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Abstract. Optimization of hyper-parameters in real-world applications
of reinforcement learning (RL) is a key issue, because their settings de-
termine how fast the agent will learn its policy by interacting with its
environment due to the information content of data gathered. In this
work, an approach that uses Bayesian optimization to perform an au-
tonomous two-tier optimization of both representation decisions and al-
gorithm hyper-parameters is proposed: first, categorical / structural RL
hyper-parameters are taken as binary variables and optimized with an
acquisition function tailored for such type of variables. Then, at a lower
level of abstraction, solution-level hyper-parameters are optimized by re-
sorting to the expected improvement acquisition function, whereas the
categorical hyper-parameters found in the optimization at the upper-
level of abstraction are fixed. This two-tier approach is validated with
a tabular and neural network setting of the value function, in a classic
simulated control task. Results obtained are promising and open the way
for more user-independent applications of reinforcement learning.

Keywords: reinforcement learning, hyper-parameter optimization,
Bayesian optimization, Bayesian optimization of combinatorial struc-
tures (BOCS)

1 Introduction

Generalizing from data in supervised learning involves a training process, where
an algorithm is used to learn the model structure (representation) and parame-
ters that best fit the available data. Training, in turn, depends on prior design
decisions (representation and algorithms) that defines the hyper-parameters that
are the constraints for data-driven learning of a functional map. Setting properly
these hyper-parameters is crucial to the learning process, and can make the differ-
ence between mediocre and state-of-art model induction and generalization [13].
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In machine learning, the process of finding the optimum set of hyper-parameters
ψ can be addressed as a black-box optimization problem, stated as finding

ψ∗ = argmax
ψ

f(ψ | D) (1)

being f an objective function that takes an input ψ given data D, and max-
imizes some metric, such as the prediction accuracy in supervised learning, or
the expected average reward in reinforcement learning.

As a sub-area of machine learning, reinforcement learning (RL) [29] algo-
rithms have achieved very significant milestones recently (specially in games),a
after its performance against professional players in Poker [7] and against grand-
master players in StarCraft II [31]. However, successfully applying reinforcement
learning algorithms involves pinpointing a set of hyper-parameters ψ such that
the learning agent can fast converge to an optimal behavior policy using highly
informative data. This is difficult in RL because data is not provided a priori

with correct examples of N feature-labeled pairs D = {(X, y)i}
N
i=1 as in super-

vised learning; instead, examples are sequentially generated through on-going
interactions between a learning agent and its environment, obtaining data in the
form of tuples of N observed transitions D = {(s, a, s′, r)i}

N
i=1, where s is an

state, a is an action that has been applied in s, s′ is the new state where the
agent has arrived and r is the corresponding reward obtained.

As data in RL is sequentially generated based on previously seen state tran-
sitions, actions taken and received rewards, hyper-parameter setting is the most
influential decision regarding the information content of the generated tuples.
Moreover, interactions of the learning agent with its environment requires a
proper balance between exploiting current knowledge by selecting the appar-
ently best actions, and exploring seemingly sub-optimal actions to discover bet-
ter, hopefully optimal, actions. In other words, agents have to experience infor-
mative transitions due to sub-optimal actions in order to learn from them and
then converge towards an optimal policy. Furthermore, only tuples of transitions
which are actually seen determine the values of parameters θ that the agent will
use to define its policy and estimate the values Q(s, a) of applying an action a in
a given state s, which also influence the next set of data generated, and so on and
so forth. This is the main difference with supervised learning algorithms, which
learn their θ parameters by being trained with annotated examples from a fixed
data set. In particular, when dealing with complex representation architectures
such as deep neural networks, there are often thousands of parameters θ that
must be learned and, added to the inherent variance of the RL learning process,
the absence of an autonomous hyper-parameter optimization methodology make
it very difficult to evaluate or replicate the efficacy of alternative architectures
[11] [14].

Such comparison is difficult, as hyper-parameters in representations and al-
gorithms used are usually manually tuned, which can be very ineffective [13],
or optimized by resorting to very inefficient methods such as grid search, ran-
dom search [5] or plain Bayesian optimization (BO) [19] [27]. As a commonly-
used strategy in machine learning, random search performs a random sample
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of the value of hyper-parameters in a local hyper-sphere surrounding the cur-
rent maximum. On the other hand, Bayesian optimization performs a black-box
optimization of f , resorting both to a prior distribution f ∼ P (y) and to the
available points from previous queries (X, y), in order to compute the mean and
variance for unseen inputs. This is typically predicted by Gaussian process (GP)
regression [23], which is used to maximize an acquisition function that is cheap
to optimize globally. The issue with random search is that the method uses
very limited information about previous queries of f . On the other hand, while
Bayesian optimization uses information regarding past queries, it also has two
limitations similarly to random search: 1) it involves no assumption about the
influence of hyper-parameters on the information content, and 2) it is inefficient
at optimizing categorical hyper-parameters such as the RL algorithm selected
and representation used for states and actions. Finally, notice that such existing
methods for hyper-parameter optimization are all based on the underlying as-
sumption that they are optimizing hyper-parameters for a supervised learning
task, where cross-validation errors can be accurately estimated.

In this work, an autonomous hyper-parameter optimization algorithm named
RLOpt two-tier is proposed. The algorithm assumes a hierarchical relationship
between RL hyper-parameters, in a way that there is a set of structural hyper-
parameters that are most influential in comparison to others, real-valued ones,
so that must be optimized iteratively at two abstraction levels. With such an as-
sumption, hyper-parameters that are assumed as crucial are often either discrete
(such as the number of hidden layers in a neural network), categorical, integer
or binary (such as an hyper-parameter that determines if the exploration rate is
to be decreased over time or not) or composed of numerical values (such as the
batch size). In other words, they represent a black-box combinatorial structure
that is very expensive to sample.

Taking the above considerations into account, in this approach the structural
hyper-parameters are optimized first by using a variant of Bayesian optimization
to handle categorical hyper-parameters. Then, traditional Bayesian optimization
is used to tune the real-valued hyper-parameters of the learning algorithm that
depends of the first structural decision, starting with the best structure and
trained parameters previously found.

Compared with traditional Bayesian optimization, the proposed algorithm
has two main advantages:

1. It focus the optimization in one subset of hyper-parameters at a time, allow-
ing to handle different levels of complexity at each optimization step.

