility Assessment. IEEE Access, Year: 2020, Volume: 8.

Turner, R., & Jain, A. (2002). Agile meets CMMI: Culture clash or common cause.
XP/Agile Universe LNCS 2418.

Vallon, R., Strobl, S., Bernhart, M., Prikladnicki, R., & Grechenig, T. (2016). ADAPT
A Framework for Agile Distributed Software Development. IEEE Software (
Volume: 33 , Issue: 6 , Nov.Dec. 2016).

Ruiz de Mendarozqueta et al, Agile and software engineering, an invisible bond, EJS 20 (1) 2021 2-26 25

Vijay, D., & Ganapathy, G. (2014). Guidelines to minimize the cost of software quality
in agile SCRUM process. Vol.5, No.3, pp. pp 61-69.

Vijayasarathy, L. R., & Butler, C. W. (2016). Choice of Software Development
Methodologies Do Project, Team and Organizational Characteristics
Matter? IEEE Software (Volume: 33 , Issue: 5 , Sept.-Oct. 2016).

Vishal, S., & Kishen, I. (2007). Will Agile Methodologies work in offshore outsourcing?
San Diego, USA: SWDSI07.

Weinberg, G. (1992). Quality Software Management (Vol 1 Systems Thinking). Dorset
House.

Ruiz de Mendarozqueta et al, Agile and software engineering, an invisible bond, EJS 20 (1) 2021 2-26 26