2. By dividing the optimization in two tiers, the best models or hyper-parameters
of one tier can be reused when optimizing the other. For instance, opti-
mization of lower hierarchy hyper-parameters can start with the pre-trained
parameters θ from the best model of higher-level hierarchy.

The proposed algorithm is validated against random search and standard
Bayesian optimization in the classical Cart-pole and Pendulum control environ-
ments. This work is an extended version of [3], and is organized as follows: Section
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2 describes the RL problem and Section 3 describes the Bayesian optimization
algorithm and the BOCS algorithm, that are used to define the two-tier approach
for RL hyper-parameter optimization. On the other hand, in Section 4, hyper-
parameters in RL and the hierarchical assumption among them are detailed,
whereas in Section 5 is outlined the proposed two-tier optimization approach,
where Section 6 details the computational experiments made that validates the
proposed two-tier approach. Finally, Section 7 compares this work with other
similar approaches, and in Section 8 some concluding remarks are made and
promising avenues of our current research work are stated.

2 Reinforcement learning

Reinforcement learning [29] is a sub-area of machine learning that has recent
success in tasks such as StarCraft II [31], Go [28], Atari, Chess [25] and robotics
[20]. It involves an autonomous agent that must learn to control an external
environment while learning a control policy (a way of behaving) that maxi-
mize the cumulative or average of rewards received from such an environment
over time. Formally, it can be stated as a Markov Decision Process (MDP),
(S,A,R(.), P (.), γ), where

– S is a set of environmental states.
– A is a set of actions available to the agent.
– R(s) is an external function that assigns the agent a reward to state transi-

tion caused by the agent action taken at any state s ∈ S.
– P (s′ | s, a) is a function that determines the probability that the agent

transitions from a state s ∈ S to a state s′ ∈ S when an action a ∈ A is
taken.

– Finally, γ ∈ [0, 1) is a real number that assigns a discount to values of future
rewards, such that the return at a given time t equalsGt = γ0rt+γ

2rt+2+. . . .

The control policy is defined as a function π(a | s), and represents the prob-
ability of taking a given action a when the environment is in a certain state s.
With π(.), the agent aims to maximize the value function Vπ(.) for every state it
may be in, defined as the expected (cumulative or average) return starting from
a given state at time-step t and following a given policy π thereafter. Formally
such function must satisfy the Bellman equation [29], defined in Eqn. 2.

Vπ(s) = E(Rt | st = s)

=
X

a

π(a | s)
X

s′

P (s′ | s, a)(r(s, a, s′) + γVπ(s
′)) (2)

The Bellman equation can also be described in terms of the expected value of
a state s given that an action a is chosen and future actions will be selected using
a given policy π(s). In such terms, Eqn. 2 would be expressed as the function
Q(s, a), which represents the expected value of s and choosing an action a and
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following π(s) afterwards. Such distinction allows to differentiate the expected
return of following a policy from the value of each individual action available at
each state.

To solve a Markov Decision Process, a RL algorithm is used, that consists
of an iterative process focused on improving the value function. Among basic
algorithms, the most commonly used are Q-Learning [32] and SARSA [24]. Both
algorithms compute the action-value function Q(s, a) according to a temporal
difference between the discounted value of Q(s′, a′) of the next state and action,
and the previous Q-value for the current state and chosen action. The learning
rule based on temporal differences in Q-learning is given in Eqn. 3.

Qnew(s, a) = Qprev(s, a) + α(r + γ argmax
a′

Q(s′, a′)−Qprev(s, a)) (3)

The difference between Q-Learning and SARSA is how they choose the next
action a′, where the latter selects the action based on the policy π, and thus it is
an on-policy algorithm, whereas the former selects the best estimated action a′

for the resulting state s′, therefore it is considered as off-policy. Algorithms may
also update the Q(s, a) values of past states and actions that were responsible
for reaching the current state, using a mechanism known as eligibility traces [29].

A crucial aspect in RL is the trade-off between exploration and exploitation,
in which the agent has to choose between taking actions that are considered to
be the best according to the current estimation of the optimal policy learned so
far, or taking actions that are deemed as sub-optimal but makes room for the
agent to discover better actions to exploit in the future.

To achieve this trade-off, a commonly used exploration policy is the ǫ-greedy
policy, where the estimated best action a′ is chosen with an 1 − ǫ probability,
and the other alternative actions are chosen at random with a low probability ǫ.
Alternatively, the Softmax policy is also a common choice, where each action is
selected based on the equation π(a | s) = eQ(s,a)/τ/

P

a′ e
Q(s,a′)/τ , where τ is an

hyper-parameter that establishes the influence of the Q(s, a) values in defining
the action selection probabilities.

Each of the RL algorithms and policies have their own set of hyper-parameters
that must be defined before the agent learning process begins. Common hyper-
parameters include a learning rate that determines the speed of the convergence
of the agent α ∈ (0, 1), an exploration rate ǫ ∈ (0, 1) if the policy is ǫ-greedy,
and a discount factor γ ∈ (0, 1) for future rewards. If the policy used is ǫ-greedy,
an additional hyper-parameter known ǫ-decay rate can be used to reduce the
value of exploration parameter ǫ after an episode, in order to increasingly lower
the exploration rate of the agent after a given number of episodes has been
experienced.

Due to the difficulties of performing calculations in big and possibly non
discrete state spaces is that in most applications, the value function v is nor-
mally not computed directly in such cases but instead approximated through
an estimation of the value function Vπ(s) ≈ ṽπ(s | θ) parametrized with learned
weights θ = θ0, θ1, . . . , θp. Such θ can comprise trivial models such as a simple
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linear regression, or complex non-linear models such as deep neural networks.
Outputs of such models include the Q-values for each action availabe at a given
state, as it happens in [18], or the probability π(s, a) of selecting an action a as
it happens in policy gradient algorithms such as [26], among others.

In recent years, a particular architecture called deep Q network (DQN) [18]
kick-started the adoption of deep learning architectures for encoding the policy
learned by reinforcement learning algorithms (called Deep RL). Such architecture
extends the classical Q-learning algorithm in different ways:

1. Prediction of the action-value function of a state s given by Q(φ(s), a | θ),
where φ(s) is a function that applies pre-processing on states (e.g. if s is
an image, such pre-processing can consist in converting its RGB values to
grayscale, resizing of the image, etc.). Having the estimation of Q, action
selection is performed with an ǫ-greedy policy.

2. A different set of weights θ− is used to predict the target y, in order to stabi-
lize the learning process by preventing that both the prediction Q(φ(s), a | θ)
and its target y (defined below) are changed simultaneously at each gradient
step. Therefore, target weights θ− are not updated by gradient descent, but
are replaced with weights θ after C steps.

3. Storing tuples of experience (s, a, r, s′) in a replay memory. Each tuple con-
tains key information of the observed transitions from a given state s to
another state s′ after applying an action a, with its corresponding reward r.
Once stored, tuples are uniformly sampled in mini-batches, and are used to
estimate the target value y, given by

y =

(

r if episode is terminated

(rj + γmaxa′Q̂(φ(s′), a′ | θ−)) otherwise
(4)

Then, gradient descent is applied on (y−Q(φ(s), a | θ))2 with respect to the
weights θ.
In order to separate tuples from the policy that generates it, an off-policy
estimation is used. This allows learning from tuples of experience generated
by different policies.

4. In order to avoid a high variance due to constant oscillation of network
weights, rewards are clipped in the interval [−1, 1] for rewards which are
larger or smaller than both extremes of the interval.

Given its importance and success, the DQN architecture was included in this
work to validate the proposed approach.

3 Bayesian optimization

Bayesian optimization [19] [27] is a sequential method for finding the point X
that maximizes a costly black-box function f : Xd → R. This is performed in a
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way that gives f(X) a Bayesian treatment, by assuming it follows a prior dis-
tribution, and then by computing the posterior distribution based in the Bayes’
rule and the previously sampled data points D = (X1, y1), (X2, y2) . . . (Xn, yn)
(being each yi = f(Xi) + ε). As f(X1), . . . , f(Xn) are assumed to follow a mul-
tivariate Gaussian distribution, then the statistical meta-model of the black-box
is a Gaussian process [23]. This allows computing the mean µ and variance σ2

of f for any point Xn+1 over the input domain given the observations D using
a closed-form functional approximation given by Eqn. 5

µn+1(X) = µ0(X) + k(X)TK−1(Y − µ0) (5)

σ2
n+1(X) = k(X,X)− k(X)TK−1k(X)

As the meta-model function f is expensive to query, next sampling points are
selected by maximizing a surrogate function called acquisition function, being
the expected improvement (EI) function the most common variant. Such function
is used to sample candidate points Xtest by calculating the predicted mean and
variance of each of them and returning as output the expected improvement
over an incumbent (that normally equals to the point τ = X+ that currently
maximizes f). The EI function is given by Eqn. 6.

αEI(X) = E[f(X)− τ ]P [f(X) > τ ] (6)

= (µn(X)− τ)Φ(Z) + σn(X)φ(Z)

where Z = µn(X)−f(X+)
σn(X) . Considering that, the Bayesian optimization pro-

cedure is defined in Algorithm 1

Algorithm 1: Bayesian Optimization

Input : Gaussian process hyper-parameters, acquisition function α, unknown
black-box function f

1 for evaluation = 1 to N evaluations do

2 Obtain Xn by optimizing acquisition function α(Xd) → R using predicted
µn+1 and σn+1 from a statistical model (e.g. Gaussian Process)

3 Query the objective function f at the point Xn+1

4 Add the result f(Xn+1) to D
5 Update the statistical model (e.g. Gaussian process)

6 end

Output: argmaxX f(X)

Despite of their applicability in optimizing hyper-parameters, Algorithm 1
cannot efficiently handle discrete or categorical hyper-parameters that make
choices that are structural or over categories, such as choosing an exploration
algorithm or different representations of states and actions. A recent variant of
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BO helps addressing such shortcoming, where a modified version of Algorithm
1 and an acquisition function that uses semidefinite programming are employed
to take such values as input in a way that the algorithm can be applied with
scarce data [2]. This variant consists in modeling the objective function as a
second-order model, given by Eqn. 7.

f(X | α) = α0 +
X

j

αjXj +
X

i,j>i

αi,jXiXj − λkXk22 (7)

where X ∈ {0, 1}d, λ is a regularization parameter, and α is a vector of
learned coefficients that follow a Bayesian treatment, assumed to follow a horse-
shoe prior [8] and a Gaussian posterior distribution. The acquisition function
employed is based on the well-known Thompson sampling idea and optimizes
a quadratic form of Eqn. 7. As such function is very inefficient to optimize in
that form, it is relaxed from quadratic to a vector mathematical program, where
binary variables are replaced by a variable vector of d+ 1 dimension in a d+ 1
dimensional unit hyper-sphere. To approximate it in polynomial time, this vec-
tor program is rewritten as a semidefinite (SDP) program, then converted back
to a vector where a randomized rounding method is used to obtain the solution.

Taking into account such acquisition function, the BOCS algorithm consists
of a BO loop that performs Gibbs sampling of a vector of coefficients α from
a posterior distribution, updated iteratively upon new data. The procedure is
presented in Algorithm 2.

Algorithm 2: Bayesian Optimization of Combinatorial Structures
(BOCS)

Input : Posterior distribution P (.), unknown black-box binary function f , λ
1 for evaluation = 1 to N evaluations do

2 Sample α1, . . . , αp from the posterior P (α | D)
3 Obtain Xn by finding argmaxX fα(X)− λkXk22
4 Query the objective function f at the point Xn+1

5 Add the result f(Xn+1) to D
6 Update the statistical model with the posterior P (α | D)

7 end

Output: argmaxX f(X)

4 Hyper-parameters in reinforcement learning

Reinforcement learning is mainly about transforming data from on-going inter-
actions between an agent and its environment into knowledge in the form of an
optimal control policy or agent behavior. Given a task, a reward function —
which is externally provided and beyond the agent control— is used to provide
goal-related hints to assess the goodness or badness of actions taken at different
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environmental states visited. Any systematic procedure to learn an optimal pol-
icy in such a way can be named an RL algorithm. Mathematically speaking, any
reinforcement learning algorithm is based on a number of hyper-parameters that
affect its efficiency and effectiveness in the learning process. Hyper-parameters
may include those directly related to balance exploration with exploitation such
as ǫ for an ǫ-greedy control policy or the ”temperature” for Softmax exploration
based on Q-value estimation. There are also hyper-parameters that influence
the speed of the learning process itself such as the discount rate γ for future
rewards, eligibility traces λ and the learning rate α. They also may include a
more abstract or categorical type of hyper-parameters such as the learning rule
(e. g., temporal difference) and the type and corresponding parameters (e.g.,
structure of a neural network or the covariance function in a Gaussian process)
used to represent the policy being learned, including deep representations of
state features. Moreover, there may exist hyper-parameters used to define ab-
stract representations through state aggregation and define options or extended
courses of actions in temporal or relational abstractions. Sub-optimal or poor
setting of some or many of these hyper-parameters significantly affect the learn-
ing process experienced by the agent using environmental reinforcements and
the resulting approximation to the optimal policy. Bearing in mind the above
considerations, and using as starting point the notion of abstractions specifics
to reinforcement learning based on the PIAGeT principle [21], a rather simple
hierarchy of abstraction for different hyper-parameters required to fully specify
an RL agent is proposed. This is done in order to tackle the complex issue of
autonomous learning of key decisions, and to lay the foundations for the two-tier
autonomous reinforcement learning setting in Section 5. Given a sequential de-
cision problem under uncertainty (e.g., goal-directed learning control problem)
formulated as a Markov Decision Process (MDP), where learning an optimal
policy for achieving a desired goal is the main focus of attention, four different
layers of abstraction are proposed in order to specify the hyper-parameters in
the detailed design of an RL agent. Each layer is specifically related to a given
type of hyper-parameter (see Fig. 1). In the Sections below, the rationale behind
this hierarchy and the corresponding hyper-parameters are discussed.

4.1 RL Problem statement

Without any loss of generality, at the uppermost level, the RL problem is stated
here as a ”flat” Markov Decision Process [21], where all environmental states are
defined alongside all possible actions the agent can choose in each one of those
states. At this level of abstraction, hyper-parameters may be related to state fea-
tures and granularity for actions as well as all the parameters in any generative
model, if any. Also, in the upper level of the hierarchy other aspects of the RL
problem are defined, such as whether the task is addressed as episodic or non-
episodic, whether time is represented as a discrete variable or if it is continuum as
in Semi-Markov Decision Processes, if there exist hidden states such as in a Par-
tially Observable MDP, or if state transitions due to actions taken are assumed
as deterministic or probabilistic. With the possible exception of some rather
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Fig. 1. Reinforcement learning hyper-parameter hierarchy.

simple tasks such as small grid-worlds, proper setting of all the involved hyper-
parameters for solving the RL problem is a challenge which demands expertise
in the inner workings of an RL algorithm and its computational implementation.
Therefore, in the quest for autonomous setting of hyper-parameters in RL using
Bayesian optimization, the proposed hierarchy in Fig. 1 is only a starting point
for abstraction in which the two-tier optimization algorithm presented in Section
5 is based upon.

4.2 RL Problem design

At the highest-level of abstraction in the hierarchy of Fig. 1, hyper-parameters
are related to the design aspects of an RL agent. Decisions at this stage deter-
mines how the representation of a learning task is structured as an MDP and
constrained so as to facilitate policy learning using informative data generated
from agent-environment interactions. At this level of abstraction, decisions made
and conceptual models used aim giving the learning agent a short of scaffolding
which is defined by key hyper-parameters whose values heavily influence what
can be learned from data generated in on-going agent-environment interactions.

For instance, given a perception s from the environment, there is a design
decision involving how such input will be internally represented by the learning
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agent. If the environment has a discrete number of states and is simple enough
such as a grid-world, the state where the agent performs its learning could di-
rectly match the perception s. However, the issue of representation type, e.g.
propositional vs relational, must be addressed earlier on at this abstraction level.
Moreover, in complex RL problems where the number of environmental states
is significantly large or even a continuum, it is often better to represent the
state using features in φ(s) of the perceived state s, where φ(s) = (φ1, . . . , φd)
is the vector of features of the state s. For example, in [18], the actual agent
perception s is a snapshot image of the screen of an Atari game, and φ(s) is
a pre-processed sequence that stacks the last four frames of the game which is,
hopefully, more informative for learning from agent-interaction tuples than mere
individual frame.

Another important aspect is the relationship between state representation
and perception abstractions and how to model the actions available to the agent.
Accordingly, a design step involves how to define the granularity level of available
actions depending on how perceptions are transformed into states and also on
the type of representation used based on state features. The actions can be
considered the same as the raw actions available, or they can be converted into
composite actions; for example, in [18], a single action is taken four times before
sensing the effect on the environment after being selected. In a relational model
of environmental states, actions are also defined in a logic format using deitic
representation, which makes room for abstracting a large number of low-level
micro-actions into a single action.

Shaping internally the learning process may also demand properly setting
some hyper-parameters. Often, the agent must achieve the goal (possibly, in a
sub-optimal way) of making enough room for the credit-assignment process to
provide a meaningful estimation of value functions. In reward design, given a
task, additional internal rewards can be defined at some environmental states
in order to incorporate bias into the agent behavior a priori knowledge that
may speed up the learning process. For example, intrinsic rewards can be added
as hints or guidelines to avoid certain risky states or motivate certain type of
behaviors that help achieving the goal more efficiently. Another approach is
adding an internal reward to drive exploration of given actions in non or sparsely
visited states [22].

Regarding modeling the environment using a generative model, assumptions
made about transition probabilities demand setting some hyper-parameters to
trade off a priori knowledge or causal models with inductive modeling as the
agent accumulates experience. Optimal setting of related hyper-parameters for
predicting the environment may accelerate the learning process towards the op-
timal policy. For example, in [9], a (possibly inaccurate) model of the transition
probabilities of the MDP may be incorporated in order to motivate the agent to
purposefully explore a subspace of environmental states.

Finally, the real-valued hyper-parameter γ is another key hyper-parameter
that determines the credit-assignment process for actions taken in the sequence
of actions and state transitions towards the goal. Optimally setting its value
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depends significantly on the task at hand. Hence, autonomous setting in an RL
algorithm may help circumventing the drawbacks associated with neglecting the
inter-dependency between the discount rate with other hyper-parameter values.
Lacking a proper understanding of the importance of these hyper-parameters
during the learning process often favors using constant default values. An ex-
ample is choosing γ = 0.9, which could unnecessarily slow down the learning
process experienced by the agent.

4.3 Finding the optimal policy

Going down in the hierarchy of Fig. 1, decision making revolves around choos-
ing the algorithm and its underlying computational structure for accumulating
knowledge so that the agent may converge to the optimal policy, and thus solv-
ing the RL problem for an externally provided reward function. Algorithm se-
lection involves considering alternatives such as one-step Q-Learning or SARSA
to update state-action values, using gradient-based methods to learn the pol-
icy parameters directly using actor-critic methods or multi-step algorithms. On
the other hand, the selection of the computational architecture in which the
algorithm will store its knowledge may involve saving individual predictions of
Q-values in tabular structures, or instead using a convolutional neural network
architecture, a recurrent neural network, or a long-short term memory structure
(LSTM), among others. Once the algorithm to accumulate knowledge resulting
from agent-environment interactions as well as the structure to store and make
predictions from it has been decided, the learning agent is equipped with the
architecture required to focus exploring different available actions at the states
encountered, to model state transitions and corresponding returns. Eventually,
earmarked by all the above decisions, the agent is ready to learn the optimal
policy for solving the task and (hopefully safely) generalize the policy to unseen
state-action pairs.

4.4 Algorithm hyper-parameters

Once the learning algorithm and architecture have been chosen, on a third level
of abstraction, the hyper-parameters that bias and constraint data gathering
must be set. For example, in the Q-Learning algorithm, a hyper-parameter is
used to balance exploration with exploitation (e.g. ǫ for choosing a non-greedy
action or the profile for the annealing temperature τ in Softmax exploration)
or to make value updates. If an algorithm with eligibility traces is used, then
the hyper-parameter λ will determine the ”memory” of the credit-assignment
process in the sequence of seen tuples. The information content of the generated
data depends significantly on the setting of these algorithm hyper-parameters.
Moreover, both the rate of convergence of the learning process and the final
approximation to the optimal policy are heavily dependent on the values chosen
for these real-valued parameters. Another crucial hyper-parameter in this level
of abstraction is the learning rate α, which determines the size of the update
of the value or action-value function and, depending on the architecture, may
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update the value on a table or determine the magnitude of the loss that is applied
through gradient descent in a neural network, to name but a few examples. The
algorithm hyper-parameters are not necessarily fixed during learning and may
be aptly changed to advantage. For example, the amount of exploration or the
learning rate can be steadily lowered as the number of episodes increases. This
also gives rise to new hyper-parameters that also must be optimized at this lower
level of the hierarchy.

5 Two-tier hierarchical Bayesian optimization of RL

hyper-parameters

Considering the hierarchical taxonomy of hyper-parameters described in the fore-
going section, in this work the proposed RLOpt two-tier autonomous tuning al-
gorithm rest upon two separate Bayesian optimization strategies to perform a
two-tier optimization of both structural ψa and solution-level hyper-parameters
ψb of an RL agent. The latter ones correspond to the lower layers of abstraction
in Fig. 1.

In our proposal, the higher level of optimization tunes the structural hyper-
parameters located in the second layer of abstraction in the first place, and then
the lower-level algorithm hyper-parameters of the third layer, kick-starting from
the best categorical and structural decisions ψa and learned parameters θ. After
a first-round optimization of categorical and representation hyper-parameters,
they are kept frozen and the best combination of real-valued hyper-parameters
found is used as a prior for the next round of optimization in the external loop, so
it starts from a better initial point in optimizing categorical hyper-parameters.
The two-tier optimization process is depicted in Fig. 2, where it is shown how
both tiers are interrelated by an external and an internal loops for iterative
improvement of the two sets of hyper-parameters.

To measure the performance of the optimization, it is proposed an objective
function f : ψa ∪ ψb → R that maps a tuple (ψa, ψb) of both structural and
solution level hyper-parameters of the algorithm to a real number that measures
the overall performance of the learning agent, assuming an episodic task.

In order to calculate the value of f(ψa∪ψb), an RL agent is instantiated in a
certain environment with hyper-parameters (ψa, ψb), and set to run for a certain
number of episodes, in order to learn a policy to behave in such a way to maximize
its received cumulative (or average) reward. Whenever the learning agent is given
a new setting for its hyper-parameters, it resets all its prior knowledge about the
policy previously learned in order to make a fresh start, unbiased by previous
prior hyper-parameter values used. The new instance of the RL agent which
run for a certain number of episodes under the same hyper-parameter setting is
referred to here as a meta-episode.

At the upper-level hierarchy of considered hyper-parameters, Bayesian opti-
mization for categorical structures (BOCS) is used to optimize the categorical,
integer and representation hyper-parameters, taking them as binary variables.
In such variables, each individual hyper-parameter ψia ∈ ψa may represent the
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Fig. 2. Two-tier RL hyper-parameter optimization. In the upper-layer, algorithm
hyper-parameters such as α are frozen. After the upper-layer optimization finishes,
the structural hyper-parameters such as the number of neural network layers and a
predefined set of its learned parameters are now fixed, while the rest of the hyper-
parameters is fine-tuned in the lower loop.

presence or not of a certain feature (taking a value of ψia = 1 or ψia = 0, re-
spectively). This feature can be categorical, for example to indicate whether
if a dueling DQN architecture will be used, or can correspond to an integer
value, e.g. to represent the number of hidden layers. While optimizing categori-
cal hyper-parameters, the algorithm hyper-parameters that depend on them are
kept frozen (i.e. they are not modified by the BOCS algorithm), starting from
an initial vector of preset algorithm hyper-parameters ψb. Such initial vector is
determined either from prior knowledge, default values or by the latest setting
from the lower-level optimization loop as the external loop iteration proceeds.

Regarding the hyper-parameter optimization of the lower-level hierarchy that
are real-valued, a standard Bayesian optimization approach is used once the
upper-tier optimization has been made in the outer loop. Such an approach
involves Gaussian assumptions and a Gaussian process statistical model to op-
timize the real-valued hyper-parameter that depends on those of at the higher
level in the hierarchy, such as the learning rate α. In order to start the training
from a solid basis, and considering that the upper-tier optimization has already
performed some optimization improvement to the architecture and represen-
tation, the meta-episodes in the lower hierarchy are initialized with the best
categorical hyper-parameters θ from the upper-layer optimization loop. In other
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words, this means that whenever the agent is restarted while optimizing the
lower-tier real-valued hyper-parameters, it is restarted to the parameters θ from
the last setting from the upper level. This is used both to kick-start the agent
with a promissory pre-trained model with weights θ, and to give the statistical
model a reference of f , so BO starts with a performance benchmark of the best
value of f obtained so far. In that sense, the lower-level hierarchy acts as a fine-

tuning of the upper-level hierarchy model, as it starts optimizing a portion of
a pre-trained neural-network. Bearing this in mind, if the underlying structural
model is a neural network-based architecture, the lower-level optimization can
also work with a reduced subset of the latest hidden layers, having the first hid-
den layers been kept fixed in terms of their links and weights. This allows a more
stable and precise optimization of the remaining hyper-parameters, reducing the
cost of training the whole architecture and representation, especially when such
architecture involves many convolutional layers of filters.

After the lower-level hierarchy training is finished, a full evaluation cycle
ends. Then, a new evaluation starts with a new set of N structural evaluations.
The best vector of algorithm hyper-parameters ψb found in the latest evaluation
is used as the initial set of the new structural cycle, a new iteration of the
outer-loop optimization begins.

The full optimization algorithm is stated in Algorithm 3.

6 Computational experiments

6.1 Initial validation of the two-tier optimization

In order to obtain an initial validation, the proposed approach is run in a dis-
cretized version of the classic Cart-pole control environment, which consists of
an environment with a cart that may be pushed either left or right, and it is
holding a pole that can swing in both directions. The objective for the learning
agent is to keep the pole balanced (i.e. by not letting it in a position where it
will inevitably fall), while maintaining itself within certain limits. Each episode
is terminated whenever the pole position is above or below 12 degrees from the
vertical position, when the cart moves beyond a distance of 2.4 units from the
center, or when 200 time-steps have elapsed. A reward of +1 is given after every
time-step when the pole is still maintained upright, and a reward of -200 is as-
signed to the agent whenever the pole has fallen. The learning task is considered
”solved” if the average reward reaches a threshold of +195, therefore an agent
that follows an optimal policy would yield at least such reward, on average. The
implementation used for the environment was the OpenAI Gym implementation
[6].

The proposed Algorithm 3 is compared against two of the most commonly
used methods for hyper-parameter in machine learning: random search and
Bayesian optimization. To optimize RL hyper-parameters using BO, the RLOpt
framework [4] is used. A total number of 30 meta-episodes were run for the
three approaches, where the average reward was used to compute f on each
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Algorithm 3: Bayesian optimization applied to optimize structural,
architectural (e.g. neural network) and algorithm hyper-parameters

Input : RL-agent function f , prior set of algorithm hyper-parameters ψb,
number of evaluations (N , E, M), Gaussian process
hyper-parameters, acquisition function α, posterior distribution P , λ

1 Set algorithm hyper-parameters as the prior set ψb for the first N structural
evaluations

2 for full-evaluation = 1 to E do

3 for structural evaluation = 1 to N do

4 Obtain ψa structural hyper-parameters that optimizes αBOCS(.) → R

5 Query the objective function f at the point (ψa, ψb)
6 Add the new triplet (ψa, ψb, f) to D1,
7 Update the BOCS posterior P (α | D1)

8 end

9 Initialize D2 with the triplet (ψa, ψb, f) that yielded the highest f
10 Set structural hyper-parameters as the best ψa structure and set the initial

learned parameters as θ for the next M hyper-parameters evaluation
11 for Algorithm hyper-parameters evaluation = 1 to M do

12 Obtain ψb algorithm hyper-parameters that optimizes αEI(.) → R

13 Query the objective function f at the point (ψa, ψb)
14 Add the new triplet (ψa, ψb, f) to D2

15 Update Gaussian process posterior functions µn+1(X) and σ2
n+1(X)

16 end

17 Set prior algorithm hyper-parameters as the best ψb for the next N
structural evaluations

18 end

Output: (argmax(ψa,ψb) f,max f)

meta-episode. In each iteration of the proposed algorithm, 10 meta-episodes
were run to optimize the discrete hyper-parameters and 20 meta-episodes were
used to optimize the real-valued hyper-parameters once the structural hyper-
parameters were fixed. The structural hyper-parameters optimized were
algorithm ∈ {Q-learning,SARSA}, eligibility-traces ∈ {true, false}, policy ∈
{ǫ-greedy,Softmax} and ǫ-decay ∈ {true, false} (it only applies when the ǫ-
greedy policy is selected). On the other hand, the lower-level algorithm hyper-
parameters subjected to optimization were α ∈ (0, 1), ǫ ∈ (0, 1), γ ∈ (0, 1), the
number of bins that divides the cart position and speed, n-bins ∈ (5, 20), and
the number of bins used to discretize the pole angle position and its angular
speed, n-bins-angle ∈ (5, 20).

Results obtained are shown in Fig. 3, where the different maximum obtained
for the f function (in this case, the maximum average reward) based on the
current and all previous meta-episodes in the learning curve are shown. In the
curves, the thick lines and their nearby curves correspond to the average maxi-
mum reached and the 95% confidence interval for ten simulations with different
random seeds. As can be seen, the proposed method is consistently better in find-
ing an optimized set of hyper-parameters that reach the maximum compared to
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the other two methods that does not optimize the structural hyper-parameters.
The average execution time for 30 meta-episodes with a single random seed was
7, 8 and 12 minutes for the random search, RLOpt, and for the RLOpt two-tier
optimizer, respectively, resulting in 3.5 hours to run all experiments in a com-
puter that consisted of four Intel i5-3230M CPU at 2.60GHz cores, and 12 GB
of RAM.

Fig. 3. Average maximum reached by each optimizer, per each meta-episode

6.2 Optimizing DQN hyper-parameters in neural networks

The following and successive sub-sections involves the validation of the two-
tier approach using a neural network architecture that runs over the Cart-Pole
environment. In this implementation, all restrictions regarding the discretization
of the state and the intrinsic reward used in the precedent Section are removed,
thereby taking as input the raw state tuple instead of applying a discretization,
and no penalization is applied when the pole fells.

The underlying architecture is a deep-Q network that made updates to its
target network weights every 10 steps, and consisted of the following structure:
an input layer with four inputs that made up the perceived state s from the
Cart-pole environment followed by up to 4 hidden layers with up to 32 neurons
each. The output layer is composed of two outputs corresponding to the esti-
mated Q values for the left and right actions, given the input state. Each of
the hyper-parameter optimizers is set to run for 30 meta-episodes, where each
consists of an agent running 100 episodes optimizing both structural and algo-
rithm hyper-parameters. As can be seen, results of the experiments highlight
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that the RLOpt two-tier approach for hyper-parameter optimization of alterna-
tive neural network architectures can achieve a consistent convergence towards
the optimum hyper-parameters, and that the convergence rate is improved when
the best model is used within several full evaluation loops. On the other hand,
results also show that optimizing the hyper-parameters of categorical decisions
for defining such an elaborated representation have less performance than re-
sorting to a tabular and discretized version of value functions and states, which
showcase that more complex representation architectures does not necessarily
imply a better performance over tabular, simpler representations of states.

Regarding the RLOpt two-tier optimizer, its structural hyper-parameters
were optimized using the BOCS algorithm, where 6 bits formed the combination
of options, given by Table 1.

Table 1. The 6-bits representation used for structural hyper-parameters.

Bit position Bit value = 0 Bit value = 1

6 no change in layers +2 hidden layers

5 1 hidden layer 2 hidden layers

4 no change in neurons +16 neurons per layer

3 8 neurons per layer 16 neurons per layer

2 no change in batch size +32 batch size

1 batch size of 16 batch size of 32

Regarding the vector of real-valued algorithm hyper-parameters which is
made up here of (α, ǫ, ǫ-decay, γ), whose ranges of values are as follows: α ∈
(1e − 6, 1e − 2), ǫ ∈ (0.01, 0.3), ǫ-decay ∈ (0.001, 0.1) and γ ∈ (0.01, 0.99). Fi-
nally, it is noticed that the optimization of the neural network parameters was
performed by the Adam algorithm [16].

Regarding random search and the (monolithic) Bayesian optimization, they
optimized all the structural and algorithm hyper-parameters at the same time.
As both work with real-valued numbers, structural hyper-parameters are selected
by taking the integer part of the hyper-parameter value.

In the first simulation, random search and Bayesian optimization were com-
pared against the RLOpt two-tier approach for optimizing the neural network
representation. The proposed approach resorts to 30 meta-episodes in 1 full-
evaluation loop, that consisted of 10 structural evaluations and 20 algorithm
hyper-parameter evaluations. Results are depicted in Fig. 4, which showcases
the fact that the RLOpt two-tier approach exhibits a performance that surpasses
the other two approaches, being ahead of both random search and RLOpt in the
first episodes and being close to RLOpt, the second best approach, towards the
end and with less variance. Average running times for this simulation times were
12, 13 and 14 minutes for RLOpt two-tier, standard Bayesian optimization and
random search, respectively.
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Fig. 4. Average maximum reached by each optimizer when tuning neural network
hyper-parameters.

6.3 Optimizing DQN hyper-parameters sharing the best model

To validate the RLOpt two-tier capacity of optimizing pre-trained neural net-
works, this section shows how the algorithm performs when all the meta-episodes
that occurs in the lower-level hierarchy optimization are started with the best
configuration and hyper-parameters found in all the previous upper-tier meta-
episodes. Results are shown in Fig. 5, where as can be seen that sharing the best
representation has a positive impact in the average reward that can be obtained
at the end of the learning curve. Average execution times for each random seed
were 12 and 16 minutes for the RLOpt two-tier without and with sharing the
best model, respectively.

6.4 Optimizing DQN in several full evaluation loops

Finally, an additional experiment was made to validate the performance of
the proposed two-tier approach, by comparing the performance of several full-
evaluation loops in a shared model execution. Each of the executions were divided
as:

– Execution 1 (blue curve) used 1 full evaluation loop and its the same evalu-
ation as the prior subsections, with 10 structural evaluations followed by 20
algorithm optimization meta-episodes.

– Execution 2 (orange curve) used 2 full evaluation loops that consisted on 2
sequences of 7 structural hyper-parameter optimization meta-episodes fol-
lowed by 8 algorithm hyper-parameter optimization meta-episodes each.
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Fig. 5. Comparison between the average maximum reached when using the best struc-
ture and parameters in the lower-tier optimization.

– Execution 3 (green curve) used 3 full evaluation loops that were comprised
of 3 sequences of 5 structural optimization meta-episodes followed by 5 al-
gorithm optimization meta-episodes each.

Regarding the results, Fig. 6 depicts how the approach behaves when having
1, 2 and 3 full-evaluations, where a noticeable improvement can be seen in the
maximum reached following the first fine-tuning pass of hyper-parameters. In
particular, the optimization with 2 full evaluations is highlighted against the
optimization with 1 full evaluation, because it starts behind in the first meta-
episodes, and then catches up when it changes from upper to lower-tier BO
optimization for the first time, maintaining high-level performance thereafter
and onwards. The changes from the external loop to the internal loop can been
appreciated by observing how the learning curves evolve in such meta-episodes,
being the 2-full evaluation loops the alternative that gives rise to greater changes.
The average running time for each random seed were 16, 17 and 14 minutes for
the RLOpt two-tier with 1, 2 and 3 full evaluations, respectively.

6.5 Optimizing Soft actor-critic in continuous action space

The proposed approach is additionally validated with a more challenging envi-
ronment with continuous action space, the Pendulum environment (using the
OpenAI implementation of the environment), which consists on an agent that
applies a real valued torque ∈ [−2, 2] to a pendulum in order to swing it up
in a way that it always remain upright. As DQN cannot handle a continuous
action space, an algorithm that can take continuos actions was used for this
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Fig. 6. Comparison of the average of the maximum reached by RLOpt two-tier execu-
tions with 1, 2 and 3 full loops.

environment: the Soft-actor critic (SAC) [10] algorithm. SAC is an off-policy RL
algorithm that uses experience replay such as DQN, and has the following main
differences:

1. It uses two Q-value networks instead of one in order to minimize bias.
2. It uses a policy network in order to sample the action. As the action space is

continuous, actions are sampled from a normal distribution with Gaussian
noise.

3. It adds a bonus reward based on the entropy of the policy distribution in
order to promote exploration. A hyper-parameter αentropy is used to control
the magnitude of the bonus.

4. It uses an experience buffer, but the next action is sampled from current
policy instead of using a buffered action. As a result, it trains a stochastic
policy instead of a deterministic.

Learning experiments in the Pendulum environment are based on a similar
setting as the previous subsections. They consisted of 30 meta episodes, made
up of 100 episodes each. Structural hyper-parameters were the same as in the
DQN network, defining a vector of 6 bits. Alternative settings for structural
hyper-parameters in such vectors are as follows: 1) the number of hidden layers
∈ {2, 3}, 2) the number of neurons per layer ∈ [32, 96] and 3) the size of the batch
∈ [30, 110]. On the other hand, the algorithm hyper-parameters to be optimized
were: 1) learning rate αlr ∈ (1e−3, 1e−2), 2) discount factor γ ∈ (0.85, 0.99), 3)
policy hyper-parameter ρ ∈ (0.99, 0.999), that determines the magnitude of the
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update of the network parameters theta, and 4) entropy coefficient αentropy ∈
(0.01, 0.99), that determines the magnitude of the bonus entropy reward.

Results obtained are shown in Fig. 7, where the maximum of all the execu-
tions are summarized. It can be appreciated that sharing the best model has a
huge effect in the performance of the agents, given that the top-3 performing
executions involved sharing the best model found in the upper tier. A noticeable
aspect about the best performing models was that they performed best when
an increasing number of full evaluations were used. On the other hand, another
aspect worth mentioning is that not sharing the best model had a negative effect
in the performance of the RLOpt two-tier optimizer, which gives rise to a lower
maximum compared with others. Running times were the following:

– RLOpt two-tier without sharing the best model: 1 hour 17 minutes on aver-
age, total of 10 executions: 12h57m.

– RLOpt two-tier sharing best model with 1 full evaluation: 1h07m on average
(11h15m total)

– RLOpt two-tier sharing best models with 2 full evaluations: 1h14m on aver-
age (12h27m total)

– RLOpt two-tier sharing best models with 3 full evaluations: 1h14m on aver-
age (12h21m total)

– Random search: 1h01m on average (10h19m total)
– RLOpt with standard Bayesian optimization: 1h07m on average (11h17m

total)

Fig. 7. Comparison of the different maximums reached by all executions.
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7 Related work

Hyper-parameter optimization is a challenging problem in machine learning. It
has been approached in different ways in the literature with some success in
supervisory learning. In RL, the problem has received less attention and suc-
cess is more complicated due to role of hyper-parameters in the information
content of generated data. As the gradients of the hyper-parameters are not
normally available, the most common methods used are ”expert” manual tun-
ing, random search [5], Bayesian optimization and grid search. In the latter case,
hyper-parameter setting must perform an exhaustive search all over the hyper-
parameter space which is prohibitively expense in time and money. The main
drawback with grid search is that, as it does not use information of local or
global optima in the search over hyper-parameter space, it may sample combi-
nations of hyper-parameters that are non-informative yet there is no knowledge
nor guidelines to follow.

Informal-tuning on the other hand is commonly used in many papers of the
literature [13]. Hand-tuning involves optimizing the hyper-parameters without a
solid methodology that commonly consists of tuning by trial-and-error and using
common hyper-parameters or ”expert rules”. This is a sub-optimal strategy, as
most experienced tuples are hardly informative, making difficult to reproduce
both baselines and iterative meta-learning approaches, making it hard to transfer
the ”rules of thumb” used to another domains or algorithms.

As each evaluation of hyper-parameter is expensive, Bayesian optimization
have been a common denominator for several frameworks that have been pro-
posed in recent years. For instance, SMAC [12] [17] combined Bayesian optimiza-
tion with random forests, Auto-Weka [30] combined Bayesian optimization with
Gaussian process and Optuna [1], used Bayesian optimization and a pruning
algorithm for automatically cutting unpromising trials.

Regarding neural network hyper-parameters, a method for finding optimized
neural architectures that were recently proposed is neural architecture search,
which automatically alter neural network structures in the midst of the training
process, for example by changing activation functions, connections and neurons,
and had promissory results in domains such as image classification [33]. Another
approach for neural optimization is the use of population-based strategies [15],
which consists of finding the optimal hyper-parameters by resorting to a popu-
lation of models that are trained in parallel, and sharing solutions among them
to increase the performance of individual so-called ’workers’, namely optimizers.
Both approaches involve mechanisms that are outside the scope of this work,
however they can be good candidates for future additions to RLOpt so as to in-
tegrate them in the upper-level of the hierarchy when optimizing more complex
structures that includes convolutional neural networks.

8 Concluding remarks and future directions

In this work, a novel approach that addresses the optimization of both categorical
and real-valued RL hyper-parameters, assuming a hierarchical relationship be-
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tween them was presented for optimizing RL agents for task involving either both
a tabular (discretized) and approximated representation of states and actions.
The validation in the classic Cart-pole and Pendulum environments highlights
that the proposed RLOpt two-tier approach performs consistently better than
the monolithic optimization of the real-valued hyper-parameters alone. It was
also shown that this two-tier hierarchy can also be used as a way to fine-tune a
pre-trained neural network structure, starting from a pre-defined structure and
heuristically tuned parameters. That was the distinctive feature that made the
two-tier approach better than the monolithic approach, because as each meta-
episode consists in searching in a portion of the total hyper-parameter space
(as it was divided between meta-episodes that optimize hyper-parameters of the
structure and meta-episodes that optimize hyper-parameters at the algorithm
level), sharing the best model allowed to kick start the optimization from a bet-
ter initial condition, something that was not possible when optimizing over the
whole search space as in monolithic Bayesian optimization.

In this line, our current research efforts are focused on:

– Extending the concept of a hierarchical relationship considering the hyper-
parameters in architectures that includes convolutional neural networks.

– Use the two-tier approach to optimize hyper-parameters in policy gradient
algorithms.

– Employ the fine-tuning to efficiently transfer the performed learning to a
different reinforcement learning task.

– Incorporate mechanism to prune unpromising trials and to integrate paral-
lelism into the two-tier optimization, so as to maximize resource efficiency.
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